1
|
Pressé MT, Malgrange B, Delacroix L. The cochlear matrisome: Importance in hearing and deafness. Matrix Biol 2024; 125:40-58. [PMID: 38070832 DOI: 10.1016/j.matbio.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 02/12/2024]
Abstract
The extracellular matrix (ECM) consists in a complex meshwork of collagens, glycoproteins, and proteoglycans, which serves a scaffolding function and provides viscoelastic properties to the tissues. ECM acts as a biomechanical support, and actively participates in cell signaling to induce tissular changes in response to environmental forces and soluble cues. Given the remarkable complexity of the inner ear architecture, its exquisite structure-function relationship, and the importance of vibration-induced stimulation of its sensory cells, ECM is instrumental to hearing. Many factors of the matrisome are involved in cochlea development, function and maintenance, as evidenced by the variety of ECM proteins associated with hereditary deafness. This review describes the structural and functional ECM components in the auditory organ and how they are modulated over time and following injury.
Collapse
Affiliation(s)
- Mary T Pressé
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium.
| |
Collapse
|
2
|
Magariños M, Barajas-Azpeleta R, Varela-Nieto I, R Aburto M. Otic Neurogenesis Is Regulated by TGFβ in a Senescence-Independent Manner. Front Cell Neurosci 2020; 14:217. [PMID: 32973450 PMCID: PMC7461926 DOI: 10.3389/fncel.2020.00217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence has classically been associated with aging. Intriguingly, recent studies have also unraveled key roles for senescence in embryonic development, regeneration, and reprogramming. Developmental senescence has been reported during embryonic development in different organisms and structures, such as the endolymphatic duct during inner ear development of mammals and birds. However, there is no study addressing the possible role of senescence on otic neurogenesis. TGFβ/SMAD is the best-known pathway linked to the induction of developmentally programmed cell senescence. Here, we studied if TGFβ2 induces cellular senescence during acoustic-vestibular-ganglion (AVG) formation. Using organotypic cultures of AVG, and characterizing different stages of otic neurogenesis in the presence of TGFβ2 and a selective TGF-β receptor type-I inhibitor, we show that TGFβ2 exerts a powerful action in inner ear neurogenesis but, contrary to what we recently observed during endolymphatic duct development, these actions are independent of cellular senescence. We show that TGFβ2 reduces proliferation, and induces differentiation and neuritogenesis of neuroblasts, without altering cell death. Our studies highlight the roles of TGFβ2 and cellular senescence in the precise regulation of cell fate within the developing inner ear and its different cell types, being their mechanisms of action highly cell-type dependent.
Collapse
Affiliation(s)
- Marta Magariños
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research (CIBER) on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain.,Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Raquel Barajas-Azpeleta
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research (CIBER) on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Maria R Aburto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Some Ototoxic Drugs Destroy Cochlear Support Cells Before Damaging Sensory Hair Cells. Neurotox Res 2020; 37:743-752. [PMID: 31997155 DOI: 10.1007/s12640-020-00170-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/07/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
A wide variety of ototoxic drugs are capable of damaging the sensory hair cells in the mammalian cochlea resulting in permanent hearing loss. However, the toxic properties of these drugs suggest that some could potentially damage cochlear support cells as well. To test the hypothesis, we treated postnatal day three rat cochlear cultures with toxic doses of gentamicin, cisplatin, mefloquine, and cadmium. Gentamicin primarily destroyed the hair cells and disrupted the intercellular connection with the surrounding support cells. Gentamicin-induced hair cell death was initiated through the caspase-9 intrinsic apoptotic pathway followed by activation of downstream executioner caspase-3. In contrast, cisplatin, mefloquine, and cadmium initially damaged the support cells and only later damaged the hair cells. Support cell death was initiated through the caspase-8 extrinsic apoptotic pathway followed later by downstream activation of caspase-3. Cisplatin, mefloquine, and cadmium significantly reduced the expression of actin and laminin, in the extracellular matrix, leading to significant disarray of the sensory epithelium.
Collapse
|
4
|
Varela-Nieto I, Palmero I, Magariños M. Complementary and distinct roles of autophagy, apoptosis and senescence during early inner ear development. Hear Res 2019; 376:86-96. [PMID: 30711386 DOI: 10.1016/j.heares.2019.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/13/2019] [Accepted: 01/17/2019] [Indexed: 12/25/2022]
Abstract
The development of the inner ear complex cytoarchitecture and functional geometry requires the exquisite coordination of a variety of cellular processes in a temporal manner. At early stages of inner ear development several rounds of cell proliferation in the otocyst promote the growth of the structure. The apoptotic program is initiated in exceeding cells to adjust cell type numbers. Apoptotic cells are cleared by phagocytic cells that recognize the phosphatidylserine residues exposed in the cell membrane thanks to the energy supplied by autophagy. Specific molecular programs determine hair and supporting cell fate, these populations are responsible for the functions of the adult sensory organ: detection of sound, position and acceleration. The neurons that transmit auditory and balance information to the brain are also born at the otocyst by neurogenesis facilitated by autophagy. Cellular senescence participates in tissue repair, cancer and aging, situations in which cells enter a permanent cell cycle arrest and acquire a highly secretory phenotype that modulates their microenvironment. More recently, senescence has also been proposed to take place during vertebrate development in a limited number of transitory structures and organs; among the later, the endolymphatic duct in the inner ear. Here, we review these cellular processes during the early development of the inner ear, focusing on how the most recently described cellular senescence participates and cooperates with proliferation, apoptosis and autophagy to achieve otic morphogenesis and differentiation.
Collapse
Affiliation(s)
- Isabel Varela-Nieto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain; Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Ignacio Palmero
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Marta Magariños
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain; Biology Department, Faculty of Sciences, Autonomous University of Madrid (UAM), Madrid, Spain.
| |
Collapse
|
5
|
Mellott AJ, Shinogle HE, Nelson-Brantley JG, Detamore MS, Staecker H. Exploiting decellularized cochleae as scaffolds for inner ear tissue engineering. Stem Cell Res Ther 2017; 8:41. [PMID: 28241887 PMCID: PMC5330011 DOI: 10.1186/s13287-017-0505-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/18/2017] [Accepted: 02/10/2017] [Indexed: 11/20/2022] Open
Abstract
Background Use of decellularized tissues has become popular in tissue engineering applications as the natural extracellular matrix can provide necessary physical cues that help induce the restoration and development of functional tissues. In relation to cochlear tissue engineering, the question of whether decellularized cochlear tissue can act as a scaffold and support the incorporation of exogenous cells has not been addressed. Investigators have explored the composition of the cochlear extracellular matrix and developed multiple strategies for decellularizing a variety of different tissues; however, no one has investigated whether decellularized cochlear tissue can support implantation of exogenous cells. Methods As a proof-of-concept study, human Wharton’s jelly cells were perfused into decellularized cochleae isolated from C57BL/6 mice to determine if human Wharton’s jelly cells could implant into decellularized cochlear tissue. Decellularization was verified through scanning electron microscopy. Cocheae were stained with DAPI and immunostained with Myosin VIIa to identify cells. Perfused cochleae were imaged using confocal microscopy. Results Features of the organ of Corti were clearly identified in the native cochleae when imaged with scanning electron microscopy and confocal microscopy. Acellular structures were identified in decellularized cochleae; however, no cellular structures or lipid membranes were present within the decellularized cochleae when imaged via scanning electron microscopy. Confocal microscopy revealed positive identification and adherence of cells in decellularized cochleae after perfusion with human Wharton’s jelly cells. Some cells positively expressed Myosin VIIa after perfusion. Conclusions Human Wharton’s jelly cells are capable of successfully implanting into decellularized cochlear extracellular matrix. The identification of Myosin VIIa expression in human Wharton’s jelly cells after implantation into the decellularized cochlear extracellular matrix suggest that components of the cochlear extracellular matrix may be involved in differentiation.
Collapse
Affiliation(s)
- Adam J Mellott
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Heather E Shinogle
- Microscopy and Analytical Imaging Laboratory, University of Kansas, Lawrence, KS, 66045, USA
| | - Jennifer G Nelson-Brantley
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 3010, Kansas City, KS, 66160, USA
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 3010, Kansas City, KS, 66160, USA.
| |
Collapse
|
6
|
Spemann organizer gene Goosecoid promotes delamination of neuroblasts from the otic vesicle. Proc Natl Acad Sci U S A 2016; 113:E6840-E6848. [PMID: 27791112 DOI: 10.1073/pnas.1609146113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons of the Statoacoustic Ganglion (SAG), which innervate the inner ear, originate as neuroblasts in the floor of the otic vesicle and subsequently delaminate and migrate toward the hindbrain before completing differentiation. In all vertebrates, locally expressed Fgf initiates SAG development by inducing expression of Neurogenin1 (Ngn1) in the floor of the otic vesicle. However, not all Ngn1-positive cells undergo delamination, nor has the mechanism controlling SAG delamination been elucidated. Here we report that Goosecoid (Gsc), best known for regulating cellular dynamics in the Spemann organizer, regulates delamination of neuroblasts in the otic vesicle. In zebrafish, Fgf coregulates expression of Gsc and Ngn1 in partially overlapping domains, with delamination occurring primarily in the zone of overlap. Loss of Gsc severely inhibits delamination, whereas overexpression of Gsc greatly increases delamination. Comisexpression of Ngn1 and Gsc induces ectopic delamination of some cells from the medial wall of the otic vesicle but with a low incidence, suggesting the action of a local inhibitor. The medial marker Pax2a is required to restrict the domain of gsc expression, and misexpression of Pax2a is sufficient to block delamination and fully suppress the effects of Gsc The opposing activities of Gsc and Pax2a correlate with repression or up-regulation, respectively, of E-cadherin (cdh1). These data resolve a genetic mechanism controlling delamination of otic neuroblasts. The data also elucidate a developmental role for Gsc consistent with a general function in promoting epithelial-to-mesenchymal transition (EMT).
Collapse
|
7
|
Mellott AJ, Devarajan K, Shinogle HE, Moore DS, Talata Z, Laurence JS, Forrest ML, Noji S, Tanaka E, Staecker H, Detamore MS. Nonviral Reprogramming of Human Wharton's Jelly Cells Reveals Differences Between ATOH1 Homologues. Tissue Eng Part A 2015; 21:1795-809. [PMID: 25760435 DOI: 10.1089/ten.tea.2014.0340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The transcription factor atonal homolog 1 (ATOH1) has multiple homologues that are functionally conserved across species and is responsible for the generation of sensory hair cells. To evaluate potential functional differences between homologues, human and mouse ATOH1 (HATH1 and MATH-1, respectively) were nonvirally delivered to human Wharton's jelly cells (hWJCs) for the first time. Delivery of HATH1 to hWJCs demonstrated superior expression of inner ear hair cell markers and characteristics than delivery of MATH-1. Inhibition of HES1 and HES5 signaling further increased the atonal effect. Transfection of hWJCs with HATH1 DNA, HES1 siRNA, and HES5 siRNA displayed positive identification of key hair cell and support cell markers found in the cochlea, as well as a variety of cell shapes, sizes, and features not native to hair cells, suggesting the need for further examination of other cell types induced by HATH1 expression. In the first side-by-side evaluation of HATH1 and MATH-1 in human cells, substantial differences were observed, suggesting that the two atonal homologues may not be interchangeable in human cells, and artificial expression of HATH1 in hWJCs requires further study. In the future, this line of research may lead to engineered systems that would allow for evaluation of drug ototoxicity or potentially even direct therapeutic use.
Collapse
Affiliation(s)
- Adam J Mellott
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas
| | | | - Heather E Shinogle
- 3Microscopy and Analytical Imaging Lab, University of Kansas, Lawrence, Kansas
| | - David S Moore
- 3Microscopy and Analytical Imaging Lab, University of Kansas, Lawrence, Kansas
| | - Zsolt Talata
- 4Department of Mathematics, University of Kansas, Lawrence, Kansas
| | - Jennifer S Laurence
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,5Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas
| | - M Laird Forrest
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,5Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas
| | - Sumihare Noji
- 6Department of Life Systems, Institute of Technology and Science, The University of Tokushima, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Eiji Tanaka
- 7Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Hinrich Staecker
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,8Department of Otolaryngology, Head and Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Michael S Detamore
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,9Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas
| |
Collapse
|
8
|
Breau MA, Schneider-Maunoury S. Cranial placodes: models for exploring the multi-facets of cell adhesion in epithelial rearrangement, collective migration and neuronal movements. Dev Biol 2014; 401:25-36. [PMID: 25541234 DOI: 10.1016/j.ydbio.2014.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 01/16/2023]
Abstract
Key to morphogenesis is the orchestration of cell movements in the embryo, which requires fine-tuned adhesive interactions between cells and their close environment. The neural crest paradigm has provided important insights into how adhesion dynamics control epithelium-to-mesenchyme transition and mesenchymal cell migration. Much less is known about cranial placodes, patches of ectodermal cells that generate essential parts of vertebrate sensory organs and ganglia. In this review, we summarise the known functions of adhesion molecules in cranial placode morphogenesis, and discuss potential novel implications of adhesive interactions in this crucial developmental process. The great repertoire of placodal cell behaviours offers new avenues for exploring the multiple roles of adhesion complexes in epithelial remodelling, collective migration and neuronal movements.
Collapse
Affiliation(s)
- Marie Anne Breau
- Sorbonne Universités, UPMC Univ Paris 06, IBPS-UMR7622, F-75005 Paris, France; CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS) - Laboratoire de Biologie du Développement, F-75005 Paris, France; INSERM, U1156, F-75005 Paris, France.
| | - Sylvie Schneider-Maunoury
- Sorbonne Universités, UPMC Univ Paris 06, IBPS-UMR7622, F-75005 Paris, France; CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS) - Laboratoire de Biologie du Développement, F-75005 Paris, France; INSERM, U1156, F-75005 Paris, France
| |
Collapse
|
9
|
Jan TA, Chai R, Sayyid ZN, van Amerongen R, Xia A, Wang T, Sinkkonen ST, Zeng YA, Levin JR, Heller S, Nusse R, Cheng AGL. Tympanic border cells are Wnt-responsive and can act as progenitors for postnatal mouse cochlear cells. Development 2013; 140:1196-206. [PMID: 23444352 DOI: 10.1242/dev.087528] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Permanent hearing loss is caused by the irreversible damage of cochlear sensory hair cells and nonsensory supporting cells. In the postnatal cochlea, the sensory epithelium is terminally differentiated, whereas tympanic border cells (TBCs) beneath the sensory epithelium are proliferative. The functions of TBCs are poorly characterized. Using an Axin2(lacZ) Wnt reporter mouse, we found transient but robust Wnt signaling and proliferation in TBCs during the first 3 postnatal weeks, when the number of TBCs decreases. In vivo lineage tracing shows that a subset of hair cells and supporting cells is derived postnatally from Axin2-expressing TBCs. In cochlear explants, Wnt agonists stimulated the proliferation of TBCs, whereas Wnt inhibitors suppressed it. In addition, purified Axin2(lacZ) cells were clonogenic and self-renewing in culture in a Wnt-dependent manner, and were able to differentiate into hair cell-like and supporting cell-like cells. Taken together, our data indicate that Axin2-positive TBCs are Wnt responsive and can act as precursors to sensory epithelial cells in the postnatal cochlea.
Collapse
Affiliation(s)
- Taha Adnan Jan
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Magariños M, Contreras J, Aburto MR, Varela-Nieto I. Early development of the vertebrate inner ear. Anat Rec (Hoboken) 2012; 295:1775-90. [PMID: 23044927 DOI: 10.1002/ar.22575] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/12/2022]
Abstract
This is a review of the biological processes and the main signaling pathways required to generate the different otic cell types, with particular emphasis on the actions of insulin-like growth factor I. The sensory organs responsible of hearing and balance have a common embryonic origin in the otic placode. Lineages of neural, sensory, and support cells are generated from common otic neuroepithelial progenitors. The sequential generation of the cell types that will form the adult inner ear requires the coordination of cell proliferation with cell differentiation programs, the strict regulation of cell survival, and the metabolic homeostasis of otic precursors. A network of intracellular signals operates to coordinate the transcriptional response to the extracellular input. Understanding the molecular clues that direct otic development is fundamental for the design of novel treatments for the protection and repair of hearing loss and balance disorders.
Collapse
Affiliation(s)
- Marta Magariños
- Instituto de Investigaciones Biomédicas, Alberto Sols, CSIC-UAM, Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Aburto MR, Sánchez-Calderón H, Hurlé JM, Varela-Nieto I, Magariños M. Early otic development depends on autophagy for apoptotic cell clearance and neural differentiation. Cell Death Dis 2012; 3:e394. [PMID: 23034329 PMCID: PMC3481121 DOI: 10.1038/cddis.2012.132] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is a highly regulated program of self-degradation of the cytosolic constituents that has key roles during early development and in adult cell growth and homeostasis. To investigate the role of autophagy in otic neurogenesis, we studied the expression of autophagy genes in early stages of chicken (Gallus gallus) inner ear development and the consequences of inhibiting the autophagic pathway in organotypic cultures of explanted chicken otic vesicles (OVs). Here we show the expression of autophagy-related genes (Atg) Beclin-1 (Atg6), Atg5 and LC3B (Atg8) in the otocyst and the presence of autophagic vesicles by using transmission electron microscopy in the otic neurogenic zone. The inhibition of the transcription of LC3B by using antisense morpholinos and of class III phosphatidylinositol 3-kinase with 3-methyladenine causes an aberrant morphology of the OV with accumulation of apoptotic cells. Moreover, inhibition of autophagy provokes the misregulation of the cell cycle in the otic epithelium, impaired neurogenesis and poor axonal outgrowth. Finally, our results indicate that autophagy provides the energy required for the clearing of neuroepithelial dying cells and suggest that it is required for the migration of otic neuronal precursors. Taken together, our results show for the first time that autophagy is an active and essential process during early inner ear development.
Collapse
Affiliation(s)
- M R Aburto
- Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, Madrid, Spain
| | | | | | | | | |
Collapse
|