1
|
Lim JJ, Noh S, Kang W, Hyun B, Lee BH, Hyun S. Pharmacological inhibition of USP14 delays proteostasis-associated aging in a proteasome-dependent but foxo-independent manner. Autophagy 2024; 20:2752-2768. [PMID: 39113571 PMCID: PMC11587835 DOI: 10.1080/15548627.2024.2389607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
Aging is often accompanied by a decline in proteostasis, manifested as an increased propensity for misfolded protein aggregates, which are prevented by protein quality control systems, such as the ubiquitin-proteasome system (UPS) and macroautophagy/autophagy. Although the role of the UPS and autophagy in slowing age-induced proteostasis decline has been elucidated, limited information is available on how these pathways can be activated in a collaborative manner to delay proteostasis-associated aging. Here, we show that activation of the UPS via the pharmacological inhibition of USP14 (ubiquitin specific peptidase 14) using IU1 improves proteostasis and autophagy decline caused by aging or proteostatic stress in Drosophila and human cells. Treatment with IU1 not only alleviated the aggregation of polyubiquitinated proteins in aging Drosophila flight muscles but also extended the fly lifespan with enhanced locomotive activity via simultaneous activation of the UPS and autophagy. Interestingly, the effect of this drug disappeared when proteasomal activity was inhibited, but was evident upon proteostasis disruption by foxo mutation. Overall, our findings shed light on potential strategies to efficiently ameliorate age-associated pathologies associated with perturbed proteostasis.Abbreviations: AAAs: amino acid analogs; foxo: forkhead box, sub-group O; IFMs: indirect flight muscles; UPS: ubiquitin-proteasome system; USP14: ubiquitin specific peptidase 14.
Collapse
Affiliation(s)
- Jin Ju Lim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Sujin Noh
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Woojun Kang
- Department of New Biology, Daegu-Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Bom Hyun
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Byung-Hoon Lee
- Department of New Biology, Daegu-Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Seogang Hyun
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Buratti E. Targeting TDP-43 proteinopathy with drugs and drug-like small molecules. Br J Pharmacol 2020; 178:1298-1315. [PMID: 32469420 DOI: 10.1111/bph.15148] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Following the discovery of the involvement of the ribonucleoprotein TDP-43 in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), a major research focus has been to develop treatments that can prevent or alleviate these disease conditions. One pharmacological approach has been to use TDP-43-based disease models to test small molecules and drugs already known to have some therapeutic effect in a variety of neurodegenerative conditions. In parallel, various disease models have been used to perform high-throughput screens of drugs and small compound libraries. The aim of this review will be to provide a general overview of the compounds that have been described to alter pathological characteristics of TDP-43. These include expression levels, cytoplasmic mis-localization, post-translational modifications, cleavage, stress granule recruitment and aggregation. In parallel, this review will also address the use of compounds that modify the autophagic/proteasome systems that are known to target TDP-43 misfolding and aggregation. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
3
|
The Ubiquitin Ligase CHIP Integrates Proteostasis and Aging by Regulation of Insulin Receptor Turnover. Cell 2017; 169:470-482.e13. [PMID: 28431247 PMCID: PMC5406386 DOI: 10.1016/j.cell.2017.04.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/21/2017] [Accepted: 04/03/2017] [Indexed: 12/13/2022]
Abstract
Aging is attended by a progressive decline in protein homeostasis (proteostasis), aggravating the risk for protein aggregation diseases. To understand the coordination between proteome imbalance and longevity, we addressed the mechanistic role of the quality-control ubiquitin ligase CHIP, which is a key regulator of proteostasis. We observed that CHIP deficiency leads to increased levels of the insulin receptor (INSR) and reduced lifespan of worms and flies. The membrane-bound INSR regulates the insulin and IGF1 signaling (IIS) pathway and thereby defines metabolism and aging. INSR is a direct target of CHIP, which triggers receptor monoubiquitylation and endocytic-lysosomal turnover to promote longevity. However, upon proteotoxic stress conditions and during aging, CHIP is recruited toward disposal of misfolded proteins, reducing its capacity to degrade the INSR. Our study indicates a competitive relationship between proteostasis and longevity regulation through CHIP-assisted proteolysis, providing a mechanistic concept for understanding the impact of proteome imbalance on aging. The ubiquitin ligase CHIP triggers insulin receptor turnover Insulin receptor level is linked to insulin and IGF1 signaling and longevity Engagement of CHIP in protein quality control limits insulin receptor degradation Proteotoxic stress aggravates insulin receptor stability, drives aging, and shortens lifespan
Collapse
|
4
|
Nivon M, Fort L, Muller P, Richet E, Simon S, Guey B, Fournier M, Arrigo AP, Hetz C, Atkin JD, Kretz-Remy C. NFκB is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation. Mol Biol Cell 2016; 27:1712-27. [PMID: 27075172 PMCID: PMC4884063 DOI: 10.1091/mbc.e15-12-0835] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/05/2016] [Indexed: 12/20/2022] Open
Abstract
NFκB is a master regulator of protein quality control. It helps the cells to survive proteotoxicity by modulating autophagy via up-regulation of BAG3 and HspB8 expression, a molecular mechanism relevant to protein conformational diseases. During cell life, proteins often misfold, depending on particular mutations or environmental changes, which may lead to protein aggregates that are toxic for the cell. Such protein aggregates are the root cause of numerous diseases called “protein conformational diseases,” such as myofibrillar myopathy and familial amyotrophic lateral sclerosis. To fight against aggregates, cells are equipped with protein quality control mechanisms. Here we report that NFκB transcription factor is activated by misincorporation of amino acid analogues into proteins, inhibition of proteasomal activity, expression of the R120G mutated form of HspB5 (associated with myofibrillar myopathy), or expression of the G985R and G93A mutated forms of superoxide dismutase 1 (linked to familial amyotrophic lateral sclerosis). This noncanonical stimulation of NFκB triggers the up-regulation of BAG3 and HspB8 expression, two activators of selective autophagy, which relocalize to protein aggregates. Then NFκB-dependent autophagy allows the clearance of protein aggregates. Thus NFκB appears as a central and major regulator of protein aggregate clearance by modulating autophagic activity. In this context, the pharmacological stimulation of this quality control pathway might represent a valuable strategy for therapies against protein conformational diseases.
Collapse
Affiliation(s)
- Mathieu Nivon
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Loïc Fort
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Pascale Muller
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Emma Richet
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Stéphanie Simon
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Baptiste Guey
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Maëlenn Fournier
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - André-Patrick Arrigo
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, 70086 Santiago, Chile Center for Geroscience, Brain Health and Metabolism, 70086 Santiago, Chile
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Carole Kretz-Remy
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
5
|
Konovalova S, Hilander T, Loayza-Puch F, Rooijers K, Agami R, Tyynismaa H. Exposure to arginine analog canavanine induces aberrant mitochondrial translation products, mitoribosome stalling, and instability of the mitochondrial proteome. Int J Biochem Cell Biol 2015; 65:268-74. [DOI: 10.1016/j.biocel.2015.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/01/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
|
6
|
Liu Z, Jenkinson SF, Vermaas T, Adachi I, Wormald MR, Hata Y, Kurashima Y, Kaji A, Yu CY, Kato A, Fleet GWJ. 3-Fluoroazetidinecarboxylic Acids and trans,trans-3,4-Difluoroproline as Peptide Scaffolds: Inhibition of Pancreatic Cancer Cell Growth by a Fluoroazetidine Iminosugar. J Org Chem 2015; 80:4244-58. [DOI: 10.1021/acs.joc.5b00463] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zilei Liu
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Sarah F. Jenkinson
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Tom Vermaas
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Isao Adachi
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Mark R. Wormald
- Glycobiology
Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Yukako Hata
- Faculty
of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181, Japan
| | - Yukiko Kurashima
- Faculty
of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181, Japan
| | - Akira Kaji
- Faculty
of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181, Japan
| | - Chu-Yi Yu
- CAS
Key Laboratory of Molecular Recognition and Function, Institute of
Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Atsushi Kato
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - George W. J. Fleet
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P.R. China
| |
Collapse
|
7
|
Intracellular fibril formation, calcification, and enrichment of chaperones, cytoskeletal, and intermediate filament proteins in the adult hippocampus CA1 following neonatal exposure to the nonprotein amino acid BMAA. Arch Toxicol 2014; 89:423-36. [PMID: 24798087 PMCID: PMC4335130 DOI: 10.1007/s00204-014-1262-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/15/2014] [Indexed: 12/31/2022]
Abstract
The environmental neurotoxin β-N-methylamino-l-alanine (BMAA) has been implicated in the etiology of neurodegenerative disease, and recent studies indicate that BMAA can be misincorporated into proteins. BMAA is a developmental neurotoxicant that can induce long-term learning and memory deficits, as well as regionally restricted neuronal degeneration and mineralization in the hippocampal CA1. The aim of the study was to characterize long-term changes (2 weeks to 6 months) further in the brain of adult rats treated neonatally (postnatal days 9–10) with BMAA (460 mg/kg) using immunohistochemistry (IHC), transmission electron microscopy, and laser capture microdissection followed by LC-MS/MS for proteomic analysis. The histological examination demonstrated progressive neurodegenerative changes, astrogliosis, microglial activation, and calcification in the hippocampal CA1 3–6 months after exposure. The IHC showed an increased staining for α-synuclein and ubiquitin in the area. The ultrastructural examination revealed intracellular deposition of abundant bundles of closely packed parallel fibrils in neurons, axons, and astrocytes of the CA1. Proteomic analysis of the affected site demonstrated an enrichment of chaperones (e.g., clusterin, GRP-78), cytoskeletal and intermediate filament proteins, and proteins involved in the antioxidant defense system. Several of the most enriched proteins (plectin, glial fibrillar acidic protein, vimentin, Hsp 27, and ubiquitin) are known to form complex astrocytic inclusions, so-called Rosenthal fibers, in the neurodegenerative disorder Alexander disease. In addition, TDP-43 and the negative regulator of autophagy, GLIPR-2, were exclusively detected. The present study demonstrates that neonatal exposure to BMAA may offer a novel model for the study of hippocampal fibril formation in vivo.
Collapse
|
8
|
Budini M, Baralle FE, Buratti E. Targeting TDP-43 in neurodegenerative diseases. Expert Opin Ther Targets 2014; 18:617-32. [DOI: 10.1517/14728222.2014.896905] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Glawar AFG, Jenkinson SF, Thompson AL, Nakagawa S, Kato A, Butters TD, Fleet GWJ. 3-Hydroxyazetidine Carboxylic Acids: Non-Proteinogenic Amino Acids for Medicinal Chemists. ChemMedChem 2013; 8:658-66. [DOI: 10.1002/cmdc.201200541] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/14/2013] [Indexed: 11/09/2022]
|
10
|
Bessonov K, Vassall KA, Harauz G. Parameterization of the proline analogue Aze (azetidine-2-carboxylic acid) for molecular dynamics simulations and evaluation of its effect on homo-pentapeptide conformations. J Mol Graph Model 2012; 39:118-25. [PMID: 23261881 DOI: 10.1016/j.jmgm.2012.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/11/2012] [Accepted: 11/17/2012] [Indexed: 12/24/2022]
Abstract
We have parameterized and evaluated the proline homologue Aze (azetidine-2-carboxylic acid) for the gromos56a3 force-field for use in molecular dynamics simulations using GROMACS. Using bi-phasic cyclohexane/water simulation systems and homo-pentapeptides, we measured the Aze solute interaction potential energies, ability to hydrogen bond with water, and overall compaction, for comparison to Pro, Gly, and Lys. Compared to Pro, Aze has a slightly higher H-bonding potential, and stronger electrostatic but weaker non-electrostatic interactions with water. The 20-ns simulations revealed the preferential positioning of Aze and Pro at the interface of the water and cyclohexane layers, with Aze spending more time in the aqueous layer. We also demonstrated through simulations of the homo-pentapeptides that Aze has a greater propensity than Pro to undergo trans→cis peptide bond isomerization, which results in a severe 180° bend in the polypeptide chain. The results provide evidence for the hypothesis that the misincorporation of Aze within proline-rich regions of proteins could disrupt the formation of poly-proline type II structures and compromise events such as recognition and binding by SH3-domains.
Collapse
Affiliation(s)
- Kyrylo Bessonov
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada
| | | | | |
Collapse
|
11
|
Buratti E, Baralle FE. TDP-43: gumming up neurons through protein-protein and protein-RNA interactions. Trends Biochem Sci 2012; 37:237-47. [PMID: 22534659 DOI: 10.1016/j.tibs.2012.03.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/02/2012] [Accepted: 03/08/2012] [Indexed: 12/11/2022]
Abstract
Since the discovery that 43 kDa TAR DNA binding protein (TDP-43) is involved in neurodegeneration, studies of this protein have focused on the global effects of TDP-43 expression modulation on cell metabolism and survival. The major difficulty with these global searches, which can yield hundreds to thousands of variations in gene expression level and/or mRNA isoforms, is our limited ability to separate specific TDP-43 effects from secondary dysregulations occurring at the gene expression and various mRNA processing steps. In this review, we focus on two biochemical properties of TDP-43: its ability to bind RNA and its protein-protein interactions. In particular, we overview how these two properties may affect potentially very important processes for the pathology, from the autoregulation of TDP-43 to aggregation in the cytoplasmic/nuclear compartments.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | | |
Collapse
|