1
|
Zhan Y, Zhou Z, Chen M, Gong X. Photothermal Treatment of Polydopamine Nanoparticles@Hyaluronic Acid Methacryloyl Hydrogel Against Peripheral Nerve Adhesion in a Rat Model of Sciatic Nerve. Int J Nanomedicine 2023; 18:2777-2793. [PMID: 37250473 PMCID: PMC10224687 DOI: 10.2147/ijn.s410092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose Peripheral nerve adhesion occurs following injury and surgery. Functional impairment leading by peripheral nerve adhesion remains challenging for surgeons. Local tissue overexpression of heat shock protein (HSP) 72 can reduce the occurrence of adhesion. This study aims to develop a photothermal material polydopamine nanoparticles@Hyaluronic acid methacryloyl hydrogel (PDA NPs@HAMA) and evaluate their efficacy for preventing peripheral nerve adhesion in a rat sciatic nerve adhesion model. Materials and Methods PDA NPs@HAMA was prepared and characterized. The safety of PDA NPs@HAMA was evaluated. Seventy-two rats were randomly assigned to one of the following four groups: the control group; the hyaluronic acid (HA) group; the polydopamine nanoparticles (PDA) group and the PDA NPs@HAMA group (n = 18 per group). Six weeks after surgery, the scar formation was evaluated by adhesion scores and biomechanical and histological examinations. Nerve function was assessed with electrophysiological examination, sensorimotor analysis and gastrocnemius muscle weight measurements. Results There were significant differences in the score on nerve adhesion between the groups (p < 0.001). Multiple comparisons indicated that the score was significantly lower in the PDA NPs@HAMA group (95% CI: 0.83, 1.42) compared with the control group (95% CI: 1.86, 2.64; p = 0.001). Motor nerve conduction velocity and muscle compound potential of the PDA NPs@HAMA group were higher than the control group's. According to immunohistochemical analysis, the PDA NPs@HAMA group expressed more HSP72, less α-smooth muscle actin (α-SMA), and had fewer inflammatory reactions than the control group. Conclusion In this study, a new type of photo-cured material with a photothermic effect was designed and synthesized-PDA NPs@HAMA. The photothermic effect of PDA NPs@HAMA protected the nerve from adhesion to preserve the nerve function in the rat sciatic nerve adhesion model. This effectively prevented adhesion-related damage.
Collapse
Affiliation(s)
- Yongxin Zhan
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Zekun Zhou
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Miao Chen
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Xu Gong
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
2
|
Nerve Regeneration Effect of a Composite Bioactive Carboxymethyl Chitosan-Based Nerve Conduit with a Radial Texture. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249039. [PMID: 36558171 PMCID: PMC9783930 DOI: 10.3390/molecules27249039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Chitosan (CTS) has been used as a nerve guidance conduit (NGC) material for bridging peripheral nerve defects due to its biocompatible, biodegradable, and non-toxic properties. However, the nerve regeneration effect of chitosan alone is restricted due to its inadequate biological activity. Herein, a composite, bioactive chitosan based nerve conduit, consisting of outer warp-knitted tube scaffold made from medical-grade chitosan fiber, and inner porous cross linked carboxymethyl chitosan (C-CM-CTS) sponge with radial texture was developed. The inner wall of the scaffold was coated with C-CM-CTS solution. CM-CTS provided favorable bioactivities in the composite chitosan-based nerve conduit. An in vitro study of CM-CTS revealed its satisfying biocompatibility with fibroblast and its inhibition of oxidative damage to Schwann cells. As the internal filler of the NGC, the lyophilized sponge of C-CM-CTS showed a longitudinal guidance effect for nerve reconstruction. After 10 mm defect in rat sciatic nerve was bridged with the composite bioactive chitosan-based nerve conduit, the nerve conduit was able to effectively promote axonal regeneration and played a positive role in inducing nerve regeneration and functional recovery. In addition to the functional advantages, which are equal to those of an autograft; the technology for the preparation of this conduit can be put into mass production.
Collapse
|
3
|
Multichannel nerve conduit based on chitosan derivates for peripheral nerve regeneration and Schwann cell survival. Carbohydr Polym 2022; 301:120327. [DOI: 10.1016/j.carbpol.2022.120327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
4
|
Kruglikov I. Acoustic Waves in Axonal Membrane and Caveolins are the New Targets for Pain Treatment with High Frequency Ultrasound. J Pain Res 2020; 13:2791-2798. [PMID: 33173328 PMCID: PMC7646452 DOI: 10.2147/jpr.s281468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Reciprocal interaction between electrical and mechanical waves observed in axonal membrane during its excitation leads to a paradigm shift in pain research making the uncoupling of electro-mechanical signals an interesting target in pain treatment. This uncoupling can be realized either through direct disturbance of the mechanical surface waves in axonal membrane or through shifting of the thermodynamic state of this membrane far from its phase transition point. Both effects can be effectively realized through application of the very high frequency ultrasound waves. Additional target for application of ultrasound in pain treatment is the caveolin-1, which is abundantly present in Schwann cells as well as in the non-axonal tissues. Both targets demonstrate frequency-dependent reactions, thus making a very high frequency ultrasound a promising treatment modality in pain treatment.
Collapse
Affiliation(s)
- Ilja Kruglikov
- Scientific Department, Wellcomet GmbH, Karlsruhe, Germany
| |
Collapse
|
5
|
Hulina-Tomašković A, Grdić Rajković M, Jelić D, Bosnar M, Sladoljev L, Žanić Grubišić T, Rumora L. Pro-inflammatory effects of extracellular Hsp70 on NCI-H292 human bronchial epithelial cell line. Int J Exp Pathol 2019; 100:320-329. [PMID: 31828837 DOI: 10.1111/iep.12335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/16/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular Hsp70 (eHsp70) exerts its biological actions via Toll-like receptors 2 and 4, and is increased in sera of chronic obstructive pulmonary disease (COPD) patients. The aim of this study was to explore the pro-inflammatory effects and cytotoxicity of eHsp70 alone and in combination with bacterial components lipoteichoic acid (LTA) and lipopolysaccharide (LPS) on NCI-H292 airway epithelial cells. NCI-H292 cells were treated with recombinant human Hsp70 protein (rhHsp70), LPS, LTA and their combinations for 4, 12, 24 and 48 hours. IL-6, IL-8 and TNF-α levels were measured by an ELISA method. Cell viability was determined by the MTS method, and caspase-3/7, caspase-8 and caspase-9 assays. rhHsp70 induced secretion of IL-6 and IL-8 in a concentration- and time-dependent manner, with the highest secretion at 24 hours. rhHsp70 combined with LTA had antagonistic and with LPS synergistic effect on IL-6 secretion, while the interactions between rhHsp70 and LPS or LTA on IL-8 were synergistic. TNF-α was not detected in the applied conditions. rhHsp70, LPS or LTA did not affect cell viability, and rhHsp70 even suppressed caspase-3/7 activities. We suggest that pro-inflammatory effects of eHsp70, together with other damaging molecules and/or COPD risk factors, might contribute to the aggravation of chronic inflammation in human bronchial epithelium.
Collapse
Affiliation(s)
- Andrea Hulina-Tomašković
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Marija Grdić Rajković
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | | | - Lucija Sladoljev
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Tihana Žanić Grubišić
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Lada Rumora
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
6
|
Hulina-Tomašković A, Rajković MG, Somborac-Bačura A, Čeri A, Dabelić S, Rumora L. Extracellular Hsp70 modulates the inflammatory response of cigarette smoke extract in NCI-H292 cells. Exp Physiol 2018; 103:1704-1716. [PMID: 30298576 DOI: 10.1113/ep087180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does extracellular heat shock protein 70 (eHsp70) alter cigarette smoke extract (CSE)-induced inflammatory responses in NCI-H292 bronchial epithelial cells? What is the main finding and its importance? eHsp70 modulates inflammatory responses and TLR2, TLR4 and Hsp70 gene expression, and protects NCI-H292 cells against CSE-induced cytotoxicity. eHsp70 might be implicated in development of inflammatory diseases affected by cigarette smoke, such as COPD. ABSTRACT One of the major risk factors for development of chronic obstructive pulmonary disease (COPD) is cigarette smoke. Extracellular Hsp70 (eHsp70) is increased in sera of COPD patients, and can act as damage-associated molecular pattern (DAMP). In this study, we explored inflammatory parameters (cytokine concentrations, Toll-like receptor (TLR) 2 and 4 and Hsp70 expression, mitogen-activated protein kinases (MAPKs) and nuclear factor κB (NF-κB) activation, and cytotoxicity) after exposure of bronchial-epithelial NCI-H292 cells to cigarette smoke extract (CSE) alone (2.5 and 15%) and in combinations with recombinant human (rh) Hsp70 (0.3, 1 and 3 μg ml-1 ). We applied specific MAPKs, NF-κB and Hsp70 inhibitors to elucidate rhHsp70 inflammation-associated responses. CSE alone and combinations of 15% CSE with rhHsp70 stimulated IL-1α, IL-6 and IL-8 release. However, rhHsp70 applied with 2.5% CSE decreased secretion of cytokines indicating antagonistic effects. Individual and combined treatments with 2.5% CSE suppressed TLR2 expression. CSE at 15% induced TLR2 and TLR4 gene expression, whereas rhHsp70 abolished that effect. rhHsp70 and 15% CSE alone reduced, while their combination increased, intracellular Hsp70 mRNA level. CSE alone and in combination with rhHsp70 activated extracellular signal-regulated kinase and p38 MAPKs, while inhibition of MAPKs, NF-κB and Hsp70 attenuated IL-6 and IL-8 secretion. CSE at 15% reduced cell viability and induced apoptosis, as shown by MTS and caspases-3/7 assays. CSE at 2.5% alone stimulated lactate dehydrogenase release, but cellular membrane integrity remained intact in co-treatments with rhHsp70. rhHsp70 might modulate the inflammatory response of CSE and could also protect NCI-H292 cells against CSE cytotoxicity. Those effects are implemented via MAPK and NF-κB signalling pathways.
Collapse
Affiliation(s)
- Andrea Hulina-Tomašković
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Medical Biochemistry and Hematology, Zagreb, Croatia
| | - Marija Grdić Rajković
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Medical Biochemistry and Hematology, Zagreb, Croatia
| | - Anita Somborac-Bačura
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Medical Biochemistry and Hematology, Zagreb, Croatia
| | - Andrea Čeri
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Medical Biochemistry and Hematology, Zagreb, Croatia
| | - Sanja Dabelić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, Zagreb, Croatia
| | - Lada Rumora
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Medical Biochemistry and Hematology, Zagreb, Croatia
| |
Collapse
|
7
|
Hulina A, Grdić Rajković M, Jakšić Despot D, Jelić D, Dojder A, Čepelak I, Rumora L. Extracellular Hsp70 induces inflammation and modulates LPS/LTA-stimulated inflammatory response in THP-1 cells. Cell Stress Chaperones 2018; 23:373-384. [PMID: 29067554 PMCID: PMC5904080 DOI: 10.1007/s12192-017-0847-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/01/2017] [Accepted: 09/24/2017] [Indexed: 12/25/2022] Open
Abstract
Extracellular Hsp70 (eHsp70) can act as damage-associated molecular pattern (DAMP) via Toll-like receptors TLR2 and TLR4, and stimulate immune and inflammatory responses leading to sterile inflammation and propagation of already existing inflammation. It was found elevated in the blood of patients with chronic obstructive pulmonary disease (COPD), who might suffer occasional bacterial colonizations and infections. We used a monocytic THP-1 cell line as a cellular model of systemic compartment of COPD to assess inflammatory effects of eHsp70 when present alone or together with bacterial products lypopolysaccharide (LPS) and lypoteichoic acid (LTA). THP-1 cells were differentiated into macrophage-like cells and treated with various concentrations of recombinant human Hsp70 protein (rhHsp70), LPS (TLR4 agonist), LTA (TLR2 agonist), and their combinations for 4, 12, 24, and 48 h. Concentrations of IL-1α, IL-6, IL-8, and TNF-α were determined by ELISA. Cell viability was assessed by MTS assay, and mode of cell death by luminometric measurements of caspases-3/7, -8, and -9 activities. rhHsp70 showed cell protecting effect by suppressing caspases-3/7 activation, while LPS provoked cytotoxicity through caspases-8 and -3/7 pathway. Regarding inflammatory processes, rhHsp70 alone induced secretion of IL-1α and IL-8, but had modulatory effects on release of all four cytokines when applied together with LPS or LTA. Combined effect with LPS was mainly synergistic, and with LTA mainly antagonistic, although it was cytokine- and time-dependent. Our results confirmed pro-inflammatory function of extracellular Hsp70, and suggest its possible implication in COPD exacerbations caused by bacterial infection through desensitization or inappropriate activation of TLR2 and TLR4 receptors.
Collapse
Affiliation(s)
- Andrea Hulina
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, 10000, Zagreb, Croatia.
| | - Marija Grdić Rajković
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, 10000, Zagreb, Croatia
| | - Daniela Jakšić Despot
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Ana Dojder
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, 10000, Zagreb, Croatia
| | - Ivana Čepelak
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, 10000, Zagreb, Croatia
| | - Lada Rumora
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, 10000, Zagreb, Croatia
| |
Collapse
|
8
|
Chao PY, Lin JA, Ye JC, Hwang JM, Ting WJ, Huang CY, Liu JY. Attenuation of Oxidative Stress-Induced Cell Apoptosis in Schwann RSC96 Cells by Ocimum Gratissimum Aqueous Extract. Int J Med Sci 2017; 14:764-771. [PMID: 28824312 PMCID: PMC5562131 DOI: 10.7150/ijms.19535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/18/2017] [Indexed: 12/29/2022] Open
Abstract
Objectives: Cell transplantation therapy of Schwann cells (SCs) is a promising therapeutic strategy after spinal cord injury. However, challenges such as oxidative stress hinder satisfactory cell viability and intervention for enhancing SCs survival is critical throughout the transplantation procedures. Ocimum gratissimum, widely used as a folk medicine in many countries, has therapeutic and anti-oxidative properties and may protect SCs survival. Methods: We examined the protective effects of aqueous O. gratissimum extract (OGE) against cell damage caused by H2O2-induced oxidative stress in RSC96 Schwann cells. Results: Our results showed that the RSC96 cells, damaged by H2O2 oxidative stress, decreased their viability up to 32% after treatment with different concentrations of up to 300 μM H2O2, but OGE pretreatment (150 or 200 μg/mL) increased cell viability by approximately 62% or 66%, respectively. Cell cycle analysis indicated a high (43%) sub-G1 cell population in the H2O2-treated RSC96 cells compared with untreated cells (1%); whereas OGE pretreatment (150 and 200 μg/mL) of RSC96 cells significantly reduced the sub-G1 cells (7% and 8%, respectively). Furthermore, Western blot analysis revealed that OGE pretreatment inhibited H2O2-induced apoptotic protein caspase-3 activation and PARP cleavage, as well as it reversed Bax up-regulation and Bcl-2 down-regulation. The amelioration of OGE of cell stress and stress-induced apoptosis was proved by the HSP70 and HSP72 decrease. Conclusion: Our data suggest that OGE may minimize the cytotoxic effects of H2O2-induced SCs apoptosis by modulating the apoptotic pathway and could potentially supplement cell transplantation therapy.
Collapse
Affiliation(s)
- Pei-Yu Chao
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - James A Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Je-Chiuan Ye
- Bachelor Program of Senior Services, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Jin-Ming Hwang
- Department of Medical Applied Chemistry, College of Health Care and Management, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Jen Ting
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Jer-Yuh Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
9
|
Extracellular heat shock proteins protect U937 cells from H2O2-induced apoptotic cell death. Mol Cell Biochem 2015; 412:19-26. [DOI: 10.1007/s11010-015-2604-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/29/2015] [Indexed: 12/12/2022]
|
10
|
Abstract
This study examined the role of exogenous heat shock protein 72 (Hsp72) in reversing sepsis-induced liver dysfunction. Sepsis was induced by cecal ligation and puncture. Liver function was determined on the basis of the enzymatic activities of serum glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT). Apoptosis was determined using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), cleaved caspase-3 and caspase-9, and cleaved poly (ADP-ribose) polymerase (PARP) protein expressions were analyzed using Western blotting. Results showed GOT and GPT levels increased during sepsis, and levels were restored following the administration of human recombinant Hsp72 (rhHsp72). Increased liver tissue apoptosis was observed during sepsis, and normal apoptosis resumed on rhHsp72 administration. The Bcl-2/Bax ratio, cleaved caspase-3, caspase-9, and PARP protein expressions in the liver tissues were upregulated during sepsis and normalized after rhHsp72 treatment. We conclude that, during sepsis, exogenous Hsp72 restored liver dysfunction by inhibiting apoptosis via the mitochondria-initiated caspase pathway.
Collapse
|
11
|
Kesaraju S, Nayak G, Prentice HM, Milton SL. Upregulation of Hsp72 mediates anoxia/reoxygenation neuroprotection in the freshwater turtle via modulation of ROS. Brain Res 2014; 1582:247-56. [PMID: 25107858 DOI: 10.1016/j.brainres.2014.07.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 06/23/2014] [Accepted: 07/29/2014] [Indexed: 10/25/2022]
Abstract
The neuroprotective role of Hsp72 has been demonstrated in several ischemic/stroke models to occur primarily through mediation of apoptotic pathways, and a number of heat shock proteins are upregulated in animal models capable of extended anoxic survival. In the present study, we investigated the role of Hsp72 on cell death and apoptotic regulators in one anoxia tolerant model system, the freshwater turtle Trachemys scripta. Since Hsp72 is known to regulate apoptosis through interactions with Bcl-2, we manipulated the levels of Hsp72 and Bcl-2 with siRNA in neuronally enriched primary cell cultures and examined downstream effects. The knockdown of either Hsp72 or Bcl-2 induced cell death during anoxia and reoxygenation. Knockdown of Bcl-2 resulted in increases in apoptotic markers and increased ROS levels 2-fold. However, significant knockdown of Hsp72 did not have any effect on the expression of key mitochondrial apoptotic regulators such as Cytochrome c and caspase-3. Hsp72 knockdown however significantly increased apoptosis inducing factor in both anoxia and reoxygenation and resulted in a six-fold induction of hydrogen peroxide levels. These findings suggest that the neuroprotection offered by Hsp72 in the anoxia/reoxygenation tolerant turtle is through the mediation of ROS levels and not through modulation of caspase-dependent pathways.
Collapse
Affiliation(s)
- Shailaja Kesaraju
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, United States; Center for Molecular Biology and Biotechnology, Florida Atlantic University, United States(1)
| | - Gauri Nayak
- College of Medicine, Florida Atlantic University, United States; Boston University, United States(2)
| | | | - Sarah L Milton
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, United States.
| |
Collapse
|
12
|
He B, Tao HY, Liu SQ. Neuroprotective effects of carboxymethylated chitosan on hydrogen peroxide induced apoptosis in Schwann cells. Eur J Pharmacol 2014; 740:127-34. [PMID: 25034812 DOI: 10.1016/j.ejphar.2014.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 12/18/2022]
Abstract
The protective and promotion effects of Carboxymethylated chitosan (CMCS) on peripheral nerve and cultured Schwann cells (SCs) have been demonstrated, but few studies discussed the protective roles of CMCS on SCs apoptosis. We explored the anti-apoptotic activities of CMCS in SCs to enhance cells survival in this present study. Rat SCs were isolated and cultured in vitro, hydrogen peroxide (H2O2) was used to establish the apoptosis models of SCs. Cells proliferative activity was assessed by CCK-8 assay. The apoptosis of SCs was detected by flow cytometry (FCM) analysis. Superoxide dismutase (SOD) and malondialdehyde (MDA) activities were detected by the corresponding assay kit. The nuclear appearance of apoptotic SCs was observed by nuclear staining with Hoechst 33342. The real-time PCR was performed to detect the levels of Bcl-2, Bax, Caspase-3 and -9 mRNA. Detection of caspase-3 and -9 was fulfilled by using Western blot analysis. FCM assay and Hoechst33342 staining results indicated that CMCS could protect SCs from apoptosis with dose and time-dependent manner. SOD and MDA analysis results indicated that CMCS could promote SOD activity and reduce the MDA levels in H2O2 induced SCs. The decreased caspase-3, -9 and Bax activities and increased Bcl-2 activity were observed in CMCS treated SCs. The present study indicates CMCS has the neuroprotective effect on peripheral nerves and inhibit SCs apoptosis.
Collapse
Affiliation(s)
- Bin He
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Hai-Ying Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi-Qing Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Abstract
The expression of heat shock proteins (HSPs) is a basic and well-conserved cellular response to an array of stresses. These proteins are involved in the repair of cellular damage induced by the stress, which is necessary for the salutary resolution from the insult. Moreover, they confer protection from subsequent insults, which has been coined stress tolerance. Because these proteins are expressed in subcellular compartments, it was thought that their function during stress conditions was circumscribed to the intracellular environment. However, it is now well established that HSPs can also be present outside cells where they appear to display a function different than the well-understood chaperone role. Extracellular HSPs act as alert stress signals priming other cells, particularly of the immune system, to avoid the propagation of the insult and favor resolution. Because the majority of HSPs do not possess a secretory peptide signal, they are likely to be exported by a nonclassic secretory pathway. Different mechanisms have been proposed to explain the export of HSPs, including translocation across the plasma membrane and release associated with lipid vesicles, as well as the passive release after cell death by necrosis. Extracellular HSPs appear in various flavors, including membrane-bound and membrane-free forms. All of these variants of extracellular HSPs suggest that their interactions with cells may be quite diverse, both in target cell types and the activation signaling pathways. This review addresses some of our current knowledge about the release and relevance of extracellular HSPs.
Collapse
|