1
|
Lu Y, Gu Y, Chan ASL, Yung Y, Wong YH. Activation of Bradykinin B 2 Receptors in Astrocytes Stimulates the Release of Leukemia Inhibitory Factor for Autocrine and Paracrine Signaling. Int J Mol Sci 2024; 25:13079. [PMID: 39684791 DOI: 10.3390/ijms252313079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Communications between different cell types within a tissue are often critical for the proper functioning of an organ. In the central nervous system, interactions among neurons and glial cells are known to modulate neurotransmission, energy metabolism, extracellular ion homeostasis, and neuroprotection. Here we showed that bradykinin, a proinflammatory neuropeptide, can be detected by astrocytes, resulting in the secretion of cytokines that act on neurons. In astrocytic cell lines and primary astrocytes, bradykinin and several other ligands acting on Gq-coupled receptors stimulated Ca2+ mobilization, which subsequently led to the release of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). The bradykinin B2 receptor antagonist, HOE-140, effectively blocked the ability of bradykinin to mobilize Ca2+ and stimulate mitogen-activated protein kinases (MAPKs) in astrocytes. Interestingly, incubation of neuronal cell lines and primary cortical neurons with conditioned media from bradykinin-treated astrocytes resulted in the activation of STAT3, a key component downstream of LIF and IL-6 receptors. LIF was apparently the major active factor in the conditioned media as the STAT3 response was almost completely neutralized by an anti-LIF antiserum. The presence of kininogen and kallikrein transcripts in neuronal cells but not in astrocytic cells indicates that neurons can produce bradykinin. Correspondingly, conditioned media from neuronal cells stimulated MAPKs in astrocytes in a HOE-140-sensitive manner. These studies demonstrate that paracrine signaling between neurons and astrocytes may involve ligands of Gq-coupled receptors and cytokines such as LIF.
Collapse
Affiliation(s)
- Ying Lu
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- School of Public Health, Nantong University, Nantong City 226019, China
| | - Yishan Gu
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Anthony S L Chan
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ying Yung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yung H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, and the Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong, China
| |
Collapse
|
2
|
Li K, Lu M, Cui M, Wang X, Zheng Y. The Notch pathway regulates autophagy after hypoxic-ischemic injury and affects synaptic plasticity. Brain Struct Funct 2023; 228:985-996. [PMID: 37083721 DOI: 10.1007/s00429-023-02639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
Following neonatal hypoxic-ischemia (HI) injury, it is crucial factor to reconstruct neural circuit and maintain neural network homeostasis for neurological recovery. A dynamic balance between the synthesis and degradation of synaptic protein is required for maintaining synaptic plasticity. Protein degradation is facilitated by autophagy. This study aimed to investigate the regulation of synaptic structural plasticity by the Notch pathway, by assessing changes in Notch pathway activation and their effects on synaptic proteins and autophagy after HI injury. The study involved 48 male newborn Yorkshire piglets, each weighing 1.0-1.5 kg and 3 days old. They were randomly assigned to two groups: the HI group and the Notch pathway inhibitor + HI group (n = 24 per group). Each group was further divided into six subgroups according to HI duration (n = 4 per group): a control subgroup, and 0-6, 6-12, 12-24, 24-48, and 48-72 h subgroups. The expression of Notch pathway-related proteins, including Notch1, Hes1, and Notch intracellular domains, increased following HI injury. The expression of autophagy proteins increased at 0-6 h and 6-12 h post-HI. The expression of synaptic proteins, such as postsynaptic density protein 95 (PSD95) and synaptophysin, increased 6-12 h and 12-24 h after HI, respectively. Notably, the increased expression of these proteins was reversed by a Notch pathway inhibitor. Transmission electron microscopy revealed the presence of autophagosome structures in synapses. These findings shed light on the underlying mechanisms of neurological recovery after HI injury and may provide insights into potential therapeutic targets for promoting neural circuit reconstruction and maintaining neural network homeostasis.
Collapse
Affiliation(s)
- Kexin Li
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Meng Lu
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Mengxu Cui
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Xiaoming Wang
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China.
| | - Yang Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
3
|
Wang J, Chang CY, Yang X, Zhou F, Liu J, Feng Z, Hu W. Leukemia inhibitory factor, a double-edged sword with therapeutic implications in human diseases. Mol Ther 2023; 31:331-343. [PMID: 36575793 PMCID: PMC9931620 DOI: 10.1016/j.ymthe.2022.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Leukemia inhibitory factor (LIF) is a pleiotropic cytokine of the interleukin-6 (IL-6) superfamily. LIF was initially discovered as a factor to induce the differentiation of myeloid leukemia cells and thus inhibit their proliferation. Subsequent studies have highlighted the multi-functions of LIF under a wide variety of physiological and pathological conditions in a highly cell-, tissue-, and context-dependent manner. Emerging evidence has demonstrated that LIF plays an essential role in the stem cell niche, where it maintains the homeostasis and regeneration of multiple somatic tissues, including intestine, neuron, and muscle. Further, LIF exerts a crucial regulatory role in immunity and functions as a protective factor against many immunopathological diseases, such as infection, inflammatory bowel disease (IBD), and graft-verse-host disease (GVHD). It is worth noting that while LIF displays a tumor-suppressive function in leukemia, recent studies have highlighted the oncogenic role of LIF in many types of solid tumors, further demonstrating the complexities and context-dependent effects of LIF. In this review, we summarize the recent insights into the roles and mechanisms of LIF in stem cell homeostasis and regeneration, immunity, and cancer, and discuss the potential therapeutic options for human diseases by modulating LIF levels and functions.
Collapse
Affiliation(s)
- Jianming Wang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Chun-Yuan Chang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Xue Yang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Fan Zhou
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Juan Liu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Zhaohui Feng
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA.
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA.
| |
Collapse
|
4
|
Baklaushev VP, Yusubalieva GM, Samoilova EM, Belopasov VV. Resident Neural Stem Cell Niches and Regeneration: The Splendors and Miseries of Adult Neurogenesis. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422030080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Frondelli MJ, Mather ML, Levison SW. Oligodendrocyte progenitor proliferation is disinhibited following traumatic brain injury in leukemia inhibitory factor heterozygous mice. J Neurosci Res 2021; 100:578-597. [PMID: 34811802 DOI: 10.1002/jnr.24984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury (TBI) is a significant problem that affects over 800,000 children each year. As cell proliferation is disturbed by injury and required for normal brain development, we investigated how a pediatric closed head injury (CHI) would affect the progenitors of the subventricular zone (SVZ). Additionally, we evaluated the contribution of leukemia inhibitory factor (LIF) using germline LIF heterozygous mice (LIF Het), as LIF is an injury-induced cytokine, known to influence neurogenesis and gliogenesis. CHIs were performed on P20 LIF Het and wild-type (WT) mice. Ki-67 immunostaining and stereology revealed that cell proliferation increased ~250% in injured LIF Het mice compared to the 30% increase observed in injured WT mice at 48-hr post-CHI. OLIG2+ cell proliferation increased in the SVZ and white matter of LIF Het injured mice at 48-hr recovery. Using an 8-color flow cytometry panel, the proliferation of three distinct multipotential progenitors and early oligodendrocyte progenitor cell proliferation was significantly increased in LIF Het injured mice compared to WT injured mice. Supporting its cytostatic function, LIF decreased neurosphere progenitor and oligodendrocyte progenitor cell proliferation compared to controls. In highly enriched mouse oligodendrocyte progenitor cell cultures, LIF increased phospho-protein kinase B after 20 min and increased phospho-S6 ribosomal protein at 20 and 40 min of exposure, which are downstream targets of the mammalian target of rapamycin pathway. Altogether, our data provide new insights into the regulatory role of LIF in suppressing neural progenitor cell proliferation and, in particular, oligodendrocyte progenitor cell proliferation after a mild TBI.
Collapse
Affiliation(s)
- Michelle J Frondelli
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Marie L Mather
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Steven W Levison
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
6
|
ELMENEZA SA, SALEH EA, EL-BAGOURY I. Study of nestin in newborn infants with neonatal hypoxic ischemic encephalopathy. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2021. [DOI: 10.23736/s0393-3660.20.04391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Frondelli MJ, Levison SW. Leukemia Inhibitory Factor Is Required for Subventricular Zone Astrocyte Progenitor Proliferation and for Prokineticin-2 Production after a Closed Head Injury in Mice. Neurotrauma Rep 2021; 2:285-302. [PMID: 34223558 PMCID: PMC8244521 DOI: 10.1089/neur.2020.0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Astrogliosis is one of the hallmarks of brain injury, and after a mild injury activated astrocytes subserve neuroprotective and pro-regenerative functions. We previously found that the astroglial response to closed head injury (CHI) was blunted in mice that were haplodeficient in leukemia inhibitory factor (LIF); therefore, the goal of these studies was to determine if the delayed astrogliosis was due to decreased recruitment of subventricular zone (SVZ) progenitors. CHI's were performed on post-natal day 20 on LIF heterozygous (Het) and wild-type (WT) mice. At 48 h post-CHI, astrocyte progenitor proliferation within the SVZ increased ∼250% in WT mice but was reduced by ∼200% in LIF Het mice compared with sham controls. Using neurospheres to model the SVZ, LIF increased the percentage of proliferating astrocyte progenitors by 2-fold compared with controls but had no effect on neural stem cell proliferation. To rule out the involvement of other cytokines, 105 cytokines were analyzed using a multi-plex array and with targeted validation on injured LIF Het versus WT neocortex. Of the cytokines analyzed, only prokineticin-2 (ProK2) required LIF signaling. Correspondingly, LIF-treated neurospheres expressed higher levels of ProK2, the ProK1 and ProK2 receptors (ProKR1 and ProKR2). Using in situ hybridization, ProK2 messenger RNA (mRNA) was most abundant in neocortical neurons and highly expressed within the SVZ. However, in contrast to LIF, ProK2 decreased astrocyte progenitor proliferation 2-fold. Altogether, these data demonstrate that LIF is necessary for astrocyte progenitor proliferation after injury and reveal a new role for LIF as an essential regulator of the neurotrophic factor ProK2.
Collapse
Affiliation(s)
- Michelle J. Frondelli
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Steven W. Levison
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
8
|
Zhang C, Liu J, Wang J, Hu W, Feng Z. The emerging role of leukemia inhibitory factor in cancer and therapy. Pharmacol Ther 2021; 221:107754. [PMID: 33259884 PMCID: PMC8084904 DOI: 10.1016/j.pharmthera.2020.107754] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Leukemia inhibitory factor (LIF) is a multi-functional cytokine of the interleukin-6 (IL-6) superfamily. Initially identified as a factor that inhibits the proliferation of murine myeloid leukemia cells, LIF displays a wide variety of important functions in a cell-, tissue- and context-dependent manner in many physiological and pathological processes, including regulating cell proliferation, pluripotent stem cell self-renewal, tissue/organ development and regeneration, neurogenesis and neural regeneration, maternal reproduction, inflammation, infection, immune response, and metabolism. Emerging evidence has shown that LIF plays an important but complex role in human cancers; while LIF displays a tumor suppressive function in some types of cancers, including leukemia, LIF is overexpressed and exerts an oncogenic function in many more types of cancers. Further, targeting LIF has been actively investigated as a novel strategy for cancer therapy. This review summarizes the recent advances in the studies on LIF in human cancers and its potential application in cancer therapy. A better understanding of the role of LIF in different types of cancers and its underlying mechanisms will help to develop more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA.
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
9
|
Batish M, Tyagi S. Fluorescence In Situ Imaging of Dendritic RNAs at Single-Molecule Resolution. ACTA ACUST UNITED AC 2020; 89:e79. [PMID: 31532916 DOI: 10.1002/cpns.79] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RNA localization is an important step in gene regulation. Imaging RNAs in fixed and live cells provides contextual information about RNA distribution in the cells. Here, we provide detailed protocols for performing single-molecule fluorescence in situ hybridization (smFISH). smFISH detects mRNA molecules at single-molecule resolution in fixed neuronal cells using ∼50 small oligonucleotide probes for each mRNA. The technique has been successfully applied to understand RNA localization and distribution in various biological systems, ranging from Drosophila to the mammalian nervous system. The probes are small enough to bind to structured RNAs or RNAs that are part of RNA-protein complexes, thereby accounting for ∼85% of the total RNA; this enables a level of sensitivity equivalent to that of quantitative real-time PCR, but with anatomical resolution. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Mona Batish
- Department of Medical and Molecular Sciences and Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| |
Collapse
|
10
|
Markey FB, Parashar V, Batish M. Methods for spatial and temporal imaging of the different steps involved in RNA processing at single-molecule resolution. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1608. [PMID: 32543077 DOI: 10.1002/wrna.1608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/26/2022]
Abstract
RNA plays a quintessential role as a messenger of information from genotype (DNA) to phenotype (proteins), as well as acts as a regulatory molecule (noncoding RNAs). All steps in the journey of RNA from synthesis (transcription), splicing, transport, localization, translation, to its eventual degradation, comprise important steps in gene expression, thereby controlling the fate of the cell. This lifecycle refers to the majority of RNAs (primarily mRNAs), but not other RNAs such as tRNAs. Imaging these processes in fixed cells and in live cells has been an important tool in developing an understanding of the regulatory steps in RNAs journey. Single-cell and single-molecule imaging techniques enable a much deeper understanding of cellular biology, which is not possible with bulk studies involving RNA isolated from a large pool of cells. Classic techniques, such as fluorescence in situ hybridization (FISH), as well as more recent aptamer-based approaches, have provided detailed insights into RNA localization, and have helped to predict the functions carried out by many RNA species. However, there are still certain processing steps that await high-resolution imaging, which is an exciting and upcoming area of research. In this review, we will discuss the methods that have revolutionized single-molecule resolution imaging in general, the steps of RNA processing in which these methods have been used, and new emerging technologies. This article is categorized under: RNA Export and Localization > RNA Localization RNA Methods > RNA Analyses in Cells RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions.
Collapse
Affiliation(s)
- Fatu Badiane Markey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Vijay Parashar
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Mona Batish
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.,Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
11
|
Lin J, Niimi Y, Clausi MG, Kanal HD, Levison SW. Neuroregenerative and protective functions of Leukemia Inhibitory Factor in perinatal hypoxic-ischemic brain injury. Exp Neurol 2020; 330:113324. [PMID: 32320698 DOI: 10.1016/j.expneurol.2020.113324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy remains the most important neurological problem of the newborn. Delays in diagnosing perinatal brain injuries are common, preventing access to acute therapies. Therefore, there is a critical need for therapeutic strategies that are beneficial when delivered beyond 24 h after birth. Here we show that Leukemia Inhibitory Factor (LIF) functions as an essential injury-induced neurotrophic cytokine in the CNS and that non-invasively administering LIF as late as 3 days after a hypoxic-ischemic insult improves neurological function. Using a mouse model of late preterm brain injury we show that astroglial and microglial/macrophage reactivity to hypoxia-ischemia was diminished at 3 days of recovery, but then exacerbated at 2 weeks of recovery in LIF haplodeficient mice. There also were significantly more CD68+/Iba-1+ cells in the ipsilateral striatum in LIF-Het mice compared to WT mice at 2 weeks of recovery. This desynchronized glial response was accompanied by increased neuronal cell death in the striatum and neocortex (Fluorojade C), hypomyelination (reduced MBP staining and thinner external capsule), increased extent of brain damage (Nissl) and diminished neurological function on sensorimotor tests. To our surprise, injured LIF-Het mice had ~7-fold higher IGF-1 levels than injured WT mice at 3 days after HI injury. Intranasally administered LIF activated the Jak-Stat-3 pathway both within the subventricular zone and the neocortex at 30 min after administration. When delivered with a delay of 3 days after the insult, intranasal LIF reduced the extent of brain injury by ~60%, attenuated astrogliosis and microgliosis in striatum, improved subcortical white matter thickness, increased numbers of Olig2+ cells in corpus callosum and improved performance on sensorimotor tests at 2 weeks of recovery. These studies provide key pre-clinical data recommending LIF administration as a neuroprotectant and regenerative cytokine and they highlight the feasibility of pursuing new therapeutics targeting the tertiary phase of neurodegeneration for hypoxic-ischemic encephalopathies.
Collapse
Affiliation(s)
- Jie Lin
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Yusuke Niimi
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Mariano Guardia Clausi
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Hur Dolunay Kanal
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Steven W Levison
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA.
| |
Collapse
|
12
|
Gao J, Bai P, Li Y, Li J, Jia C, Wang T, Zhao H, Si Y, Chen J. Metabolomic Profiling of the Synergistic Effects of Ginsenoside Rg1 in Combination with Neural Stem Cell Transplantation in Ischemic Stroke Rats. J Proteome Res 2020; 19:2676-2688. [PMID: 31968172 DOI: 10.1021/acs.jproteome.9b00639] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jian Gao
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng Bai
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuanyuan Li
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingzhong Li
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Caixia Jia
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tieshan Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haibin Zhao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Yinchu Si
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianxin Chen
- Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
13
|
Tran C, Heng B, Teo JD, Humphrey SJ, Qi Y, Couttas TA, Stefen H, Brettle M, Fath T, Guillemin GJ, Don AS. Sphingosine 1-phosphate but not Fingolimod protects neurons against excitotoxic cell death by inducing neurotrophic gene expression in astrocytes. J Neurochem 2019; 153:173-188. [PMID: 31742704 DOI: 10.1111/jnc.14917] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022]
Abstract
Sphingosine 1-phosphate (S1P) is an essential lipid metabolite that signals through a family of five G protein-coupled receptors, S1PR1-S1PR5, to regulate cell physiology. The multiple sclerosis drug Fingolimod (FTY720) is a potent S1P receptor agonist that causes peripheral lymphopenia. Recent research has demonstrated direct neuroprotective properties of FTY720 in several neurodegenerative paradigms; however, neuroprotective properties of the native ligand S1P have not been established. We aimed to establish the significance of neurotrophic factor up-regulation by S1P for neuroprotection, comparing S1P with FTY720. S1P induced brain-derived neurotrophic factor (BDNF), leukemia inhibitory factor (LIF), platelet-derived growth factor B (PDGFB), and heparin-binding EGF-like growth factor (HBEGF) gene expression in primary human and murine astrocytes, but not in neurons, and to a much greater extent than FTY720. Accordingly, S1P but not FTY720 protected cultured neurons against excitotoxic cell death in a primary murine neuron-glia coculture model, and a neutralizing antibody to LIF blocked this S1P-mediated neuroprotection. Antagonists of S1PR1 and S1PR2 both inhibited S1P-mediated neurotrophic gene induction in human astrocytes, indicating that simultaneous activation of both receptors is required. S1PR2 signaling was transduced through Gα13 and the small GTPase Rho, and was necessary for the up-regulation and activation of the transcription factors FOS and JUN, which regulate LIF, BDNF, and HBEGF transcription. In summary, we show that S1P protects hippocampal neurons against excitotoxic cell death through up-regulation of neurotrophic gene expression, particularly LIF, in astrocytes. This up-regulation requires both S1PR1 and S1PR2 signaling. FTY720 does not activate S1PR2, explaining its relative inefficacy compared to S1P.
Collapse
Affiliation(s)
- Collin Tran
- School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia.,Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Benjamin Heng
- MND Research Centre, Neuroinflammation group, Macquarie University, Sydney, NSW, Australia
| | - Jonathan D Teo
- Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Sean J Humphrey
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Timothy A Couttas
- Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Holly Stefen
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Sciences, Macquarie University, Sydney, NSW, Australia
| | - Merryn Brettle
- School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Thomas Fath
- School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia.,Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- MND Research Centre, Neuroinflammation group, Macquarie University, Sydney, NSW, Australia
| | - Anthony S Don
- Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,NHMRC Clinical Trials Centre, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
14
|
Liu CZ, Zhou HJ, Zhong JH, Tang T, Cui HJ, Zhou JH, Zhang Q, Mei ZG. Leukemia Inhibitory Factor Decreases Neurogenesis and Angiogenesis in a Rat Model of Intracerebral Hemorrhage. Curr Med Sci 2019; 39:298-304. [DOI: 10.1007/s11596-019-2034-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 10/09/2018] [Indexed: 01/15/2023]
|
15
|
Neural stem cell therapies and hypoxic-ischemic brain injury. Prog Neurobiol 2018; 173:1-17. [PMID: 29758244 DOI: 10.1016/j.pneurobio.2018.05.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 03/06/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
Hypoxic-ischemic brain injury is a significant cause of morbidity and mortality in the adult as well as in the neonate. Extensive pre-clinical studies have shown promising therapeutic effects of neural stem cell-based treatments for hypoxic-ischemic brain injury. There are two major strategies of neural stem cell-based therapies: transplanting exogenous neural stem cells and boosting self-repair of endogenous neural stem cells. Neural stem cell transplantation has been proved to improve functional recovery after brain injury through multiple by-stander mechanisms (e.g., neuroprotection, immunomodulation), rather than simple cell-replacement. Endogenous neural stem cells reside in certain neurogenic niches of the brain and response to brain injury. Many molecules (e.g., neurotrophic factors) can stimulate or enhance proliferation and differentiation of endogenous neural stem cells after injury. In this review, we first present an overview of neural stem cells during normal brain development and the effect of hypoxic-ischemic injury on the activation and function of endogenous neural stem cells in the brain. We then summarize and discuss the current knowledge of strategies and mechanisms for neural stem cell-based therapies on brain hypoxic-ischemic injury, including neonatal hypoxic-ischemic brain injury and adult ischemic stroke.
Collapse
|
16
|
Pediatric brain repair from endogenous neural stem cells of the subventricular zone. Pediatr Res 2018; 83:385-396. [PMID: 29028220 DOI: 10.1038/pr.2017.261] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
Abstract
There is great interest in the regenerative potential of the neural stem cells and progenitors that populate the germinal zones of the immature brain. Studies using animal models of pediatric brain injuries have provided a clearer understanding of the responses of these progenitors to injury. In this review, we have compared and contrasted the responses of the endogenous neural stem cells and progenitors of the subventricular zone in animal models of neonatal cerebral hypoxia-ischemia, neonatal stroke, congenital cardiac disease, and pediatric traumatic brain injury. We have reviewed the dynamic shifts that occur within this germinal zone with injury as well as changes in known signaling molecules that affect these progenitors. Importantly, we have summarized data on the extent to which cell replacement occurs in response to each of these injuries, opportunities available, and obstacles that will need to be overcome to improve neurological outcomes in survivors.
Collapse
|
17
|
Application of bio-orthogonal proteome labeling to cell transplantation and heterochronic parabiosis. Nat Commun 2017; 8:643. [PMID: 28935952 PMCID: PMC5608760 DOI: 10.1038/s41467-017-00698-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/20/2017] [Indexed: 12/19/2022] Open
Abstract
Studies of heterochronic parabiosis demonstrated that with age, the composition of the circulatory milieu changes in ways that broadly inhibit tissue regenerative capacity. In addition, local tissue niches have age-specific influences on their resident stem cells. Here we use bio-orthogonal proteome labeling for detecting in vivo proteins present only in transplanted myoblasts, but not in host tissue, and proteins exclusive to one young mouse and transferred during parabiosis to its old partner. We use a transgenic mouse strain that ubiquitously expresses a modified tRNA methionine synthase, metRS, which preferentially incorporates the methionine surrogate azido-nor-leucine (ANL) into newly generated proteins. Using click chemistry and a modified antibody array to detect ANL-labeled proteins, we identify several ‘young’ systemic factors in old regenerating muscle of the heterochronic parabiotic partners. Our approach enables the selective profiling of mammalian proteomes in mixed biological environments such as cell and tissue transplantation, apheresis or parabiosis. Clarifying the source of proteins in mixed biological environments, such as after transplantation or parabiosis, remains a challenge. Here, the authors address this need with a mouse strain that incorporates a methionine derivate into proteins, allowing for their detection using click chemistry and antibody arrays.
Collapse
|
18
|
Davis SM, Pennypacker KR. The role of the leukemia inhibitory factor receptor in neuroprotective signaling. Pharmacol Ther 2017; 183:50-57. [PMID: 28827150 DOI: 10.1016/j.pharmthera.2017.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Several neurotropic cytokines relay their signaling through the leukemia inhibitory factor receptor. This 190kDa subunit couples with the 130kDa gp130 subunit to transduce intracellular signaling in neurons and oligodendrocytes that leads to expression of genes associated with neurosurvival. Moreover, activation of this receptor alters the phenotype of immune cells to an anti-inflammatory one. Although cytokines that activate the leukemia inhibitory factor receptor have been studied in the context of neurodegenerative disease, therapeutic targeting of the specific receptor subunit has been understudied in by comparison. This review examines the role of this receptor in the CNS and immune system, and its application in the treatment in stroke and other brain pathologies.
Collapse
Affiliation(s)
- Stephanie M Davis
- Center for Advanced Translational Stroke Science, Departments of Neurology and Neuroscience, University of Kentucky, Lexington, KY 40536, United States
| | - Keith R Pennypacker
- Center for Advanced Translational Stroke Science, Departments of Neurology and Neuroscience, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
19
|
Home sweet home: the neural stem cell niche throughout development and after injury. Cell Tissue Res 2017; 371:125-141. [PMID: 28776186 DOI: 10.1007/s00441-017-2658-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/29/2017] [Indexed: 12/26/2022]
Abstract
Neural stem cells and their progeny reside in two distinct neurogenic niches within the mammalian brain: the subventricular zone and the dentate gyrus. The interplay between the neural stem cells and the niche in which they reside can have significant effects on cell kinetics and neurogenesis. A comprehensive understanding of the changes to the niche that occur through postnatal development and aging, as well as following injury, is relevant for developing therapeutics and interventions to promote neural repair. We discuss changes that occur within the neural stem and progenitor cell populations, the vasculature, extracellular matrix, microglia, and secreted proteins through aging which impact cell behavior within the neurogenic niches. We examine neural precursor cell and niche responses to injury in neonatal hypoxia-ischemia, juvenile cranial irradiation, and adult stroke. This review examines the interplay between the niche and stem cell behavior through aging and following injury as a means to understand intrinsic and extrinsic factors that regulate neurogenesis in vivo.
Collapse
|
20
|
Mottahedin A, Ardalan M, Chumak T, Riebe I, Ek J, Mallard C. Effect of Neuroinflammation on Synaptic Organization and Function in the Developing Brain: Implications for Neurodevelopmental and Neurodegenerative Disorders. Front Cell Neurosci 2017; 11:190. [PMID: 28744200 PMCID: PMC5504097 DOI: 10.3389/fncel.2017.00190] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/20/2017] [Indexed: 12/27/2022] Open
Abstract
The brain is a plastic organ where both the intrinsic CNS milieu and extrinsic cues play important roles in shaping and wiring neural connections. The perinatal period constitutes a critical time in central nervous system development with extensive refinement of neural connections, which are highly sensitive to fetal and neonatal compromise, such as inflammatory challenges. Emerging evidence suggests that inflammatory cells in the brain such as microglia and astrocytes are pivotal in regulating synaptic structure and function. In this article, we will review the role of glia cells in synaptic physiology and pathophysiology, including microglia-mediated elimination of synapses. We propose that activation of the immune system dynamically affects synaptic organization and function in the developing brain. We will discuss the role of neuroinflammation in altered synaptic plasticity following perinatal inflammatory challenges and potential implications for neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amin Mottahedin
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Maryam Ardalan
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Tetyana Chumak
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Ilse Riebe
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Joakim Ek
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| |
Collapse
|
21
|
Zhu JD, Wang JJ, Ge G, Kang CS. Effects of Noggin-Transfected Neural Stem Cells on Neural Functional Recovery and Underlying Mechanism in Rats with Cerebral Ischemia Reperfusion Injury. J Stroke Cerebrovasc Dis 2017; 26:1547-1559. [PMID: 28478981 DOI: 10.1016/j.jstrokecerebrovasdis.2017.02.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/23/2017] [Accepted: 02/02/2017] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE To investigate neuroprotection of noggin-transfected neural stem cells (NSCs) against focal cerebral ischemia reperfusion injury (IRI) in rats. METHODS Eighty Wistar rats were randomly divided into the sham, IRI, NSCs, and noggin + NSCs groups. Noggin containing adenoviral vectors was transfected into rat NSCs. Rats were subjected to 2.0 hours middle cerebral artery occlusion and reperfusion 1.0 hour, followed by infusion into the lateral ventricles of NSCs alone, noggin-transfected NSCs, and saline at 3 days in the NSCs, noggin + NSCs, and sham groups, respectively. All rats were sacrificed on 1, 3, 7, and 28 days after transplantation; the colorimetric method was used to detect the levels of superoxide dismutase (SOD) and the malondialdehyde (MDA) content after the behavior capability determined. Western blot was performed for detecting the expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) proteins. The TUNEL-positive and BrdU/nestin double-positive cells were observed under a light microscope and quantitative analysis was performed by morphometric technique. RESULTS Noggin-transfected NSCs significantly decreased the infarct volume and improved the neurological scores. Noggin-transfected NSCs also reduced the percentage of apoptotic neurons and relieved neuronal morphological damage. Noggin-transfected NSC transplantation markedly decreased the MDA levels and increased the SOD activity, and simultaneously downregulated the BMP4 (bone morphogenesis protein), VEGF, and bFGF proteins. CONCLUSIONS The present study demonstrates that grafting NSCs modified by noggin gene provides better neuroprotection for cerebrovascular disease.
Collapse
Affiliation(s)
- Jun-de Zhu
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guian New Area, China.
| | - Jun-Jie Wang
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guian New Area, China
| | - Guo Ge
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guian New Area, China
| | - Chao-Sheng Kang
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guian New Area, China
| |
Collapse
|