1
|
Czyżewski W, Litak J, Sobstyl J, Mandat T, Torres K, Staśkiewicz G. Aquaporins: Gatekeepers of Fluid Dynamics in Traumatic Brain Injury. Int J Mol Sci 2024; 25:6553. [PMID: 38928258 PMCID: PMC11204105 DOI: 10.3390/ijms25126553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Aquaporins (AQPs), particularly AQP4, play a crucial role in regulating fluid dynamics in the brain, impacting the development and resolution of edema following traumatic brain injury (TBI). This review examines the alterations in AQP expression and localization post-injury, exploring their effects on brain edema and overall injury outcomes. We discuss the underlying molecular mechanisms regulating AQP expression, highlighting potential therapeutic strategies to modulate AQP function. These insights provide a comprehensive understanding of AQPs in TBI and suggest novel approaches for improving clinical outcomes through targeted interventions.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, ul. W.K. Roentgena 5, 02-781 Warsaw, Poland;
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jan Sobstyl
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Tomasz Mandat
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, ul. W.K. Roentgena 5, 02-781 Warsaw, Poland;
| | - Kamil Torres
- Department of Plastic, Reconstructive Surgery with Microsurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Grzegorz Staśkiewicz
- Department of Human, Clinical and Radiological Anatomy, Medical University, 20-954 Lublin, Poland;
| |
Collapse
|
2
|
Panchenko PE, Hippauf L, Konsman JP, Badaut J. Do astrocytes act as immune cells after pediatric TBI? Neurobiol Dis 2023; 185:106231. [PMID: 37468048 PMCID: PMC10530000 DOI: 10.1016/j.nbd.2023.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023] Open
Abstract
Astrocytes are in contact with the vasculature, neurons, oligodendrocytes and microglia, forming a local network with various functions critical for brain homeostasis. One of the primary responders to brain injury are astrocytes as they detect neuronal and vascular damage, change their phenotype with morphological, proteomic and transcriptomic transformations for an adaptive response. The role of astrocytic responses in brain dysfunction is not fully elucidated in adult, and even less described in the developing brain. Children are vulnerable to traumatic brain injury (TBI), which represents a leading cause of death and disability in the pediatric population. Pediatric brain trauma, even with mild severity, can lead to long-term health complications, such as cognitive impairments, emotional disorders and social dysfunction later in life. To date, the underlying pathophysiology is still not fully understood. In this review, we focus on the astrocytic response in pediatric TBI and propose a potential immune role of the astrocyte in response to trauma. We discuss the contribution of astrocytes in the local inflammatory cascades and secretion of various immunomodulatory factors involved in the recruitment of local microglial cells and peripheral immune cells through cerebral blood vessels. Taken together, we propose that early changes in the astrocytic phenotype can alter normal development of the brain, with long-term consequences on neurological outcomes, as described in preclinical models and patients.
Collapse
Affiliation(s)
| | - Lea Hippauf
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France
| | | | - Jerome Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
3
|
Barile B, Mola MG, Formaggio F, Saracino E, Cibelli A, Gargano CD, Mogni G, Frigeri A, Caprini M, Benfenati V, Nicchia GP. AQP4-independent TRPV4 modulation of plasma membrane water permeability. Front Cell Neurosci 2023; 17:1247761. [PMID: 37720545 PMCID: PMC10500071 DOI: 10.3389/fncel.2023.1247761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Despite of the major role of aquaporin (AQP) water channels in controlling transmembrane water fluxes, alternative ways for modulating water permeation have been proposed. In the Central Nervous System (CNS), Aquaporin-4 (AQP4) is reported to be functionally coupled with the calcium-channel Transient-Receptor Potential Vanilloid member-4 (TRPV4), which is controversially involved in cell volume regulation mechanisms and water transport dynamics. The present work aims to investigate the selective role of TRPV4 in regulating plasma membrane water permeability in an AQP4-independent way. Fluorescence-quenching water transport experiments in Aqp4-/- astrocytes revealed that cell swelling rate is significantly increased upon TRPV4 activation and in the absence of AQP4. The biophysical properties of TRPV4-dependent water transport were therefore assessed using the HEK-293 cell model. Calcein quenching experiments showed that chemical and thermal activation of TRPV4 overexpressed in HEK-293 cells leads to faster swelling kinetics. Stopped-flow light scattering water transport assay was used to measure the osmotic permeability coefficient (Pf, cm/s) and activation energy (Ea, kcal/mol) conferred by TRPV4. Results provided evidence that although the Pf measured upon TRPV4 activation is lower than the one obtained in AQP4-overexpressing cells (Pf of AQP4 = 0.01667 ± 0.0007; Pf of TRPV4 = 0.002261 ± 0.0004; Pf of TRPV4 + 4αPDD = 0.007985 ± 0.0006; Pf of WT = 0.002249 ± 0.0002), along with activation energy values (Ea of AQP4 = 0.86 ± 0.0006; Ea of TRPV4 + 4αPDD = 2.73 ± 1.9; Ea of WT = 8.532 ± 0.4), these parameters were compatible with a facilitated pathway for water movement rather than simple diffusion. The possibility to tune plasma membrane water permeability more finely through TRPV4 might represent a protective mechanism in cells constantly facing severe osmotic challenges to avoid the potential deleterious effects of the rapid cell swelling occurring via AQP channels.
Collapse
Affiliation(s)
- Barbara Barile
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grazia Mola
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Formaggio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Emanuela Saracino
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Antonio Cibelli
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Domenica Gargano
- Department of Translational Biomedicine and Neuroscience (DiBraiN), School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Guido Mogni
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- Department of Translational Biomedicine and Neuroscience (DiBraiN), School of Medicine, University of Bari Aldo Moro, Bari, Italy
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 840 Kennedy Center, Bronx, NY, United States
| | - Marco Caprini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Valentina Benfenati
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 840 Kennedy Center, Bronx, NY, United States
| |
Collapse
|
4
|
Amro Z, Ryan M, Collins-Praino LE, Yool AJ. Unexpected Classes of Aquaporin Channels Detected by Transcriptomic Analysis in Human Brain Are Associated with Both Patient Age and Alzheimer’s Disease Status. Biomedicines 2023; 11:biomedicines11030770. [PMID: 36979749 PMCID: PMC10045580 DOI: 10.3390/biomedicines11030770] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The altered expression of known brain Aquaporin (AQP) channels 1, 4 and 9 has been correlated with neuropathological AD progression, but possible roles of other AQP classes in neurological disease remain understudied. The levels of transcripts of all thirteen human AQP subtypes were compared in healthy and Alzheimer’s disease (AD) brains by statistical analyses of microarray RNAseq expression data from the Allen Brain Atlas database. Previously unreported, AQPs 0, 6 and 10, are present in human brains at the transcript level. Three AD-affected brain regions, hippocampus (HIP), parietal cortex (PCx) and temporal cortex (TCx), were assessed in three subgroups: young controls (n = 6, aged 24–57); aged controls (n = 26, aged 78–99); and an AD cohort (n = 12, aged 79–99). A significant positive correlation (p < 10−10) was seen for AQP transcript levels as a function of the subject’s age in years. Differential expressions correlated with brain region, age, and AD diagnosis, particularly between the HIP and cortical regions. Interestingly, three classes of AQPs (0, 6 and 8) upregulated in AD compared to young controls are permeable to H2O2. Of these, AQPs 0 and 8 were increased in TCx and AQP6 in HIP, suggesting a role of AQPs in AD-related oxidative stress. The outcomes here are the first to demonstrate that the expression profile of AQP channels in the human brain is more diverse than previously thought, and transcript levels are influenced by both age and AD status. Associations between reactive oxygen stress and neurodegenerative disease risk highlight AQPs 0, 6, 8 and 10 as potential therapeutic targets.
Collapse
Affiliation(s)
- Zein Amro
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Matthew Ryan
- School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence:
| |
Collapse
|
5
|
Chêne C, Jeljeli MM, Rongvaux-Gaïda D, Thomas M, Rieger F, Batteux F, Nicco C. A Fenton-like cation can improve arsenic trioxide treatment of sclerodermatous chronic Graft-versus-Host Disease in mice. Front Immunol 2022; 13:917739. [PMID: 36016953 PMCID: PMC9395715 DOI: 10.3389/fimmu.2022.917739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Graft-versus Host Disease (GvHD) is a major complication of hematopoietic stem cell transplant. GvHD is characterized by the chronic activation of immune cells leading to the development of systemic inflammation, autoimmunity, fibrosis and eventually death. Arsenic trioxide (ATO) is a therapeutic agent under clinical trial for the treatment of patients with systemic lupus erythematosus (SLE) and chronic GvHD (cGvHD). This therapy is admittedly rather safe although adverse effects can occur and may necessitate short interruptions of the treatment. The aim of this study was to combine ATO with a divalent cation, to generate a Fenton or Fenton-like reaction in order to potentiate the deletion of activated immune cells through the reactive oxygen species (ROS)-mediated effects of ATO in a mouse model, and thereby enabling the use of lower and safer ATO concentrations to treat patients with cGvHD. In vitro, among the various combinations of divalent cations tested, we observed that the combination of ATO and CuCl2 (copper chloride) induced a high level of oxidative stress in HL-60 and A20 cells. In addition, this co-treatment also decreased the proliferation of CD4+ T lymphocytes during a mixed lymphocyte reaction (MLR). In vivo, in a cGvHD mouse model, daily injections of ATO 2.5 µg/g + CuCl2 0.5 µg/g induce a decrease in lymphocyte activation and fibrosis that was equivalent to that induced by ATO 5 µg/g. Our results show that the addition of CuCl2 improved the effects of ATO and significantly limited the development of the disease. This co-treatment could be a real benefit in human patients to substantially decrease the known ATO side effects and optimize ATO treatment in pathologies characterized by activated cells sensitive to an increase in oxidative stress.
Collapse
Affiliation(s)
- Charlotte Chêne
- Département 3I Infection, Immunité et Inflammation , Institut Cochin, INSERM U1016, Université de Paris, Paris, France
- MEDSENIC SAS, Strasbourg, France
| | - Mohamed Maxime Jeljeli
- Département 3I Infection, Immunité et Inflammation , Institut Cochin, INSERM U1016, Université de Paris, Paris, France
- Université de Paris, Faculté de Médecine, AP-HP-Centre Université de Paris, Hôpital Cochin, Service d’immunologie biologique, Paris, France
| | | | - Marine Thomas
- Département 3I Infection, Immunité et Inflammation , Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | | | - Frédéric Batteux
- Département 3I Infection, Immunité et Inflammation , Institut Cochin, INSERM U1016, Université de Paris, Paris, France
- Université de Paris, Faculté de Médecine, AP-HP-Centre Université de Paris, Hôpital Cochin, Service d’immunologie biologique, Paris, France
- *Correspondence: Frédéric Batteux, ; Carole Nicco,
| | - Carole Nicco
- Département 3I Infection, Immunité et Inflammation , Institut Cochin, INSERM U1016, Université de Paris, Paris, France
- *Correspondence: Frédéric Batteux, ; Carole Nicco,
| |
Collapse
|
6
|
da Silva IV, Garra S, Calamita G, Soveral G. The Multifaceted Role of Aquaporin-9 in Health and Its Potential as a Clinical Biomarker. Biomolecules 2022; 12:biom12070897. [PMID: 35883453 PMCID: PMC9313442 DOI: 10.3390/biom12070897] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
Aquaporins (AQPs) are transmembrane channels essential for water, energy, and redox homeostasis, with proven involvement in a variety of pathophysiological conditions such as edema, glaucoma, nephrogenic diabetes insipidus, oxidative stress, sepsis, cancer, and metabolic dysfunctions. The 13 AQPs present in humans are widely distributed in all body districts, drawing cell lineage-specific expression patterns closely related to cell native functions. Compelling evidence indicates that AQPs are proteins with great potential as biomarkers and targets for therapeutic intervention. Aquaporin-9 (AQP9) is the most expressed in the liver, with implications in general metabolic and redox balance due to its aquaglyceroporin and peroxiporin activities, facilitating glycerol and hydrogen peroxide (H2O2) diffusion across membranes. AQP9 is also expressed in other tissues, and their altered expression is described in several human diseases, such as liver injury, inflammation, cancer, infertility, and immune disorders. The present review compiles the current knowledge of AQP9 implication in diseases and highlights its potential as a new biomarker for diagnosis and prognosis in clinical medicine.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Sabino Garra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
- Correspondence: (G.C.); (G.S.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Correspondence: (G.C.); (G.S.)
| |
Collapse
|
7
|
Cao H, Seto SW, Bhuyan DJ, Chan HH, Song W. Effects of Thrombin on the Neurovascular Unit in Cerebral Ischemia. Cell Mol Neurobiol 2022; 42:973-984. [PMID: 33392917 PMCID: PMC11441220 DOI: 10.1007/s10571-020-01019-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia is a cerebrovascular disease with high morbidity and mortality that poses a significant burden on society and the economy. About 60% of cerebral ischemia is caused by thrombus, and the formation of thrombus proceeds from insoluble fibrin, following its transformation from liquid fibrinogen. In thrombus-induced ischemia, increased permeability of the blood-brain barrier (BBB), followed by the extravasation of blood components into the brain results in an altered brain microenvironment. Changes in the brain microenvironment affect brain function and the neurovascular unit (NVU), the working unit of the brain. Recent studies have reported that coagulation factors interact with the NVU and its components, but the specific function of this interaction is highly speculative and warrants further investigations. In this article, we reviewed the role of coagulation factors in cerebral ischemia and the role of coagulation factors in thrombosis. Additionally, the influence of thrombin on the NVU is introduced, as well as in the function of NVU, which may help to explore part of brain injury mechanism during ischemia. Lastly, we propose some novel therapeutic approaches on ischemic stroke by reducing the risk of coagulation.
Collapse
Affiliation(s)
- Hui Cao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, 100091, China
| | - Sai Wang Seto
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Hoi Huen Chan
- Hong Kong Community College, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wenting Song
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, 100091, China.
| |
Collapse
|
8
|
Wang S, Wang B, Shang D, Zhang K, Yan X, Zhang X. Ion Channel Dysfunction in Astrocytes in Neurodegenerative Diseases. Front Physiol 2022; 13:814285. [PMID: 35222082 PMCID: PMC8864228 DOI: 10.3389/fphys.2022.814285] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytes play an important role in the central nervous system (CNS). Ion channels in these cells not only function in ion transport, and maintain water/ion metabolism homeostasis, but also participate in physiological processes of neurons and glial cells by regulating signaling pathways. Increasing evidence indicates the ion channel proteins of astrocytes, such as aquaporins (AQPs), transient receptor potential (TRP) channels, adenosine triphosphate (ATP)-sensitive potassium (K-ATP) channels, and P2X7 receptors (P2X7R), are strongly associated with oxidative stress, neuroinflammation and characteristic proteins in neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS). Since ion channel protein dysfunction is a significant pathological feature of astrocytes in neurodegenerative diseases, we discuss these critical proteins and their signaling pathways in order to understand the underlying molecular mechanisms, which may yield new therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- Sijian Wang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Dehao Shang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Kaige Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
9
|
Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke. Int J Mol Sci 2021; 22:ijms22179486. [PMID: 34502395 PMCID: PMC8431165 DOI: 10.3390/ijms22179486] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022] Open
Abstract
Stroke disrupts the homeostatic balance within the brain and is associated with a significant accumulation of necrotic cellular debris, fluid, and peripheral immune cells in the central nervous system (CNS). Additionally, cells, antigens, and other factors exit the brain into the periphery via damaged blood–brain barrier cells, glymphatic transport mechanisms, and lymphatic vessels, which dramatically influence the systemic immune response and lead to complex neuroimmune communication. As a result, the immunological response after stroke is a highly dynamic event that involves communication between multiple organ systems and cell types, with significant consequences on not only the initial stroke tissue injury but long-term recovery in the CNS. In this review, we discuss the complex immunological and physiological interactions that occur after stroke with a focus on how the peripheral immune system and CNS communicate to regulate post-stroke brain homeostasis. First, we discuss the post-stroke immune cascade across different contexts as well as homeostatic regulation within the brain. Then, we focus on the lymphatic vessels surrounding the brain and their ability to coordinate both immune response and fluid homeostasis within the brain after stroke. Finally, we discuss how therapeutic manipulation of peripheral systems may provide new mechanisms to treat stroke injury.
Collapse
|
10
|
Filchenko I, Blochet C, Buscemi L, Price M, Badaut J, Hirt L. Caveolin-1 Regulates Perivascular Aquaporin-4 Expression After Cerebral Ischemia. Front Cell Dev Biol 2020; 8:371. [PMID: 32523952 PMCID: PMC7261922 DOI: 10.3389/fcell.2020.00371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/27/2020] [Indexed: 01/25/2023] Open
Abstract
Edema is a hallmark of many brain disorders including stroke. During vasogenic edema, blood-brain barrier (BBB) permeability increases, contributing to the entry of plasma proteins followed by water. Caveolae and caveolin-1 (Cav-1) are involved in these BBB permeability changes. The expression of the aquaporin-4 (AQP4) water channel relates to brain swelling, however, its regulation is poorly understood. Here we tested whether Cav-1 regulates AQP4 expression in the perivascular region after brain ischemia in mice. We showed that Cav-1 knockout mice had enhanced hemispheric swelling and decreased perivascular AQP4 expression in perilesional and contralateral cortical regions compared to wild-type. Glial fibrillary acidic protein-positive astrocytes displayed less branching and ramification in Cav-1 knockout mice compared to wild-type animals. There was a positive correlation between the area of perivascular AQP4-immunolabelling and branch length of Glial fibrillary acidic protein-positive astrocytes in wild-type mice, not seen in Cav-1 knockout mice. In summary, we show for the first time that loss of Cav-1 results in decreased AQP4 expression and impaired perivascular AQP4 covering after cerebral ischemia associated with altered reactive astrocyte morphology and enhanced brain swelling. Therapeutic approaches targeting Cav-1 may provide new opportunities for improving stroke outcome.
Collapse
Affiliation(s)
- Irina Filchenko
- Service of Neurology, Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland.,North-Western State Medical University named after I.I. Mechnikov, Saint-Petersburg, Russia.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Camille Blochet
- Service of Neurology, Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Lara Buscemi
- Service of Neurology, Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Melanie Price
- Service of Neurology, Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Jerome Badaut
- Brain Molecular Imaging Lab, CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France.,Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Lorenz Hirt
- Service of Neurology, Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Shchepareva ME, Zakharova MN. Functional Role of Aquaporins in the Nervous System under Normal and Pathological Conditions. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420010171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Heterogeneity of Astrocytes in Grey and White Matter. Neurochem Res 2019; 46:3-14. [PMID: 31797158 DOI: 10.1007/s11064-019-02926-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes are a diverse and heterogeneous type of glial cells. The major task of grey and white matter areas in the brain are computation of information at neuronal synapses and propagation of action potentials along axons, respectively, resulting in diverse demands for astrocytes. Adapting their function to the requirements in the local environment, astrocytes differ in morphology, gene expression, metabolism, and many other properties. Here we review the differential properties of protoplasmic astrocytes of grey matter and fibrous astrocytes located in white matter in respect to glutamate and energy metabolism, to their function at the blood-brain interface and to coupling via gap junctions. Finally, we discuss how this astrocytic heterogeneity might contribute to the different susceptibility of grey and white matter to ischemic insults.
Collapse
|
13
|
Bursting at the Seams: Molecular Mechanisms Mediating Astrocyte Swelling. Int J Mol Sci 2019; 20:ijms20020330. [PMID: 30650535 PMCID: PMC6359623 DOI: 10.3390/ijms20020330] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 01/31/2023] Open
Abstract
Brain swelling is one of the most robust predictors of outcome following brain injury, including ischemic, traumatic, hemorrhagic, metabolic or other injury. Depending on the specific type of insult, brain swelling can arise from the combined space-occupying effects of extravasated blood, extracellular edema fluid, cellular swelling, vascular engorgement and hydrocephalus. Of these, arguably the least well appreciated is cellular swelling. Here, we explore current knowledge regarding swelling of astrocytes, the most abundant cell type in the brain, and the one most likely to contribute to pathological brain swelling. We review the major molecular mechanisms identified to date that contribute to or mitigate astrocyte swelling via ion transport, and we touch upon the implications of astrocyte swelling in health and disease.
Collapse
|
14
|
Dajani S, Saripalli A, Sharma-Walia N. Water transport proteins-aquaporins (AQPs) in cancer biology. Oncotarget 2018; 9:36392-36405. [PMID: 30555637 PMCID: PMC6284741 DOI: 10.18632/oncotarget.26351] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
As highly conserved ubiquitous proteins, aquaporins (AQPs) play an imperative role in the development and progression of cancer. By trafficking water and other small molecules, AQPs play a vital role in preserving the cellular environment. Due to their critical role in cell stability and integrity, it would make sense that AQPs are involved in cancer progression. When AQPs alter the cellular environment, there may be several downstream effects such as alterations in cellular osmolality, volume, ionic composition, and signaling pathways. Changes in the intracellular levels of certain molecules serving as second messengers are synchronized by AQPs. Thus AQPs regulate numerous downstream effector signaling molecules that promote cancer development and progression. In numerous cancer types, AQP expression has shown a correlation with tumor stage and prognosis. Furthermore, AQPs assist in angiogenic and oxidative stress related damaging processes critical for cancer progression. This indicates that AQP proteins may be a viable therapeutic target or biomarker of cancer prognosis.
Collapse
Affiliation(s)
- Salah Dajani
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Anand Saripalli
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Neelam Sharma-Walia
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| |
Collapse
|
15
|
Clément T, Rodriguez-Grande B, Badaut J. Aquaporins in brain edema. J Neurosci Res 2018; 98:9-18. [DOI: 10.1002/jnr.24354] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Tifenn Clément
- CNRS UMR 5287, INCIA, University of Bordeaux; Bordeaux France
| | | | - Jérôme Badaut
- CNRS UMR 5287, INCIA, University of Bordeaux; Bordeaux France
- Department of Basic Science; Loma Linda University School of Medicine; Loma Linda California
| |
Collapse
|
16
|
Stahl K, Rahmani S, Prydz A, Skauli N, MacAulay N, Mylonakou MN, Torp R, Skare Ø, Berg T, Leergaard TB, Paulsen RE, Ottersen OP, Amiry-Moghaddam M. Targeted deletion of the aquaglyceroporin AQP9 is protective in a mouse model of Parkinson's disease. PLoS One 2018; 13:e0194896. [PMID: 29566083 PMCID: PMC5864064 DOI: 10.1371/journal.pone.0194896] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
More than 90% of the cases of Parkinson’s disease have unknown etiology. Gradual loss of dopaminergic neurons of substantia nigra is the main cause of morbidity in this disease. External factors such as environmental toxins are believed to play a role in the cell loss, although the cause of the selective vulnerability of dopaminergic neurons remains unknown. We have previously shown that aquaglyceroporin AQP9 is expressed in dopaminergic neurons and astrocytes of rodent brain. AQP9 is permeable to a broad spectrum of substrates including purines, pyrimidines, and lactate, in addition to water and glycerol. Here we test our hypothesis that AQP9 serves as an influx route for exogenous toxins and, hence, may contribute to the selective vulnerability of nigral dopaminergic (tyrosine hydroxylase-positive) neurons. Using Xenopus oocytes injected with Aqp9 cRNA, we show that AQP9 is permeable to the parkinsonogenic toxin 1-methyl-4-phenylpyridinium (MPP+). Stable expression of AQP9 in HEK cells increases their vulnerability to MPP+ and to arsenite—another parkinsonogenic toxin. Conversely, targeted deletion of Aqp9 in mice protects nigral dopaminergic neurons against MPP+ toxicity. A protective effect of Aqp9 deletion was demonstrated in organotypic slice cultures of mouse midbrain exposed to MPP+in vitro and in mice subjected to intrastriatal injections of MPP+in vivo. Seven days after intrastriatal MPP+ injections, the population of tyrosine hydroxylase-positive cells in substantia nigra is reduced by 48% in Aqp9 knockout mice compared with 67% in WT littermates. Our results show that AQP9 –selectively expressed in catecholaminergic neurons—is permeable to MPP+ and suggest that this aquaglyceroporin contributes to the selective vulnerability of nigral dopaminergic neurons by providing an entry route for parkinsonogenic toxins. To our knowledge this is the first evidence implicating a toxin permeable membrane channel in the pathophysiology of Parkinson’s disease.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacokinetics
- Animals
- Aquaporins/genetics
- Disease Models, Animal
- Dopaminergic Neurons/drug effects
- Dopaminergic Neurons/metabolism
- Female
- Gene Deletion
- HEK293 Cells
- Humans
- MPTP Poisoning/genetics
- MPTP Poisoning/metabolism
- MPTP Poisoning/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutagenesis, Site-Directed
- Neuroprotection/genetics
- Neuroprotective Agents/metabolism
- Parkinson Disease/genetics
- Parkinson Disease/pathology
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/genetics
- Parkinson Disease, Secondary/metabolism
- Parkinson Disease, Secondary/pathology
- Substantia Nigra/drug effects
- Substantia Nigra/metabolism
- Xenopus laevis
Collapse
Affiliation(s)
- Katja Stahl
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Soulmaz Rahmani
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Agnete Prydz
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nadia Skauli
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nanna MacAulay
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria N. Mylonakou
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, Norway Biotechnology Centre, University of Oslo, Oslo, Norway
| | - Reidun Torp
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Øivind Skare
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | - Torill Berg
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B. Leergaard
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ragnhild E. Paulsen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Ole P. Ottersen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Karolinska Institutet, Stockholm, Sweden
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
17
|
Hirt L, Price M, Benakis C, Badaut J. Aquaporins in neurological disorders. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2018. [DOI: 10.1177/2514183x17752902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Lorenz Hirt
- Neurology service, department of clinical neurosciences, CHUV, Lausanne, Switzerland
- Centre de recherche en neurosciences (CRN), CHUV, Lausanne, Switzerland
| | - Melanie Price
- Neurology service, department of clinical neurosciences, CHUV, Lausanne, Switzerland
- Centre de recherche en neurosciences (CRN), CHUV, Lausanne, Switzerland
| | - Corinne Benakis
- Institute for Stroke and Dementia Research (ISD), Munich, Germany
| | - Jérôme Badaut
- CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France
- Department of Basic science, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
18
|
Friscourt F, Badaut J. Aquaporins through the brain in health and disease: From water to gas movements. J Neurosci Res 2017; 96:177-179. [PMID: 28960397 DOI: 10.1002/jnr.24155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Frédéric Friscourt
- CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France.,Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac, France
| | - Jerome Badaut
- CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France.,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|