1
|
Yako T, Otsu W, Nakamura S, Shimazawa M, Hara H. Lipid Droplet Accumulation Promotes RPE Dysfunction. Int J Mol Sci 2022; 23:ijms23031790. [PMID: 35163712 PMCID: PMC8836556 DOI: 10.3390/ijms23031790] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/27/2023] Open
Abstract
Non-exudative age-related macular degeneration (AMD) is an irreversibly progressive retinal degenerative disease characterized by dysfunction and loss of retinal pigment epithelium (RPE). It has been suggested that impaired phagocytosis of the RPE is involved in the progression of non-exudative AMD, but the mechanism is not fully clear. In this study, we investigated the effect of lipid droplet accumulation on RPE function. Compared to young mice, the expression of lipid droplet-associated proteins increased in the RPE-choroidal complex, and lipid droplet in the RPE was observed in aged pigmented mice (12-month-old). Repeated treatment of the photoreceptor outer segment against ARPE-19 resulted in lipid droplets in ARPE-19 cells in vitro. Oleic acid treatment for ARPE-19 cells to form intracellular lipid droplet reduced the POS uptake into the ARPE-19 cells without causing a decrease in cell viability. The suppression of the POS uptake by lipid droplet formation improved by inhibiting lipid droplet formation using triacsin C. Moreover, the amount of intracellular reactive oxygen species was suppressed by the triacsin C treatment. These results indicate that lipid droplet is involved in the RPE dysfunction, and inhibiting lipid droplet formation may be a target for preventing and treating non-exudative AMD.
Collapse
Affiliation(s)
- Tomohiro Yako
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (T.Y.); (S.N.); (H.H.)
| | - Wataru Otsu
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan;
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (T.Y.); (S.N.); (H.H.)
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (T.Y.); (S.N.); (H.H.)
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan;
- Laboratory of Collaborative Research for Innovative Drug Discovery, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
- Correspondence:
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (T.Y.); (S.N.); (H.H.)
- Laboratory of Collaborative Research for Innovative Drug Discovery, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
2
|
Retinal Degeneration and Microglial Dynamics in Mature Progranulin-Deficient Mice. Int J Mol Sci 2021; 22:ijms222111557. [PMID: 34768987 PMCID: PMC8584076 DOI: 10.3390/ijms222111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022] Open
Abstract
Progranulin (PGRN) is a secreted glycoprotein that regulates numerous cellular processes. The role of PGRN as a regulator of lysosomes has recently received attention. The purpose of this study was to characterize the retinal phenotype in mature PGRN knockout (Grn−/−) mice. The a-wave amplitude of scotopic electroretinogram and outer nuclear thickness were significantly reduced at 6 months of age in Grn−/− mice compared to wild-type (Grn+/+) mice. In Grn−/− mice, retinal microglial cells accumulated on the retinal pigment epithelium (RPE) apical layer, and the number of infiltrated microglia and white fundus lesions between 2 and 6 months of age showed a close affinity. In Grn+/+ mice, PGRN was located in the retina, while the strongest PGRN signals were detected in the RPE-choroid. The different effects of PGRN deficiency on the expression of lysosomal proteins between the retina and RPE-choroid were demonstrated. Our data suggest that the subretinal translocation of microglia is a characteristic phenotype in the retina of mature PGRN knockout mice. The different effects of PGRN deficiency on the expression of lysosomal proteins between the retina and RPE-choroid might modulate microglial dynamics in PGRN knockout mice.
Collapse
|
3
|
Wang Z, He Q, Zhang X, Ma Y, Fan F, Dong Y, Xu W, Yin Y, He Y. Innate Anti-microbial and Anti-chemotaxis Properties of Progranulin in an Acute Otitis Media Mouse Model. Front Immunol 2018; 9:2952. [PMID: 30619312 PMCID: PMC6302024 DOI: 10.3389/fimmu.2018.02952] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Acute otitis media (AOM) is one of the most common infectious diseases primarily caused by Streptococcus pneumoniae (S.pn) among children. Progranulin (PGRN) is a multifunctional growth factor widely expressed in various tissues and cells. Studies have confirmed that PGRN is involved in the development of a variety of inflammatory diseases. We found that the expression of PGRN increased significantly in the middle ear of wild mice with AOM. However, its physiological functions in AOM still remain unknown. To examine the role of PGRN during AOM, we established an acute otitis media model in both C57BL/6 wild mice and PGRN-deficient (PGRN−/−) mice via transbullar injection with S.pn clinical strain serotype 19F. Interestingly, we observed dual results: on one hand, macrophage recruitment notably increased in PGRN−/− mice compared with WT mice; on the other hand, the overall bacterial clearance was surprisingly dampened in PGRN−/− mice. The enhanced recruitment of macrophages was associated with increased production of chemokine (C-C motif) ligand 2 (CCL2), while the decreased bacterial clearance was associated with impaired endocytosis capacity of macrophages. The scavenging ability of bacteria in PGRN−/− mice was recovered with administration of recombinant PGRN. These results suggested a novel dual role of PGRN in affecting the activities of macrophages.
Collapse
Affiliation(s)
- Zimeng Wang
- Key Laboratory of Diagnostic Medicine, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China.,Department of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Qian He
- Key Laboratory of Diagnostic Medicine, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xinxin Zhang
- Key Laboratory of Diagnostic Medicine, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yurong Ma
- Key Laboratory of Diagnostic Medicine, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Fangmei Fan
- Key Laboratory of Diagnostic Medicine, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yilin Dong
- Key Laboratory of Diagnostic Medicine, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Diagnostic Medicine, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yujuan He
- Key Laboratory of Diagnostic Medicine, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|