1
|
Shute L, Fry M. Neuropeptide Y modulates the electrical activity of subfornical organ neurons. CURRENT RESEARCH IN NEUROBIOLOGY 2025; 8:100149. [PMID: 40308261 PMCID: PMC12041781 DOI: 10.1016/j.crneur.2025.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/16/2025] [Accepted: 03/16/2025] [Indexed: 05/02/2025] Open
Abstract
The subfornical organ (SFO) is a sensory circumventricular organ, lacking a blood-brain barrier. It is well-recognized as a key center for detection and integration of osmotic, ionic and hormonal signals for maintenance of hydromineral balance and cardiovascular regulation. Recently, the SFO has also been recognized as a center for the detection and integration of circulating satiety signals for regulation of energy balance. Neuropeptide Y (NPY) is a multifunctional neuropeptide, with effects on energy balance, cardiovascular tone and other aspects of homeostasis. Interestingly, despite the overlap of function between SFO and NPY, and observations that SFO expresses several subtypes of Y receptors, NPY regulation of SFO neurons has never been investigated. In this study, we examined the effects of NPY on dissociated rat SFO neurons using patch clamp electrophysiology. We observed that 300 nM NPY caused depolarization of 16 % of SFO neurons tested, and hyperpolarization of 26 %, while the remaining neurons were insensitive to NPY (n = 31). These effects were dose-dependent with an apparent EC50 of 3.9 nM for depolarizing neurons and 3.5 nM for hyperpolarizing neurons. Activation of Y5 receptors alone led to predominately hyperpolarizing effects, while activation of Y1 or Y2 receptors alone led to mixed responses. Voltage-clamp experiments demonstrated that NPY caused increases in voltage-gated K+ current amplitude as well as hyperpolarizing shifts in persistent Na+ current, mediating the hyperpolarizing and depolarizing effects, respectively. These findings indicate that NPY elicits direct electrophysiological effects on SFO neurons, suggesting that NPY acts via the SFO to regulate energy homeostatic function.
Collapse
Affiliation(s)
| | - Mark Fry
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Kawata S, Seki S, Nishiura A, Kitaoka Y, Iwamori K, Fukada SI, Kogo M, Tanaka S. Preservation of masseter muscle until the end stage in the SOD1G93A mouse model for ALS. Sci Rep 2024; 14:24279. [PMID: 39414899 PMCID: PMC11484890 DOI: 10.1038/s41598-024-74669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) progressively impairs motor neurons, leading to muscle weakness and loss of voluntary muscle control. This study compared the effects of SOD1 mutation on masticatory and limb muscles from disease onset to death in ALS model mice. Notably, limb muscles begin to atrophy soon after ALS-like phenotype appear, whereas masticatory muscles maintain their volume and function in later stages. Our analysis showed that, unlike limb muscles, masticatory muscles retain their normal structure and cell makeup throughout most of the disease course. We found an increase in the number of muscle satellite cells (SCs), which are essential for muscle repair, in masticatory muscles. In addition, we observed no reduction in the number of muscle nuclei and no muscle fibre-type switching in masticatory muscles. This indicates that masticatory muscles have a higher resistance to ALS-related damage than limb muscles, likely because of differences in cell composition and repair mechanisms. Understanding why masticatory muscles are less affected by ALS could lead to the development of new treatments. This study highlights the importance of studying different muscle groups in ALS to clarify disease aetiology and mechanisms.
Collapse
Affiliation(s)
- Sou Kawata
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Soju Seki
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Akira Nishiura
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Kitaoka
- University California, Los Angeles, School of Dentistry, Section of Biosystems and Function, Laboratory of Neuropharmacology, 714 Tiverton Los Angeles, CA 90095, United States
| | - Kanako Iwamori
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - So-Ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mikihiko Kogo
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Susumu Tanaka
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Seki S, Kitaoka Y, Kawata S, Nishiura A, Uchihashi T, Hiraoka SI, Yokota Y, Isomura ET, Kogo M, Tanaka S. Characteristics of Sensory Neuron Dysfunction in Amyotrophic Lateral Sclerosis (ALS): Potential for ALS Therapy. Biomedicines 2023; 11:2967. [PMID: 38001967 PMCID: PMC10669304 DOI: 10.3390/biomedicines11112967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterised by the progressive degeneration of motor neurons, resulting in muscle weakness, paralysis, and, ultimately, death. Presently, no effective treatment for ALS has been established. Although motor neuron dysfunction is a hallmark of ALS, emerging evidence suggests that sensory neurons are also involved in the disease. In clinical research, 30% of patients with ALS had sensory symptoms and abnormal sensory nerve conduction studies in the lower extremities. Peroneal nerve biopsies show histological abnormalities in 90% of the patients. Preclinical research has reported several genetic abnormalities in the sensory neurons of animal models of ALS, as well as in motor neurons. Furthermore, the aggregation of misfolded proteins like TAR DNA-binding protein 43 has been reported in sensory neurons. This review aims to provide a comprehensive description of ALS-related sensory neuron dysfunction, focusing on its clinical changes and underlying mechanisms. Sensory neuron abnormalities in ALS are not limited to somatosensory issues; proprioceptive sensory neurons, such as MesV and DRG neurons, have been reported to form networks with motor neurons and may be involved in motor control. Despite receiving limited attention, sensory neuron abnormalities in ALS hold potential for new therapies targeting proprioceptive sensory neurons.
Collapse
Affiliation(s)
- Soju Seki
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Yamada S, Tanaka S, Seki S, Kogo M. Membrane excitabilities in neonatal rat mesencephalic trigeminal neurons under dietary zinc deficiency. J Oral Sci 2021; 63:242-246. [PMID: 33980769 DOI: 10.2334/josnusd.20-0566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE The present study aimed to evaluate the effects of zinc deprivation on the properties of membrane and spike-discharge features of mesencephalic trigeminal neurons (MTNs), which are important sensory neurons for oral-motor reflexes and rhythmical jaw movements. METHODS Neonatal Sprague Dawley rats (P10-12) were distributed equally into a normal diet group and a zinc-deficient diet (ZD) group. Whole cell patch-clamp recordings were obtained from MTNs from coronal brain slices. RESULTS Passive membrane properties showed a modest depolarized membrane potential and decreased cell capacitance in the ZD group. Zinc deprivation decreased the minimal current amplitude, which induced an action potential and increased the amplitude of afterhyperpolarization following the action potential. Negligible changes were observed for other action potential properties. A decreased burst duration was observed, accompanied by hastened spike frequency adaptation in the burst discharge. There was no difference in the resonant properties at both the subthreshold depolarized potential and hyperpolarized membrane potential between the control and ZD groups. CONCLUSION These results suggests that neither the persistent sodium conductance nor slow inwardly rectifying conductance were altered; however, there appeared to be an increase in Ca2+-dependent K+ conductance in zincdeficient MTNs.
Collapse
Affiliation(s)
- Saori Yamada
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Susumu Tanaka
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Soju Seki
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Mikihiko Kogo
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| |
Collapse
|
5
|
Persistent sodium conductance contributes to orexin-A-mediated modulation of membrane excitability in neonatal rat mesencephalic V neurons. Neurosci Lett 2021; 753:135846. [PMID: 33774148 DOI: 10.1016/j.neulet.2021.135846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/10/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
Orexins are multifunctional hypothalamic neuropeptides that participate in the stimulation of feeding behavior and energy expenditure. However, little is known about their neuromodulatory effects in lower brainstem effector regions, including in the trigeminal neuronal system. The aim of this study was to examine the effects of orexin-A (Ox-A) on the membrane properties of mesencephalic trigeminal (Mes V) neurons that are critically involved in the generation and control of rhythmical oral motor activities. Whole-cell patch clamp recordings were obtained from Mes V neurons in coronal brain slices prepared from Sprague-Dawley rats (postnatal day 12-17). Bath application of Ox-A (100 nM) shortened the duration of the after-hyperpolarization following the action potential, while the interspike frequency of firings during repetitive discharge increased, together with a shift in the frequency-current relationship toward the left. In addition, Ox-A amplified the resonance at the depolarized membrane potential, accompanied with an increase in both Q-value and resonant frequency. A further voltage-clamp experiment demonstrated that Ox-A increased the peak current density of the persistent sodium current (INaP) and shifted its activation curve to the hyperpolarization direction. These results suggested that Ox-A may increase Mes V neuronal excitability by enhancing INaP, possibly sharing a common mechanism with another orexigenic hypothalamic neuropeptide, neuropeptide Y.
Collapse
|