1
|
Li Y, Guo T, He J, Liu D, Peng S, Xu A. SLC35A2-mediated bisected GlcNAc-modified extracellular vesicles enhance immune regulation in breast cancer lung metastasis. Int Immunopharmacol 2025; 154:114505. [PMID: 40157085 DOI: 10.1016/j.intimp.2025.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025]
Abstract
This study investigates the role of SLC35A2-mediated bisected GlcNAc-modified small extracellular vesicles (sEVs) in breast cancer (BC) lung metastasis. By modulating B3GALT1 expression, these sEVs regulate the pre-metastatic immune microenvironment, enhancing CD8+ T cell infiltration and reducing immune evasion. The use of β-peptide-loaded sEVs further amplifies anti-metastatic effects, as demonstrated in vivo mouse models and molecular analyses. These findings underscore the therapeutic potential of glycosylation-modified sEVs in enhancing immune responses and controlling BC metastasis.
Collapse
Affiliation(s)
- Yangyang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Tao Guo
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Juntong He
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Defeng Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Shihao Peng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Aman Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
2
|
James VK, van der Zon AAM, Escobar EE, Dunham SD, Gargano AFG, Brodbelt JS. Hydrophilic Interaction Chromatography Coupled to Ultraviolet Photodissociation Affords Identification, Localization, and Relative Quantitation of Glycans on Intact Glycoproteins. J Proteome Res 2024; 23:4684-4693. [PMID: 39312773 DOI: 10.1021/acs.jproteome.4c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Protein glycosylation is implicated in a wide array of diseases, yet glycoprotein analysis remains elusive owing to the extreme heterogeneity of glycans, including microheterogeneity of some of the glycosites (amino acid residues). Various mass spectrometry (MS) strategies have proven tremendously successful for localizing and identifying glycans, typically utilizing a bottom-up workflow in which glycoproteins are digested to create glycopeptides to facilitate analysis. An emerging alternative is top-down MS that aims to characterize intact glycoproteins to allow precise identification and localization of glycans. The most comprehensive characterization of intact glycoproteins requires integration of a suitable separation method and high performance tandem mass spectrometry to provide both protein sequence information and glycosite localization. Here, we couple ultraviolet photodissociation and hydrophilic interaction chromatography with high resolution mass spectrometry to advance the characterization of intact glycoproteins ranging from 15 to 34 kDa, offering site localization of glycans, providing sequence coverages up to 93%, and affording relative quantitation of individual glycoforms.
Collapse
Affiliation(s)
- Virginia K James
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Annika A M van der Zon
- van 't Hoff Institute for Molecular Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Centre of Analytical Sciences Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Edwin E Escobar
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sean D Dunham
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrea F G Gargano
- van 't Hoff Institute for Molecular Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Centre of Analytical Sciences Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Swindell WR. Meta-analysis of differential gene expression in lower motor neurons isolated by laser capture microdissection from post-mortem ALS spinal cords. Front Genet 2024; 15:1385114. [PMID: 38689650 PMCID: PMC11059082 DOI: 10.3389/fgene.2024.1385114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction ALS is a fatal neurodegenerative disease for which underlying mechanisms are incompletely understood. The motor neuron is a central player in ALS pathogenesis but different transcriptome signatures have been derived from bulk analysis of post-mortem tissue and iPSC-derived motor neurons (iPSC-MNs). Methods This study performed a meta-analysis of six gene expression studies (microarray and RNA-seq) in which laser capture microdissection (LCM) was used to isolate lower motor neurons from post-mortem spinal cords of ALS and control (CTL) subjects. Differentially expressed genes (DEGs) with consistent ALS versus CTL expression differences across studies were identified. Results The analysis identified 222 ALS-increased DEGs (FDR <0.10, SMD >0.80) and 278 ALS-decreased DEGs (FDR <0.10, SMD < -0.80). ALS-increased DEGs were linked to PI3K-AKT signaling, innate immunity, inflammation, motor neuron differentiation and extracellular matrix. ALS-decreased DEGs were associated with the ubiquitin-proteosome system, microtubules, axon growth, RNA-binding proteins and synaptic membrane. ALS-decreased DEG mRNAs frequently interacted with RNA-binding proteins (e.g., FUS, HuR). The complete set of DEGs (increased and decreased) overlapped significantly with genes near ALS-associated SNP loci (p < 0.01). Transcription factor target motifs with increased proximity to ALS-increased DEGs were identified, most notably DNA elements predicted to interact with forkhead transcription factors (e.g., FOXP1) and motor neuron and pancreas homeobox 1 (MNX1). Some of these DNA elements overlie ALS-associated SNPs within known enhancers and are predicted to have genotype-dependent MNX1 interactions. DEGs were compared to those identified from SOD1-G93A mice and bulk spinal cord segments or iPSC-MNs from ALS patients. There was good correspondence with transcriptome changes from SOD1-G93A mice (r ≤ 0.408) but most DEGs were not differentially expressed in bulk spinal cords or iPSC-MNs and transcriptome-wide effect size correlations were weak (bulk tissue: r ≤ 0.207, iPSC-MN: r ≤ 0.037). Conclusion This study defines a robust transcriptome signature from LCM-based motor neuron studies of post-mortem tissue from ALS and CTL subjects. This signature differs from those obtained from analysis of bulk spinal cord segments and iPSC-MNs. Results provide insight into mechanisms underlying gene dysregulation in ALS and highlight connections between these mechanisms, ALS genetics, and motor neuron biology.
Collapse
Affiliation(s)
- William R. Swindell
- Department of Internal Medicine, Division of Hospital Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
4
|
White MEH, Sinn LR, Jones DM, de Folter J, Aulakh SK, Wang Z, Flynn HR, Krüger L, Tober-Lau P, Demichev V, Kurth F, Mülleder M, Blanchard V, Messner CB, Ralser M. Oxonium ion scanning mass spectrometry for large-scale plasma glycoproteomics. Nat Biomed Eng 2024; 8:233-247. [PMID: 37474612 PMCID: PMC10963274 DOI: 10.1038/s41551-023-01067-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 06/15/2023] [Indexed: 07/22/2023]
Abstract
Protein glycosylation, a complex and heterogeneous post-translational modification that is frequently dysregulated in disease, has been difficult to analyse at scale. Here we report a data-independent acquisition technique for the large-scale mass-spectrometric quantification of glycopeptides in plasma samples. The technique, which we named 'OxoScan-MS', identifies oxonium ions as glycopeptide fragments and exploits a sliding-quadrupole dimension to generate comprehensive and untargeted oxonium ion maps of precursor masses assigned to fragment ions from non-enriched plasma samples. By applying OxoScan-MS to quantify 1,002 glycopeptide features in the plasma glycoproteomes from patients with COVID-19 and healthy controls, we found that severe COVID-19 induces differential glycosylation in IgA, haptoglobin, transferrin and other disease-relevant plasma glycoproteins. OxoScan-MS may allow for the quantitative mapping of glycoproteomes at the scale of hundreds to thousands of samples.
Collapse
Affiliation(s)
- Matthew E H White
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Ludwig R Sinn
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Marc Jones
- Bioinformatics and Computational Biology Laboratory, The Francis Crick Institute, London, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Joost de Folter
- Software Engineering and Artificial Intelligence Technology Platform, The Francis Crick Institute, London, UK
| | - Simran Kaur Aulakh
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Ziyue Wang
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helen R Flynn
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Lynn Krüger
- Institute of Diagnostic Laboratory Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Human Medicine, Medical School Berlin, Berlin, Germany
| | - Pinkus Tober-Lau
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Vadim Demichev
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility High-throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Véronique Blanchard
- Institute of Diagnostic Laboratory Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Human Medicine, Medical School Berlin, Berlin, Germany
| | - Christoph B Messner
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
- Precision Proteomic Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
5
|
Sanad SM, Farouk R, Nassar SE, Alshahrani MY, Suliman M, Ezzat Ahmed A, Eid Elesawi I. The neuroprotective effect of quercetin nanoparticles in the therapy of neuronal damage stimulated by acrolein. Saudi J Biol Sci 2023; 30:103792. [PMID: 37711970 PMCID: PMC10498005 DOI: 10.1016/j.sjbs.2023.103792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023] Open
Abstract
A gradual loss of neuronal function or structure causes neurodegenerative disorders such as Parkinson's and Alzheimer's. Neurological damage might cause cell death. Acrolein is a high-risk air and water contaminant that causes neurodegenerative disorders. Quercetin has several strategies for treating neurodegenerative disorders but has limited bioavailability inside the body. One of the hypotheses offered to improve quercetin's bioavailability is to convert it into quercetin nanoparticles. This study aims to comprehend the immunohistochemical devastation that might arise in the cerebellum because of acrolein treatment. Furthermore, the protective and ameliorative roles of quercetin nanoparticles against oxidative stress and neurotoxicity induced in mice by acrolein were assessed. Ninety male albino rats weighing 120 to 200 g were used in the present investigation. The animals were split up into the following six groups: the control group, the acrolein-treated group: animals were given acrolein (3 mg/kg) for 30 days, quercetin nanoparticles treated group: animals were given quercetin nanoparticles (30 mg/kg) for 30 days. The administration of acrolein was found to be connected to immunohistochemical abnormalities in the cerebellum. Marked differences were observed in Bax, Bcl-2, TNF-α, and GFAP expressions in the cerebellum. Treatment of rats with quercetin nanoparticles either before or after treatment with acrolein has been found to preserve the cerebellum tissues from the toxic impacts and oxidative stress induced by acrolein. This may open the door to more nanomedicine studies and a new avenue for employing nanoparticles as a therapeutic intervention in neurodegenerative illnesses.
Collapse
Affiliation(s)
- Samia M. Sanad
- Zoology Department, Faculty of Science, Zagazig University, Sharkia 44519, Egypt
| | - Reham Farouk
- Zoology Department, Faculty of Science, Zagazig University, Sharkia 44519, Egypt
| | - Safaa E. Nassar
- Zoology Department, Faculty of Science, Zagazig University, Sharkia 44519, Egypt
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, P.O. Box 61413 Abha 9088, Saudi Arabia
| | - Ibrahim Eid Elesawi
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
6
|
Liu J, Wu L, Gu H, Lu M, Zhang J, Zhou H. Detection of N‑glycoprotein associated with IgA nephropathy in urine as a potential diagnostic biomarker using glycosylated proteomic analysis. Exp Ther Med 2023; 26:478. [PMID: 37753295 PMCID: PMC10518647 DOI: 10.3892/etm.2023.12177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/14/2023] [Indexed: 09/28/2023] Open
Abstract
The aim of the present study was to elucidate the potential diagnostic value of urinary N-glycoprotein in patients with IgA nephropathy (IgAN) using mass spectrometry (MS). All procedures were performed between June 2021 and June 2023 at Guangan People's Hospital (Guangan, China). Fresh mid-morning fasting midstream urine samples were collected from a total of 30 patients with IgAN and 30 sex- and age-matched healthy volunteers. Data acquired from 6 participants are available through ProteomeXchange with the identifier PXD041151. By comparison between the IgAN group (n=3) and healthy controls (n=3) and selection criteria of P<0.05 and |log fold-change|>2, a total of 11 upregulated and 22 downregulated glycoproteins in patients with IgAN were identified. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested that glycoproteins are involved in various functions, such as the regulation of cell growth, cell adhesion, cellular component organization and protein binding, as well as multiple pathways, including p53, Notch and mTOR signaling pathways. The urine levels of afamin were further measured by ELISA in a validation cohort to assess the diagnostic performance of the single indicator model. In conclusion, MS-based proteomics of urinary glycoproteins may be an alternative option for diagnosing patients with IgAN. Biomarkers of IgAN may include, but are not limited to, CCL25, PD-L1, HLA-DRB1, IL7RD and WDR82. In addition, the levels of urinary AFM indicators are of diagnostic value for IgAN.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
- Department of Nephrology, Guangan People's Hospital, Guangan, Sichuan 638000, P.R. China
| | - Liuguo Wu
- Department of Nephrology, Guangan People's Hospital, Guangan, Sichuan 638000, P.R. China
| | - Hongjing Gu
- Department of Nephrology, Guangan People's Hospital, Guangan, Sichuan 638000, P.R. China
| | - Miaomiao Lu
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Provincial People's Hospital, Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Hongli Zhou
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
7
|
Xu M, Jin H, Ge W, Zhao L, Liu Z, Guo Z, Wu Z, Chen J, Mao C, Zhang X, Liu CF, Yang S. Mass Spectrometric Analysis of Urinary N-Glycosylation Changes in Patients with Parkinson's Disease. ACS Chem Neurosci 2023; 14:3507-3517. [PMID: 37677068 DOI: 10.1021/acschemneuro.3c00404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
Urine is thought to provide earlier and more sensitive molecular changes for biomarker discovery than blood. Numerous glycoproteins, peptides, and free glycans are present in urine through glomerular filtration of plasma, cell shedding, apoptosis, proteolytic cleavage, and exosome secretion. Urine biomarkers have enormous diagnostic potential, and the use of these biomarkers is a long-standing practice. The discovery of non-urological disease biomarkers from urine is also gaining attention due to its non-invasive sample collection and ease of analysis. Abnormal protein glycosylation in plasma or cerebrospinal fluid has been associated with Parkinson's disease, however, whether urine with Parkinson's disease has characteristic glycosylation remains to be explored. Here, we use mass spectrometry-based glycomics and glycoproteomics approaches to analyze urine samples for glycans, glycosites, and intact glycopeptides of urine samples. Reduced abundance of N-glycans was detected at the level of total glycans as well as specific glycosites of glycopeptides. The most abundant N-glycan in urine is S(6)1H5N4F1; S(6)2H5N4 and N4H4F1 are highly present in serum and urine, and 10 biantennary galactosylated N-glycans in the urine of PD patients were significantly decreased. The downregulation of sialylation may be due to the reduction of ST3GAL2. Site-specific N-glycosylation analysis revealed that AMBP, UMOD, and RNase1 have PD-specific N-glycosylation sites. GO and KEGG analysis revealed that N-glycosylation changes may provide clues to identify disease-specific glycosylation biomarkers in Parkinson's disease.
Collapse
Affiliation(s)
- Mingming Xu
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Hong Jin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Wei Ge
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Lingbo Zhao
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhaoliang Liu
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zeyu Guo
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jing Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chengjie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Health Examination Center, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
8
|
Xu M, Yang A, Xia J, Jiang J, Liu CF, Ye Z, Ma J, Yang S. Protein glycosylation in urine as a biomarker of diseases. Transl Res 2023; 253:95-107. [PMID: 35952983 DOI: 10.1016/j.trsl.2022.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
Human body fluids have become an indispensable resource for clinical research, diagnosis and prognosis. Urine is widely used to discover disease-specific glycoprotein biomarkers because of its recurrently non-invasive collection and disease-indicating properties. While urine is an unstable fluid in that its composition changes with ingested nutrients and further as it is excreted through micturition, urinary proteins are more stable and their abnormal glycosylation is associated with diseases. It is known that aberrant glycosylation can define tumor malignancy and indicate disease initiation and progression. However, a thorough and translational survey of urinary glycosylation in diseases has not been performed. In this article, we evaluate the clinical applications of urine, introduce methods for urine glycosylation analysis, and discuss urine glycoprotein biomarkers. We emphasize the importance of mining urinary glycoproteins and searching for disease-specific glycosylation in various diseases (including cancer, neurodegenerative diseases, diabetes, and viral infections). With advances in mass spectrometry-based glycomics/glycoproteomics/glycopeptidomics, characterization of disease-specific glycosylation will optimistically lead to the discovery of disease-related urinary biomarkers with better sensitivity and specificity in the near future.
Collapse
Affiliation(s)
- Mingming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Arthur Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jun Xia
- Clinical Laboratory Center, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Junhong Jiang
- Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenyu Ye
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia.
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
9
|
Semi-Automated Lectin Magnetic Bead Array (LeMBA) for Translational Serum Glycoprotein Biomarker Discovery and Validation. Methods Mol Biol 2023; 2628:395-411. [PMID: 36781799 DOI: 10.1007/978-1-0716-2978-9_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Aberrant protein glycosylation is a characteristic of diverse diseases which has been explored as biomarkers. To support translational serum glycoprotein biomarker discovery and validation, we developed a semi-automated workflow using individual lectin-coupled magnetic beads to conduct lectin pulldowns in a high-throughput format. Lectins are naturally occurring glycoprotein binding proteins widely used in glycobiology. While lectin-affinity isolation has been coupled to mass spectrometry-based proteomics, the lectin magnetic bead array (LeMBA) platform allows technically robust screening and measurement of clinical cohorts. This chapter describes detailed lectin-magnetic bead coupling, serum denaturation, lectin magnetic bead pulldown, and on-bead trypsin digest. The resulting tryptic peptides are analyzed by untargeted or targeted liquid chromatography-mass spectrometry (LC-MS), for biomarker discovery, or qualification/validation, respectively. LeMBA-MS generates quantitative data for glycoforms based on lectin affinity of the glycoprotein coupled with MS measurement of one or more prototypic peptides and has successfully been used to discover and validate novel serum cancer glycoprotein biomarkers. This chapter includes detailed protocols for two different liquid handlers, along with recommendations on quality control measures for clinical biomarker studies.
Collapse
|
10
|
Zhou S, Liu D, Chen J, Xiang C, Xiang J, Yang M. Electrochemical Quantitation of the Glycosylation Level of Serum Neurofilament Light Chain for the Diagnosis of Neurodegeneration: An Interface-Solution Dual-Path Amplification Strategy. Anal Chem 2022; 94:11433-11440. [PMID: 35913270 DOI: 10.1021/acs.analchem.2c02753] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Serum neurofilament light chain (NFL), a potential general biomarker for neurodegenerative diseases, is not specific enough to differentiate neurodegenerative diseases from other brain diseases such as cerebral thrombosis (CT). According to the importance of glycosylation in neurodegenerative pathogenesis, the NFL glycosylation level (oNFL/tNFL), defined as the ratio of glycosylated NFL (oNFL) to total NFL (tNFL), may be a more effective index. The major challenge in serum oNFL/tNFL detection is the ultra-low abundance of both NFL forms. In this paper, we achieved a convenient one-step electrochemical quantitation of oNFL/tNFL based on an interface-solution dual-path amplification strategy. Two amplified electrochemical signals─the reduction of Cu2+ from adsorbed porous nanoparticles on the sensor interface and the reduction of O2 from horseradish peroxidase-catalyzed H2O2 disproportionation in solution─were adopted to quantify tNFL and oNFL, respectively. The electrochemical sensor displayed good sensitivity, selectivity, and reproducibility. The dynamic range is 1-25 pg mL-1 for tNFL and 0.25-25 pg mL-1 for oNFL, respectively. By analyzing the clinic serum samples, for the first time, our work provided the abundance of oNFL in human serum and revealed that the oNFL/tNFL is effective not only in differentiating three kinds of brain damage patients from healthy people but also in differentiating neurodegeneration from non-neurodegeneration CT patients. As a general biomarker, the oNFL/tNFL is more specific than NFL, which is hoped to be a new and valid indicator for the diagnosis, progression, prediction, and treatment evaluation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Siqiuyue Zhou
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha 410083, P. R. China
| | - Dan Liu
- Eye Center of Xiangya Hospital, Central South University, Changsha 410083, P. R. China
| | - Jia Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Chao Xiang
- Wuhan Red Cross Hospital, Wuhan 430015, P. R. China
| | - Juan Xiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha 410083, P. R. China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
11
|
Ramos-Martínez E, Ramos-Martínez I, Sánchez-Betancourt I, Ramos-Martínez JC, Peña-Corona SI, Valencia J, Saucedo R, Almeida-Aguirre EKP, Cerbón M. Association between Galectin Levels and Neurodegenerative Diseases: Systematic Review and Meta-Analysis. Biomolecules 2022; 12:1062. [PMID: 36008956 PMCID: PMC9406080 DOI: 10.3390/biom12081062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Galectins are a family of proteins with an affinity for β-galactosides that have roles in neuroprotection and neuroinflammation. Several studies indicate that patients with neurodegenerative diseases have alterations in the concentration of galectins in their blood and brain. However, the results of the studies are contradictory; hence, a meta-analysis is performed to clarify whether patients with neurodegenerative diseases have elevated galectin levels compared to healthy individuals. Related publications are obtained from the databases: PubMed, Central-Conchrane, Web of Science database, OVID-EMBASE, Scope, and EBSCO host until February 2022. A pooled standard mean difference (SMD) with a 95% confidence interval (CI) is calculated by fixed-effect or random-effect model analysis. In total, 17 articles are included in the meta-analysis with a total of 905 patients. Patients with neurodegenerative diseases present a higher level of galectin expression compared to healthy individuals (MDS = 0.70, 95% CI 0.28-1.13, p = 0.001). In the subgroup analysis by galectin type, a higher galectin-3 expression is observed in patients with neurodegenerative diseases. Patients with Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALD), and Parkinson's disease (PD) expressed higher levels of galectin-3. Patients with multiple sclerosis (MS) have higher levels of galectin-9. In conclusion, our meta-analysis shows that patients with neurovegetative diseases have higher galectin levels compared to healthy individuals. Galectin levels are associated with the type of disease, sample, detection technique, and region of origin of the patients.
Collapse
Affiliation(s)
- Edgar Ramos-Martínez
- Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico; (E.R.-M.); (S.I.P.-C.); (E.K.P.A.-A.)
| | - Iván Ramos-Martínez
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico; (I.R.-M.); (I.S.-B.)
| | - Iván Sánchez-Betancourt
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico; (I.R.-M.); (I.S.-B.)
| | - Juan Carlos Ramos-Martínez
- Departamento de Cardiología, Hospital General Regional Lic Ignacio Garcia Tellez IMSS, Cuauhtémoc 97150, Mexico;
| | - Sheila Irais Peña-Corona
- Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico; (E.R.-M.); (S.I.P.-C.); (E.K.P.A.-A.)
| | - Jorge Valencia
- Unidad de Investigación en Endocrinología, UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social, Cuauhtémoc 06720, Mexico; (J.V.); (R.S.)
| | - Renata Saucedo
- Unidad de Investigación en Endocrinología, UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social, Cuauhtémoc 06720, Mexico; (J.V.); (R.S.)
| | | | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”—Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
12
|
Xu M, Jin H, Wu Z, Han Y, Chen J, Mao C, Hao P, Zhang X, Liu CF, Yang S. Mass Spectrometry-Based Analysis of Serum N-Glycosylation Changes in Patients with Parkinson's Disease. ACS Chem Neurosci 2022; 13:1719-1726. [PMID: 35640092 DOI: 10.1021/acschemneuro.2c00264] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is urgently needed to find reliable biofluid biomarkers for early diagnosis of Parkinson's disease in order to achieve better treatment. Promising biomarkers can be found in Parkinson's disease-related glycoproteins as aberrant protein glycosylation plays an important role in disease progression. However, current information on serum N-glycoproteomic changes in Parkinson's disease is still limited. Here, we used glycoproteomics methods, which combine the solid-phase chemoenzymatic method, lectin affinity chromatography, and hydrophilic interaction chromatography with high-resolution mass spectrometry, to analyze the glycans, glycosites, and intact glycopeptides of serum. Increased abundance of glycans containing core fucose, sialic acid, and bisecting N-acetyl glucosamine was detected at the overall glycan level and also at specific glycosites of glycopeptides. Five Parkinson's disease-associated proteins with this type of N-glycosylation changes were also identified. We propose that the revealed site-specific N-glycosylation changes in serum can be potential biomarkers for Parkinson's disease.
Collapse
Affiliation(s)
- Mingming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Hong Jin
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ying Han
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jing Chen
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chengjie Mao
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chun-Feng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
Fang P, Ji Y, Oellerich T, Urlaub H, Pan KT. Strategies for Proteome-Wide Quantification of Glycosylation Macro- and Micro-Heterogeneity. Int J Mol Sci 2022; 23:ijms23031609. [PMID: 35163546 PMCID: PMC8835892 DOI: 10.3390/ijms23031609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/03/2022] Open
Abstract
Protein glycosylation governs key physiological and pathological processes in human cells. Aberrant glycosylation is thus closely associated with disease progression. Mass spectrometry (MS)-based glycoproteomics has emerged as an indispensable tool for investigating glycosylation changes in biological samples with high sensitivity. Following rapid improvements in methodologies for reliable intact glycopeptide identification, site-specific quantification of glycopeptide macro- and micro-heterogeneity at the proteome scale has become an urgent need for exploring glycosylation regulations. Here, we summarize recent advances in N- and O-linked glycoproteomic quantification strategies and discuss their limitations. We further describe a strategy to propagate MS data for multilayered glycopeptide quantification, enabling a more comprehensive examination of global and site-specific glycosylation changes. Altogether, we show how quantitative glycoproteomics methods explore glycosylation regulation in human diseases and promote the discovery of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Pan Fang
- Department of Biochemistry and Molecular Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China;
| | - Yanlong Ji
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany;
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany;
- Frankfurt Cancer Institute, Johann Wolfgang Goethe University, 60596 Frankfurt am Main, Germany
| | - Thomas Oellerich
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany;
- Frankfurt Cancer Institute, Johann Wolfgang Goethe University, 60596 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany;
- Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
- Correspondence: (H.U.); (K.-T.P.)
| | - Kuan-Ting Pan
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany;
- Frankfurt Cancer Institute, Johann Wolfgang Goethe University, 60596 Frankfurt am Main, Germany
- Correspondence: (H.U.); (K.-T.P.)
| |
Collapse
|
14
|
Gao Z, Xu M, Yue S, Shan H, Xia J, Jiang J, Yang S. Abnormal sialylation and fucosylation of saliva glycoproteins: Characteristics of lung cancer-specific biomarkers. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 3:100079. [PMID: 35005612 PMCID: PMC8718573 DOI: 10.1016/j.crphar.2021.100079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 10/31/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022] Open
Abstract
Dysregulated surface glycoproteins play an important role in tumor cell proliferation and progression. Abnormal glycosylation of these glycoproteins may activate tumor signal transduction and lead to tumor development. The tumor microenvironment alters its molecular composition, some of which regulate protein glycosylation biosynthesis. The glycosylation of saliva proteins in lung cancer patients is different from healthy controls, in which the glycans of cancer patients are highly sialylated and hyperfucosylated. Most studies have shown that O-glycans from cancer are truncated O-glycans, while N-glycans contain fucoses and sialic acids. Because glycosylation analysis is challenging, there are few reports on how glycosylation of saliva proteins is related to the occurrence or progression of lung cancer. In this review, we discussed glycoenzymes involved in protein glycosylation, their changes in tumor microenvironment, potential tumor biomarkers present in body fluids, and abnormal glycosylation of saliva or lung glycoproteins. We further explored the effect of glycosylation changes on tumor signal transduction, and emphasized the role of receptor tyrosine kinases in tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Ziyuan Gao
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
- Department of Respiratory and Critical Care Medicine, Dushu Lake Hospital to Soochow University, Suzhou, Jiangsu, 215125, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University; Suzhou Jiangsu, 215006, China
| | - Mingming Xu
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Shuang Yue
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Huang Shan
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Jun Xia
- Department of Clinical Laboratory Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Junhong Jiang
- Department of Respiratory and Critical Care Medicine, Dushu Lake Hospital to Soochow University, Suzhou, Jiangsu, 215125, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University; Suzhou Jiangsu, 215006, China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| |
Collapse
|
15
|
Balietti M, Casoli T, Giacconi R, Giuli C. Platelet total PLA2 activity, serum oxidative level and plasma Cu/Zn ratio: a vicious cycle with a potential role to monitor MCI and Alzheimer's disease progression. Rejuvenation Res 2021; 25:16-24. [PMID: 34913745 DOI: 10.1089/rej.2021.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease (AD) has no cure, mainly because of late diagnosis. Early diagnostic biomarkers are crucial. Phospholipases A2 (PLA2) are hydrolases with several functions in the brain, nevertheless their deregulation contributes to neurodegeneration. We evaluated platelet total PLA2 activity (ptotPLA2) in healthy elderly subjects (HE, n = 102), patients suffering from Mild Cognitive Impairment (MCI, n = 90) and AD (n = 91). Platelets are considered "circulating neurons" and ptotPLA2 seems to mirror the cerebral activity. ptotPLA2 of the three cohorts was similar, but in MCI the higher ptotPLA2 the worse the global cognitive status (Mini Mental State Examination score, MMSE) and in AD the lower ptotPLA2 the more severe the pathology stage (Clinical Dementia Rating, CDR). Accordingly, MCI with MMSE ≥ 26 overlapped HE, in MCI with MMSE < 26 and in AD with CDR 1 ptotPLA2 increased, in AD with CDR 2 ptotPLA2 decreased. In MCI ptotPLA2 positively correlated with blood oxidation and inflammation, in AD it was the opposite. Finally, Discrimination Index (DI) - calculated multiplying ptotPLA2, oxidative level and Cu/Zn ratio (an inflammation parameter) - differentiated MCI patients who progressed to dementia in the following 24 months and AD patients with the worse pathology development. Summarizing, ptotPLA2 changes during MCI and AD progression, is linked, in opposite way, to oxidative/inflammatory status in MCI and AD and might help, when included in DI, to identify MCI converters to dementia and AD patients with the more severe prognosis. ptotPLA2 may have a diagnostic/prognostic value and be a potential therapeutic target.
Collapse
Affiliation(s)
- Marta Balietti
- INRCA, Neurobiology of Aging, Via Birrelli 8, Ancona, Italy, 60121;
| | | | | | - Cinzia Giuli
- INRCA IRCCS Hospital, Unit of Geriatrics, contrada Mossa 2, Fermo, Italy, 63900;
| |
Collapse
|
16
|
Gao Z, Tang R, Ma S, Jia S, Zhang S, Gong B, Ou J. Design and construction of a hydrophilic coating on macroporous adsorbent resins for enrichment of glycopeptides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4515-4527. [PMID: 34515267 DOI: 10.1039/d1ay01276b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although macroporous adsorbent resins (MARs) have been commercialized and widely applied in industrial and life fields, it is still of necessity to develop simple approaches to functionalize MARs. One of the most widely used methods to realize excellent fouling resistance performance is surface modification of hydrophilic polymers on substrates to fabricate an anti-biofouling coating. Herein, three kinds of hydrophilic poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) MAR were designed and facilely prepared by coating a layer of porous organic polymers (POPs) via either an epoxy-amine ring-opening polymerization or amine-aldehyde condensation reaction using isophthalaldehyde (IPA), 1,4,7,10-tetraazacyclododecane (cyclen), melamine and 1,3,5-triglycidyl isocyanurate (TGIC) as precursors. By taking advantage of their merits, such as large surface area, excellent hydrophilicity and unbiased affinity toward all types of glycopeptide, three functionalized hydrophilic MARs were successfully applied to capture glycopeptides from complex samples as hydrophilic interaction liquid chromatography (HILIC) sorbents. A total of 694 N-glycopeptides and 372 N-glycosylation sites were identified from 2 μL of human serum digest with poly(TC)@MAR, which were not only more than those of poly(MT)@MAR (286 N-glycosylation sites and 547 N-glycopeptides) and poly(IM)@MAR (669 N-glycopeptides and 355 N-glycosylation sites), but also more than those of other reported HILIC materials. This work provided a new and simple way to synthesize enrichment materials for liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis of glycoproteomes.
Collapse
Affiliation(s)
- Zheng Gao
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Ruizhi Tang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Shicong Jia
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Shuai Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
| | - Junjie Ou
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Gaunitz S, Tjernberg LO, Schedin-Weiss S. What Can N-glycomics and N-glycoproteomics of Cerebrospinal Fluid Tell Us about Alzheimer Disease? Biomolecules 2021; 11:858. [PMID: 34207636 PMCID: PMC8226827 DOI: 10.3390/biom11060858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022] Open
Abstract
Proteomics-large-scale studies of proteins-has over the last decade gained an enormous interest for studies aimed at revealing proteins and pathways involved in disease. To fully understand biological and pathological processes it is crucial to also include post-translational modifications in the "omics". To this end, glycomics (identification and quantification of glycans enzymatically or chemically released from proteins) and glycoproteomics (identification and quantification of peptides/proteins with the glycans still attached) is gaining interest. The study of protein glycosylation requires a workflow that involves an array of sample preparation and analysis steps that needs to be carefully considered. Herein, we briefly touch upon important steps such as sample preparation and preconcentration, glycan release, glycan derivatization and quantification and advances in mass spectrometry that today are the work-horse for glycomics and glycoproteomics studies. Several proteins related to Alzheimer disease pathogenesis have altered protein glycosylation, and recent glycomics studies have shown differences in cerebrospinal fluid as well as in brain tissue in Alzheimer disease as compared to controls. In this review, we discuss these techniques and how they have been used to shed light on Alzheimer disease and to find glycan biomarkers in cerebrospinal fluid.
Collapse
Affiliation(s)
- Stefan Gaunitz
- Department of Clinical Chemistry, Karolinska University Hospital, 14186 Stockholm, Sweden;
| | - Lars O. Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden;
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden;
| |
Collapse
|