1
|
Lim SJ, Noor NDM, Sabri S, Ali MSM, Salleh AB, Oslan SN. Extracellular BSA-degrading SAPs in the rare pathogen Meyerozyma guilliermondii strain SO as potential virulence factors in candidiasis. Microb Pathog 2024; 193:106773. [PMID: 38960213 DOI: 10.1016/j.micpath.2024.106773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/08/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Meyerozyma guilliermondii (Candida guilliermondii) is one of the Candida species associated with invasive candidiasis. With the potential for expressing industrially important enzymes, M. guilliermondii strain SO possessed 99 % proteome similarity with the clinical ATCC 6260 isolate and showed pathogenicity towards zebrafish embryos. Recently, three secreted aspartyl proteinases (SAPs) were computationally identified as potential virulence factors in this strain without in vitro verification of SAP activity. The quantification of Candida SAPs activity in liquid broth were also scarcely reported. Thus, this study aimed to characterize M. guilliermondii strain SO's ability to produce SAPs (MgSAPs) in different conditions (morphology and medium) besides analyzing its growth profile. MgSAPs' capability to cleave bovine serum albumin (BSA) was also determined to propose that MgSAPs as the potential virulence factors compared to the avirulent Saccharomyces cerevisiae. M. guilliermondii strain SO produced more SAPs (higher activity) in yeast nitrogen base-BSA-dextrose broth compared to yeast extract-BSA-dextrose broth despite insignificantly different SAP activity in both planktonic and biofilm cells. FeCl3 supplementation significantly increased the specific protein activity (∼40 %). The BSA cleavage by MgSAPs at an acidic pH was proven through semi-quantitative SDS-PAGE, sharing similar profile with HIV-1 retropepsin. The presented work highlighted the MgSAPs on fungal cell wall and extracellular milieu during host infection could be corroborated to the quantitative production in different growth modes presented herein besides shedding lights on the potential usage of retropepsin's inhibitors in treating candidiasis. Molecular and expression analyses of MgSAPs and their deletion should be further explored to attribute their respective virulence effects.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Suriana Sabri
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Mat'at'a M, Galádová H, Varečka L, Šimkovič M. The study of intracellular and secreted high-molecular-mass protease(s) of Trichoderma spp., and their responses to conidiation stimuli. Can J Microbiol 2019; 65:653-667. [PMID: 31059650 DOI: 10.1139/cjm-2018-0670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We continued our study of high-molecular-mass proteases (HMMPs) using several strains of the genus Trichoderma, and other filamentous fungi (Botrytis cinerea, Aspergillus niger, Fusarium culmorum, and Penicillium purpurogenum). We found that five Trichoderma strains secreted HMMPs into the media after induction with bovine serum albumin. Botrytis cinerea and F. culmorum secreted proteases in the absence of inducer, while A. niger or P. purpurogenum did not secrete proteolytic activity (PA). The activity of HMMPs secreted by or intracellularly located in Trichoderma spp. represents the predominant part of cellular PA, according to zymogram patterns. This observation allowed the study of HMMPs' physiological role(s) independent from the secretion. In studying conidiation, we found that illumination significantly stimulated PA in Trichoderma strains. In the T. atroviride IMI 206040 strain, we demonstrated that this stimulation is dependent on the BLR1 and BLR2 receptors. No stimulation of PA was observed when mechanical injury was used as an elicitor of conidiation. Compounds used as inhibitors or activators of conidiation exerted no congruent effects on both PA and conidiation. These results do not favour a direct role of HMMPs in conidiation. Probably, HMMP activity may be involved in the process of the activation of metabolism during vegetative growth, differentiation, and aging-related processes.
Collapse
Affiliation(s)
- Matej Mat'at'a
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic.,Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Helena Galádová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic.,Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - L'udovít Varečka
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic.,Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Martin Šimkovič
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic.,Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| |
Collapse
|
3
|
Seredyński R, Wolna D, Kędzior M, Gutowicz J. Different patterns of extracellular proteolytic activity in W303a and BY4742 Saccharomyces cerevisiae strains. J Basic Microbiol 2016; 57:34-40. [PMID: 27406379 DOI: 10.1002/jobm.201600228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/02/2016] [Indexed: 11/11/2022]
Abstract
Protease secretion in Saccharomyces cerevisiae cultures is a complex process, important for the application of this organism in the food industry and biotechnology. Previous studies provide rather quantitative data, yielding no information about the number of enzymes involved in proteolysis and their individual biochemical properties. Here we demonstrate that W303a and BY4742 S. cerevisiae strains reveal different patterns of spontaneous and gelatin-induced extracellular proteolytic activity. We applied the gelatin zymography assay to track changes of the proteolytic profile in time, finding the protease secretion dependent on the growth phase and the presence of the protein inducer. Detected enzymes were characterized regarding their substrate specificity, pH tolerance, and susceptibility to inhibitors. In case of the W303a strain, only one type of gelatin-degrading secretory protease (presumably metalloproteinase) was observed. However, the BY4742 strain secreted different proteases of the various catalytic types, depending on the substrate availability. Our study brings the evidence that S. cerevisiae strains secrete several kinds of proteases depending on the presence and type of the substrate. Protein induction may cause not only quantitative but also qualitative changes in the extracellular proteolytic patterns.
Collapse
Affiliation(s)
- Rafał Seredyński
- Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Dorota Wolna
- Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Mateusz Kędzior
- Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Jan Gutowicz
- Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
5
|
Younes B, Cilindre C, Villaume S, Parmentier M, Jeandet P, Vasserot Y. Evidence for an extracellular acid proteolytic activity secreted by living cells of Saccharomyces cerevisiae PlR1: impact on grape proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6239-6246. [PMID: 21528928 DOI: 10.1021/jf200348n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this work, Saccharomyces cerevisiae PlR1, a strain isolated from Pinot noir grapes in the Champagne area, was shown to secrete an acid proteolytic activity against bovine serum albumin. This proteolytic activity was detectable in cell-free culture supernatants at the beginning of the exponential growth phase and increased with yeast growth. Using a zymography method, only one protease band with a molecular mass of 72 kDa was observed. This extracellular proteolytic activity was detected in the pH range from 2 to 4 with a maximal value at pH 2.5 and 38 °C and was completely inhibited by pepstatin A. The secretion of this protease did not need any protein inducer and seemed to be insensitive to nitrogen catabolic repression. S. cerevisiae PlR1 was also able to secrete this proteolytic activity during alcoholic fermentation, and it was found to be active against grape proteins, with a molecular mass around 25 kDa, at optimal conditions of 38 °C, pH 3.5.
Collapse
Affiliation(s)
- Buchra Younes
- Laboratoire d'Oenologie et de Chimie Appliquée, UPRES EA 2069, URVVC, Université de Reims, Faculté des Sciences, B.P. 1039, 51687 Reims cedex 02, France.
| | | | | | | | | | | |
Collapse
|
6
|
Fungal proteases and their pathophysiological effects. Mycopathologia 2011; 171:299-323. [PMID: 21259054 DOI: 10.1007/s11046-010-9386-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 12/02/2010] [Indexed: 12/14/2022]
Abstract
Proteolytic enzymes play an important role in fungal physiology and development. External digestion of protein substrates by secreted proteases is required for survival and growth of both saprophytic and pathogenic species. Extracellular serine, aspartic, and metalloproteases are considered virulence factors of many pathogenic species. New findings focus on novel membrane-associated proteases such as yapsins and ADAMs and their role in pathology. Proteases from fungi induce inflammatory responses by altering the permeability of epithelial barrier and by induction of proinflammatory cytokines through protease-activated receptors. Many fungal allergens possess proteolytic activity that appears to be essential in eliciting Th2 responses. Allergenic fungal proteases can act as adjuvants, potentiating responses to other allergens. Proteolytic enzymes from fungi contribute to inflammation through interactions with the kinin system as well as the coagulation and fibrinolytic cascades. Their effect on the host protease-antiprotease balance results from activation of endogenous proteases and degradation of protease inhibitors. Recent studies of the role of fungi in human health point to the growing importance of proteases not only as pathogenic agents in fungal infections but also in asthma, allergy, and damp building related illnesses. Proteolytic enzymes from fungi are widely used in biotechnology, mainly in food, leather, and detergent industries, in ecological bioremediation processes and to produce therapeutic peptides. The involvement of fungal proteases in diverse pathological mechanisms makes them potential targets of therapeutic intervention and candidates for biomarkers of disease and exposure.
Collapse
|