1
|
Yang Y, Xie P, Li Y, Bi Y, Prusky DB. Updating Insights into the Regulatory Mechanisms of Calcineurin-Activated Transcription Factor Crz1 in Pathogenic Fungi. J Fungi (Basel) 2022; 8:1082. [PMID: 36294647 PMCID: PMC9604740 DOI: 10.3390/jof8101082] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Ca2+, as a second messenger in cells, enables organisms to adapt to different environmental stresses by rapidly sensing and responding to external stimuli. In recent years, the Ca2+ mediated calcium signaling pathway has been studied systematically in various mammals and fungi, indicating that the pathway is conserved among organisms. The pathway consists mainly of complex Ca2+ channel proteins, calcium pumps, Ca2+ transporters and many related proteins. Crz1, a transcription factor downstream of the calcium signaling pathway, participates in regulating cell survival, ion homeostasis, infection structure development, cell wall integrity and virulence. This review briefly summarizes the Ca2+ mediated calcium signaling pathway and regulatory roles in plant pathogenic fungi. Based on discussing the structure and localization of transcription factor Crz1, we focus on the regulatory role of Crz1 on growth and development, stress response, pathogenicity of pathogenic fungi and its regulatory mechanisms. Furthermore, we explore the cross-talk between Crz1 and other signaling pathways. Combined with the important role and pathogenic mechanism of Crz1 in fungi, the new strategies in which Crz1 may be used as a target to explore disease control in practice are also discussed.
Collapse
Affiliation(s)
- Yangyang Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengdong Xie
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov B. Prusky
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| |
Collapse
|
2
|
O'Day DH, Mathavarajah S, Myre MA, Huber RJ. Calmodulin-mediated events during the life cycle of the amoebozoan Dictyostelium discoideum. Biol Rev Camb Philos Soc 2020; 95:472-490. [PMID: 31774219 PMCID: PMC7079120 DOI: 10.1111/brv.12573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
This review focusses on the functions of intracellular and extracellular calmodulin, its target proteins and their binding proteins during the asexual life cycle of Dictyostelium discoideum. Calmodulin is a primary regulatory protein of calcium signal transduction that functions throughout all stages. During growth, it mediates autophagy, the cell cycle, folic acid chemotaxis, phagocytosis, and other functions. During mitosis, specific calmodulin-binding proteins translocate to alternative locations. Translocation of at least one cell adhesion protein is calmodulin dependent. When starved, cells undergo calmodulin-dependent chemotaxis to cyclic AMP generating a multicellular pseudoplasmodium. Calmodulin-dependent signalling within the slug sets up a defined pattern and polarity that sets the stage for the final events of morphogenesis and cell differentiation. Transected slugs undergo calmodulin-dependent transdifferentiation to re-establish the disrupted pattern and polarity. Calmodulin function is critical for stalk cell differentiation but also functions in spore formation, events that begin in the pseudoplasmodium. The asexual life cycle restarts with the calmodulin-dependent germination of spores. Specific calmodulin-binding proteins as well as some of their binding partners have been linked to each of these events. The functions of extracellular calmodulin during growth and development are also discussed. This overview brings to the forefront the central role of calmodulin, working through its numerous binding proteins, as a primary downstream regulator of the critical calcium signalling pathways that have been well established in this model eukaryote. This is the first time the function of calmodulin and its target proteins have been documented through the complete life cycle of any eukaryote.
Collapse
Affiliation(s)
- Danton H. O'Day
- Cell and Systems BiologyUniversity of TorontoTorontoOntarioM5S 3G5Canada
- Department of BiologyUniversity of Toronto MississaugaMississaugaOntarioL5L 1C6Canada
| | | | - Michael A. Myre
- Department of Biological Sciences, Kennedy College of SciencesUniversity of Massachusetts LowellLowellMassachusetts01854USA
| | - Robert J. Huber
- Department of BiologyTrent UniversityPeterboroughOntarioK9L 0G2Canada
| |
Collapse
|
3
|
Calcineurin Silencing in Dictyostelium discoideum Leads to Cellular Alterations Affecting Mitochondria, Gene Expression, and Oxidative Stress Response. Protist 2018; 169:584-602. [DOI: 10.1016/j.protis.2018.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 11/18/2022]
|
4
|
Koller B, Schramm C, Siebert S, Triebel J, Deland E, Pfefferkorn AM, Rickerts V, Thewes S. Dictyostelium discoideum as a Novel Host System to Study the Interaction between Phagocytes and Yeasts. Front Microbiol 2016; 7:1665. [PMID: 27818653 PMCID: PMC5073093 DOI: 10.3389/fmicb.2016.01665] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/05/2016] [Indexed: 01/26/2023] Open
Abstract
The social amoeba Dictyostelium discoideum is a well-established model organism to study the interaction between bacteria and phagocytes. In contrast, research using D. discoideum as a host model for fungi is rare. We describe a comprehensive study, which uses D. discoideum as a host model system to investigate the interaction with apathogenic (Saccharomyces cerevisiae) and pathogenic (Candida sp.) yeast. We show that Dictyostelium can be co-cultivated with yeasts on solid media, offering a convenient test to study the interaction between fungi and phagocytes. We demonstrate that a number of D. discoideum mutants increase (atg1-, kil1-, kil2-) or decrease (atg6-) the ability of the amoebae to predate yeast cells. On the yeast side, growth characteristics, reduced phagocytosis rate, as well as known virulence factors of C. albicans (EFG1, CPH1, HGC1, ICL1) contribute to the resistance of yeast cells against predation by the amoebae. Investigating haploid C. albicans strains, we suggest using the amoebae plate test for screening purposes after random mutagenesis. Finally, we discuss the potential of our adapted amoebae plate test to use D. discoideum for risk assessment of yeast strains.
Collapse
Affiliation(s)
- Barbara Koller
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - Christin Schramm
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität BerlinBerlin, Germany; FG16, Robert Koch InstituteBerlin, Germany
| | - Susann Siebert
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - János Triebel
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - Eric Deland
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - Anna M Pfefferkorn
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | | | - Sascha Thewes
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| |
Collapse
|
5
|
Márquez López J, Sulzmann A, Thewes S. Systematic evaluation of buffer influences on the development of Dictyostelium discoideum. Dev Genes Evol 2016; 226:27-35. [PMID: 26791868 DOI: 10.1007/s00427-016-0528-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/04/2016] [Indexed: 11/30/2022]
Abstract
Development and cell differentiation are key features of the social amoeba Dictyostelium discoideum. Already at early developmental stages, the gene expression profile changes in the amoebae to make the cells aggregation competent. In the laboratory, development starts when the cells are washed free of nutrients. For this purpose, various non-nutrient buffers are used in different laboratories. However, to date, it is not clear if different buffers have different influences on the development of D. discoideum. Therefore, we investigated systematically the influence of six widely used buffers on the development of D. discoideum. Investigation was done at the phenotypical, biochemical, and molecular level. The results show that some of the investigated buffers show clear differences in the phenotypical outcome of the developmental cycle, at a biochemical level as measured in the response to cAMP, and/or at a molecular level as measured in the expression of early developmental marker genes. According to our results buffer compositions should be considered carefully for all developmental experiments with D. discoideum, especially when gene expression will be investigated.
Collapse
Affiliation(s)
- Johanna Márquez López
- Institute for Biology-Microbiology, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| | - Anja Sulzmann
- Institute for Biology-Microbiology, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| | - Sascha Thewes
- Institute for Biology-Microbiology, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany.
| |
Collapse
|
6
|
Plattner H. Signalling in ciliates: long- and short-range signals and molecular determinants for cellular dynamics. Biol Rev Camb Philos Soc 2015; 92:60-107. [PMID: 26487631 DOI: 10.1111/brv.12218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/28/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
In ciliates, unicellular representatives of the bikont branch of evolution, inter- and intracellular signalling pathways have been analysed mainly in Paramecium tetraurelia, Paramecium multimicronucleatum and Tetrahymena thermophila and in part also in Euplotes raikovi. Electrophysiology of ciliary activity in Paramecium spp. is a most successful example. Established signalling mechanisms include plasmalemmal ion channels, recently established intracellular Ca2+ -release channels, as well as signalling by cyclic nucleotides and Ca2+ . Ca2+ -binding proteins (calmodulin, centrin) and Ca2+ -activated enzymes (kinases, phosphatases) are involved. Many organelles are endowed with specific molecules cooperating in signalling for intracellular transport and targeted delivery. Among them are recently specified soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), monomeric GTPases, H+ -ATPase/pump, actin, etc. Little specification is available for some key signal transducers including mechanosensitive Ca2+ -channels, exocyst complexes and Ca2+ -sensor proteins for vesicle-vesicle/membrane interactions. The existence of heterotrimeric G-proteins and of G-protein-coupled receptors is still under considerable debate. Serine/threonine kinases dominate by far over tyrosine kinases (some predicted by phosphoproteomic analyses). Besides short-range signalling, long-range signalling also exists, e.g. as firmly installed microtubular transport rails within epigenetically determined patterns, thus facilitating targeted vesicle delivery. By envisaging widely different phenomena of signalling and subcellular dynamics, it will be shown (i) that important pathways of signalling and cellular dynamics are established already in ciliates, (ii) that some mechanisms diverge from higher eukaryotes and (iii) that considerable uncertainties still exist about some essential aspects of signalling.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, PO Box M625, 78457, Konstanz, Germany
| |
Collapse
|
7
|
Harrison CF, Chiriano G, Finsel I, Manske C, Hoffmann C, Steiner B, Kranjc A, Patthey-Vuadens O, Kicka S, Trofimov V, Ouertatani-Sakouhi H, Soldati T, Scapozza L, Hilbi H. Amoebae-Based Screening Reveals a Novel Family of Compounds Restricting Intracellular Legionella pneumophila. ACS Infect Dis 2015; 1:327-38. [PMID: 27622823 DOI: 10.1021/acsinfecdis.5b00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The causative agent of Legionnaires' disease, Legionella pneumophila, grows in environmental amoebae and mammalian macrophages within a distinct compartment, the 'Legionella-containing vacuole' (LCV). Intracellular bacteria are protected from many antibiotics, and thus are notoriously difficult to eradicate. To identify novel compounds that restrict intracellular bacterial replication, we previously developed an assay based on a coculture of amoebae and GFP-producing L. pneumophila. This assay was used to screen a pathway-based, highly diverse chemical library, referred to as the Sinergia library. In this work, we chose to focus on a group of 11 hit compounds, the majority of which originated from the query molecule CN585, a compound that targets the protein phosphatase calcineurin. Further studies on 78 related compound variants revealed crucial structural attributes, namely a triple-ring scaffold with a central triazine moiety, substituted in positions 3 and 5 by two piperidine or pyrrolidine rings, and in position 1 by an amine group bearing a single aliphatic chain moiety. The most effective compound, ZINC00615682, inhibited intracellular replication of L. pneumophila with an IC50 of approximately 20 nM in Acanthamoeba castellanii and slightly less efficiently in Dictyostelium discoideum or macrophages. Pharmacological and genetic attempts to implicate calcineurin in the intracellular replication of L. pneumophila failed. Taken together, these results show that the amoebae-based screen and structure-activity relationship analysis is suitable for the identification of novel inhibitors of the intracellular replication of L. pneumophila. The most potent compound identified in this study targets (an) as yet unidentified host factor(s).
Collapse
Affiliation(s)
- Christopher F. Harrison
- Max von Pettenkofer Institute, Department
of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Gianpaolo Chiriano
- School of Pharmaceutical
Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Ivo Finsel
- Max von Pettenkofer Institute, Department
of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Christian Manske
- Max von Pettenkofer Institute, Department
of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Christine Hoffmann
- Max von Pettenkofer Institute, Department
of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Bernhard Steiner
- Institute of Medical Microbiology, Department of Medicine, University of Zurich, Gloriastrasse 30/32, 8006 Zurich, Switzerland
| | - Agata Kranjc
- School of Pharmaceutical
Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Ophelie Patthey-Vuadens
- School of Pharmaceutical
Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | | | | | | | | | - Leonardo Scapozza
- School of Pharmaceutical
Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Hubert Hilbi
- Max von Pettenkofer Institute, Department
of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
- Institute of Medical Microbiology, Department of Medicine, University of Zurich, Gloriastrasse 30/32, 8006 Zurich, Switzerland
| |
Collapse
|
8
|
Sugden C, Urbaniak MD, Araki T, Williams JG. The Dictyostelium prestalk inducer differentiation-inducing factor-1 (DIF-1) triggers unexpectedly complex global phosphorylation changes. Mol Biol Cell 2014; 26:805-20. [PMID: 25518940 PMCID: PMC4325849 DOI: 10.1091/mbc.e14-08-1319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Differentiation-inducing factor-1 (DIF-1) is a polyketide that induces Dictyostelium amoebae to differentiate as prestalk cells. We performed a global quantitative screen for phosphorylation changes that occur within the first minutes after addition of DIF-1, using a triple-label SILAC approach. This revealed a new world of DIF-1-controlled signaling, with changes in components of the MAPK and protein kinase B signaling pathways, components of the actinomyosin cytoskeletal signaling networks, and a broad range of small GTPases and their regulators. The results also provide evidence that the Ca(2+)/calmodulin-dependent phosphatase calcineurin plays a role in DIF-1 signaling to the DimB prestalk transcription factor. At the global level, DIF-1 causes a major shift in the phosphorylation/dephosphorylation equilibrium toward net dephosphorylation. Of interest, many of the sites that are dephosphorylated in response to DIF-1 are phosphorylated in response to extracellular cAMP signaling. This accords with studies that suggest an antagonism between the two inducers and also with the rapid dephosphorylation of the cAMP receptor that we observe in response to DIF-1 and with the known inhibitory effect of DIF-1 on chemotaxis to cAMP. All MS data are available via ProteomeXchange with identifier PXD001555.
Collapse
Affiliation(s)
- Chris Sugden
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Michael D Urbaniak
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, United Kingdom
| | - Tsuyoshi Araki
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Jeffrey G Williams
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
9
|
Abstract
Calcium ions are ubiquitous intracellular messengers. An increase in the cytosolic Ca(2+) concentration activates many proteins, including calmodulin and the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin. The phosphatase is conserved from yeast to humans (except in plants), and many target proteins of calcineurin have been identified. The most prominent and best-investigated targets, however, are the transcription factors NFAT (nuclear factor of activated T cells) in mammals and Crz1 (calcineurin-responsive zinc finger 1) in yeast. In recent years, many orthologues of Crz1 have been identified and characterized in various species of fungi, amoebae, and other lower eukaryotes. It has been shown that the functions of calcineurin-Crz1 signaling, ranging from ion homeostasis through cell wall biogenesis to the building of filamentous structures, are conserved in the different organisms. Furthermore, frequency-modulated gene expression through Crz1 has been discovered as a striking new mechanism by which cells can coordinate their response to a signal. In this review, I focus on the latest findings concerning calcineurin-Crz1 signaling in fungi, amoebae and other lower eukaryotes. I discuss the potential of Crz1 and its orthologues as putative drug targets, and I also discuss possible parallels with calcineurin-NFAT signaling in mammals.
Collapse
|