1
|
Hemeda AA, Zahran SA, Ali-Tammam M, Ewida MA, Kashef MT, Yassin AS, Mitra A, Youssef NH, Elshahed MS. Metagenomic mining unveils a novel GH130 enzyme with exclusive xylanase activity over a wide temperature and pH ranges. J Ind Microbiol Biotechnol 2024; 52:kuaf006. [PMID: 40036345 PMCID: PMC11905756 DOI: 10.1093/jimb/kuaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
The equine gut harbors a diverse microbial community and represents a rich source of carbohydrate-active enzymes (CAZymes). To identify and characterize potentially novel CAZymes from a horse's hindgut metagenome, shotgun metagenomic sequencing was performed on DNA extracted from a stool sample of a male horse, followed by CAZyme annotation. Here, we report on the characterization of a novel enzyme (AH2) that was identified, synthesized, cloned, and characterized from the obtained CAZyme dataset. AH2 was identified as a GH130 family member and displayed exclusive xylanase activity, a trait hitherto unreported in prior characterization of GH130 CAZymes. AH2 displayed an optimal activity at a pH of 5.6 and a temperature of 50°C. AH2 maintained significant activity across a pH range of 4-10 (62-72%) and temperatures of 30-70°C (77-86%). The enzyme had remarkable stability, with minimal reductions in activity across a temperature range of 4-70°C and pH levels of 3, 7, and 9. Docking studies identified AH2's amino acids (Glu90 and Glu149) to be involved in substrate binding. Molecular dynamics simulation confirmed the structural stability of AH2 at pH 5.6 and 50°C, further supporting its resilience under these conditions. Our results expand on the known activities associated with the GH130 CAZyme family and demonstrate that the horse gut metagenome represents an unexplored source of novel CAZymes. ONE-SENTENCE SUMMARY A novel activity for members of the CAZyme family GH130.
Collapse
Affiliation(s)
- Amr A Hemeda
- Department of Microbiology and Immunology, Faculty of Pharmacy, Future University in Egypt, 12311 Cairo, Egypt
| | - Sara A Zahran
- Department of Microbiology and Immunology, Faculty of Pharmacy, Future University in Egypt, 12311 Cairo, Egypt
| | - Marwa Ali-Tammam
- Department of Microbiology and Immunology, Faculty of Pharmacy, Future University in Egypt, 12311 Cairo, Egypt
| | - Menna A Ewida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, 12311 Cairo, Egypt
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Aymen S Yassin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Avishek Mitra
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74074, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74074, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74074, USA
| |
Collapse
|
2
|
Salzano F, Aulitto M, Fiorentino G, Cannella D, Peeters E, Limauro D. A novel endo-1,4-β-xylanase from Alicyclobacillus mali FL18: Biochemical characterization and its synergistic action with β-xylosidase in hemicellulose deconstruction. Int J Biol Macromol 2024; 264:130550. [PMID: 38432267 DOI: 10.1016/j.ijbiomac.2024.130550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
A novel endo-1,4-β-xylanase-encoding gene was identified in Alicyclobacillus mali FL18 and the recombinant protein, named AmXyn, was purified and biochemically characterized. The monomeric enzyme worked optimally at pH 6.6 and 80 °C on beechwood xylan with a specific activity of 440.00 ± 0.02 U/mg and a good catalytic efficiency (kcat/KM = 91.89 s-1mLmg-1). In addition, the enzyme did not display any activity on cellulose, suggesting a possible application in paper biobleaching processes. To develop an enzymatic mixture for xylan degradation, the association between AmXyn and the previously characterized β-xylosidase AmβXyl, deriving from the same microorganism, was assessed. The two enzymes had similar temperature and pH optima and showed the highest degree of synergy when AmXyn and AmβXyl were added sequentially to beechwood xylan, making this mixture cost-competitive and suitable for industrial use. Therefore, this enzymatic cocktail was also employed for the hydrolysis of wheat bran residue. TLC and HPAEC-PAD analyses revealed a high conversion rate to xylose (91.56 %), placing AmXyn and AmβXyl among the most promising biocatalysts for the saccharification of agricultural waste.
Collapse
Affiliation(s)
- Flora Salzano
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - Martina Aulitto
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - Gabriella Fiorentino
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - David Cannella
- PhotoBiocatalysis Unit, Biomass Transformation lab - BTL, and Crop production and Biostimulation Lab - CPBL, Universitè libre de Brussels, ULB, Belgium
| | - Eveline Peeters
- Department of Bioengineering Sciences Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Danila Limauro
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy.
| |
Collapse
|
3
|
Castañeda-Barreto A, Olivera-Gonzales P, Tamariz-Angeles C. A natural consortium of thermophilic bacteria from Huancarhuaz hot spring (Ancash-Peru) for promising lignocellulose bioconversion. Heliyon 2024; 10:e27272. [PMID: 38486736 PMCID: PMC10937689 DOI: 10.1016/j.heliyon.2024.e27272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
The lignocellulose bioconversion process is an eco-friendly and green-economy alternative technology that allows the reduction of pollution and global warming, so it is necessary for thermophilic and thermostable hydrolytic enzymes from natural sources. This research aimed to isolate cellulolytic and xylanolytic microbial consortia from Huancarhuaz hot spring (Peru) from sludge or in situ baiting cultured with or without sugarcane bagasse. According to the hydrolytic activities consortium T4 from in situ baiting was selected. It was cultivated in submerged fermentation at 65 °C, pH 6.5 for eight days using LB supplemented with sugar cane bagasse (SCB), pine wood sawdust (PWS), CMC, xylan of birchwood, or micro granular cellulose. Crude extract of culture supplemented with SCB (T4B) showed better endoglucanase and xylanase activities with higher activities at 75 °C and pH 6. In these conditions, cellulase activity was kept up to 57% after 1 h of incubation, while xylanase activity was up to 63% after 72 h. Furthermore, this crude extract released reduced sugars from pretreated SCB and PWS. According to metagenomic analysis of 16S rDNA, Geobacillus was the predominant genus. It was found thermostable genes: a type of endoglucanase (GH5), an endo-xylanase (GH10), and alkali xylanase (GH10) previously reported in Geobacillus sp. strains. Finally, Huancarhuaz hot spring harbors a genetic microbial diversity for lignocellulosic waste bioconversion in high temperatures, and the T4B consortium will be a promising source of novel extreme condition stable enzymes for the saccharification process.
Collapse
Affiliation(s)
- Alberto Castañeda-Barreto
- Facultad de Ciencias del Ambiente, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru
| | - Percy Olivera-Gonzales
- Centro de Investigación de la Biodiversidad y Recursos Genéticos de Ancash, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru
| | - Carmen Tamariz-Angeles
- Centro de Investigación de la Biodiversidad y Recursos Genéticos de Ancash, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru
| |
Collapse
|
4
|
El-Gendi H, Badawy AS, Bakhiet EK, Rawway M, Ali SG. Valorization of lignocellulosic wastes for sustainable xylanase production from locally isolated Bacillus subtilis exploited for xylooligosaccharides' production with potential antimicrobial activity. Arch Microbiol 2023; 205:315. [PMID: 37605001 PMCID: PMC10442310 DOI: 10.1007/s00203-023-03645-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/21/2023] [Accepted: 07/30/2023] [Indexed: 08/23/2023]
Abstract
The worldwide availability of lignocellulosic wastes represents a serious environmental challenge with potential opportunities. Xylanases are crucial in lignocellulosic bio-hydrolysis, but the low enzyme productivity and stability are still challenges. In the current study, Bacillus subtilis (coded ARSE2) revealed potent xylanase activity among other local isolates. The enzyme production optimization revealed that maximum enzyme production (490.58 U/mL) was achieved with 1% xylan, 1.4% peptone, and 5% NaCl at 30 °C and pH 9. Furthermore, several lignocellulosic wastes were exploited for sustainable xylanase production, where sugarcane bagasse (16%) under solid-state fermentation and woody sawdust (2%) under submerged fermentation supported the maximum enzyme titer of about 472.03 and 485.7 U/mL, respectively. The partially purified enzyme revealed two protein bands at 42 and 30 kDa. The partially purified enzyme revealed remarkable enzyme activity and stability at 50-60 °C and pH 8-9. The enzyme also revealed significant stability toward tween-80, urea, DTT, and EDTA with Vmax and Km values of 1481.5 U/mL and 0.187 mM, respectively. Additionally, the purified xylanase was applied for xylooligosaccharides production, which revealed significant antimicrobial activity toward Staphylococcus aureus with lower activity against Escherichia coli. Hence, the locally isolated Bacillus subtilis ARSE2 could fulfill the xylanase production requirements in terms of economic production at a high titer with promising enzyme characteristics. Additionally, the resultant xylooligosaccharides revealed a promising antimicrobial potential, which paves the way for other medical applications.
Collapse
Affiliation(s)
- Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Ahmed S Badawy
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Assiut, Egypt
| | - Elsayed K Bakhiet
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Assiut, Egypt
| | - Mohammed Rawway
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Assiut, Egypt
| | - Salah G Ali
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Assiut, Egypt
| |
Collapse
|
5
|
Joardar N, Bhattacharya R, Halder S, Sen A, Biswas SR, Jana K, Babu SPS. Filarial thioredoxin reductase exerts anti-inflammatory effects upon lipopolysaccharide induced inflammation in macrophages. Int J Biol Macromol 2021; 193:1379-1390. [PMID: 34774593 DOI: 10.1016/j.ijbiomac.2021.10.200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/19/2021] [Accepted: 10/27/2021] [Indexed: 01/12/2023]
Abstract
Lymphatic filariasis and its associated health hazards have taken enormous tolls especially in the tropical and sub-tropical countries round the globe. Our present work contemplates the immunomodulatory role of filarial Thioredoxin reductase (TrxR) for the survival of the parasite inside the human host. For this, the protein TrxR was purified from the filarial parasite Setaria cervi and further substantiated through specific anti-TrxR antibody raised in mice. Both commercially available anti-TrxR antibody and laboratory raised antibody produced a single band with a molecular mass of ~80 kDa on western blot. The protein is optimally active at pH 7.0 and at temperature 37 °C. This protein contains both alpha helix and beta pleated sheet with selenocysteine at its active site. The Km was found to be 2.75 ± 0.49 mM. TrxR was found to downregulate lipopolysaccharide (LPS)-induced inflammation in macrophages due to inhibition of TLR4-NF-κB pathway. The result was further supported by the downregulation of inflammasome pathway and activation of alternatively activated macrophages upon TrxR treatment. Hence this study projects insights into the importance of filarial TrxR in host-parasite interface as well as it illustrates novel therapeutic strategy towards anti-filarial drug development.
Collapse
Affiliation(s)
- Nikhilesh Joardar
- Parasitology Laboratory, Department of Zoology, Siksha Bhavana, Visva-Bharati, Santiniketan 731235, India
| | - Rajarshi Bhattacharya
- Molecular Food Microbiology Laboratory, Department of Botany, Siksha Bhavana, Visva-Bharati, Santiniketan 731235, India
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Animesh Sen
- Applied Phycology Laboratory, Department of Botany, Siksha-Bhavana, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Swadesh Ranjan Biswas
- Molecular Food Microbiology Laboratory, Department of Botany, Siksha Bhavana, Visva-Bharati, Santiniketan 731235, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India.
| | - Santi Prasad Sinha Babu
- Parasitology Laboratory, Department of Zoology, Siksha Bhavana, Visva-Bharati, Santiniketan 731235, India.
| |
Collapse
|
6
|
Verma D. Extremophilic Prokaryotic Endoxylanases: Diversity, Applicability, and Molecular Insights. Front Microbiol 2021; 12:728475. [PMID: 34566933 PMCID: PMC8458939 DOI: 10.3389/fmicb.2021.728475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Extremophilic endoxylanases grabbed attention in recent years due to their applicability under harsh conditions of several industrial processes. Thermophilic, alkaliphilic, and acidophilic endoxylanases found their employability in bio-bleaching of paper pulp, bioconversion of lignocellulosic biomass into xylooligosaccharides, bioethanol production, and improving the nutritious value of bread and other bakery products. Xylanases obtained from extremophilic bacteria and archaea are considered better than fungal sources for several reasons. For example, enzymatic activity under broad pH and temperature range, low molecular weight, cellulase-free activity, and longer stability under extreme conditions of prokaryotic derived xylanases make them a good choice. In addition, a short life span, easy cultivation/harvesting methods, higher yield, and rapid DNA manipulations of bacterial and archaeal cells further reduces the overall cost of the product. This review focuses on the diversity of prokaryotic endoxylanases, their characteristics, and their functional attributes. Besides, the molecular mechanisms of their extreme behavior have also been presented here.
Collapse
Affiliation(s)
- Digvijay Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
7
|
Lai Z, Zhou C, Ma X, Xue Y, Ma Y. Enzymatic characterization of a novel thermostable and alkaline tolerant GH10 xylanase and activity improvement by multiple rational mutagenesis strategies. Int J Biol Macromol 2020; 170:164-177. [PMID: 33352153 DOI: 10.1016/j.ijbiomac.2020.12.137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 11/15/2022]
Abstract
Thermo-alkaline xylanases are widely applied in paper pulping industry. In this study, a novel thermostable and alkaline tolerant GH10 xylanase (Xyn30Y5) gene from alkaliphilic Bacillus sp. 30Y5 was cloned and the surface-layer homology (SLH) domains truncated enzyme (Xyn30Y5-SLH) was expressed in Escherichia coli. The purified Xyn30Y5-SLH was most active at 70 °C and pH 7.0 and showed the highest specific activity of 349.4 U mg-1. It retained more than 90% activity between pH 6.0 to 9.5 and was stable at pH 6.0-10.0. To improve the activity, 47 mutants were designed based on eight rational strategies and 21 mutants showed higher activity. By combinatorial mutagenesis, the best mutant 3B demonstrated specific activity of 1016.8 U mg-1 with a doubled catalytic efficiency (kcat/Km) and RA601/2h value, accompanied by optimal pH shift to 8.0. The molecular dynamics simulation analysis indicated that the increase of flexibility of α5 helix and loop7 located near to the catalytic residues is likely responsible for its activity improvement. And the decrease of flexibility of the most unstable regions is vital for the thermostablity improvement. This work provided not only a novel thermostable and alkaline tolerant xylanase with industrial application potential but also an effective mutagenesis strategy for xylanase activity improvement.
Collapse
Affiliation(s)
- Zhihua Lai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaochen Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; National Engineering Laboratory for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Liew KJ, Ngooi CY, Shamsir MS, Sani RK, Chong CS, Goh KM. Heterologous expression, purification and biochemical characterization of a new endo-1,4-β-xylanase from Rhodothermaceae bacterium RA. Protein Expr Purif 2019; 164:105464. [DOI: 10.1016/j.pep.2019.105464] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/10/2019] [Accepted: 07/31/2019] [Indexed: 11/28/2022]
|
9
|
Insight into kinetics and thermodynamics of a novel hyperstable GH family 10 endo-1,4-β-xylanase (TnXynB) with broad substrates specificity cloned from Thermotoga naphthophilaRKU-10T. Enzyme Microb Technol 2019; 127:32-42. [DOI: 10.1016/j.enzmictec.2019.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/07/2019] [Accepted: 04/12/2019] [Indexed: 11/20/2022]
|
10
|
Basit A, Liu J, Rahim K, Jiang W, Lou H. Thermophilic xylanases: from bench to bottle. Crit Rev Biotechnol 2018; 38:989-1002. [DOI: 10.1080/07388551.2018.1425662] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Abdul Basit
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junquan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kashif Rahim
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wei Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiqiang Lou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Daas MJ, Martínez PM, van de Weijer AH, van der Oost J, de Vos WM, Kabel MA, van Kranenburg R. Biochemical characterization of the xylan hydrolysis profile of the extracellular endo-xylanase from Geobacillus thermodenitrificans T12. BMC Biotechnol 2017; 17:44. [PMID: 28521816 PMCID: PMC5437666 DOI: 10.1186/s12896-017-0357-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/25/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Endo-xylanases are essential in degrading hemicellulose of various lignocellulosic substrates. Hemicellulose degradation by Geobacillus spp. is facilitated by the hemicellulose utilization (HUS) locus that is present in most strains belonging to this genus. As part of the HUS locus, the xynA gene encoding an extracellular endo-xylanase is one of the few secreted enzymes and considered to be the key enzyme to initiate hemicellulose degradation. Several Geobacillus endo-xylanases have been characterized for their optimum temperature, optimum pH and generation of degradation products. However, these analyses provide limited details on the mode of action of the enzymes towards various substrates resulting in a lack of understanding about their hydrolytic potential. RESULTS A HUS-locus associated gene (GtxynA1) from the thermophile Geobacillus thermodenitrificans T12 encodes an extracellular endo-xylanase that belongs to the family 10 glycoside hydrolases (GH10). The GtxynA1 gene was cloned and expressed in Escherichia coli. The resulting endo-xylanase (termed GtXynA1) was purified to homogeneity and showed activity between 40 °C and 80 °C, with an optimum activity at 60 °C, while being active between pH 3.0 to 9.0 with an optimum at pH 6.0. Its thermal stability was high and GtXynA1 showed 85% residual activity after 1 h of incubation at 60 °C. Highest activity was towards wheat arabinoxylan (WAX), beechwood xylan (BeWX) and birchwood xylan (BiWX). GtXynA1 is able to degrade WAX and BeWX producing mainly xylobiose and xylotriose. To determine its mode of action, we compared the hydrolysis products generated by GtXynA1 with those from the well-characterized GH10 endo-xylanase produced from Aspergillus awamori (AaXynA). The main difference in the mode of action between GtXynA1 and AaXynA on WAX is that GtXynA1 is less hindered by arabinosyl substituents and can therefore release shorter oligosaccharides. CONCLUSIONS The G. thermodenitrificans T12 endo-xylanase, GtXynA1, shows temperature tolerance up to 80 °C and high activity to a variety of xylans. The mode of action of GtXynA1 reveals that arabinose substituents do not hamper substrate degradation by GtXynA1. The extensive hydrolysis of branched xylans makes this enzyme particularly suited for the conversion of a broad range of lignocellulosic substrates.
Collapse
Affiliation(s)
- Martinus J.A. Daas
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE The Netherlands
| | - Patricia Murciano Martínez
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, Wageningen, 6708 WG The Netherlands
| | | | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE The Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE The Netherlands
| | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, Wageningen, 6708 WG The Netherlands
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE The Netherlands
- Corbion, Arkelsedijk 46, Gorinchem, 4206 AC The Netherlands
| |
Collapse
|
12
|
Behera SS, Ray RC. Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. Int J Biol Macromol 2016; 86:656-69. [DOI: 10.1016/j.ijbiomac.2015.10.090] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/23/2022]
|