1
|
Balla N, Jakab Á, Kovács F, Ragyák Á, Tóth Z, Balázsi D, Forgács L, Bozó A, Al Refai F, Borman AM, Majoros L, Kovács R. Total transcriptome analysis of Candida auris planktonic cells exposed to tyrosol. AMB Express 2023; 13:81. [PMID: 37532970 PMCID: PMC10397170 DOI: 10.1186/s13568-023-01586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
Tyrosol, a secondary metabolite of Candida species, regulates fungal morphogenesis, and its application may represent a novel innovative therapy against emerging multi-resistant fungal superbug such as Candida auris. In the current study, the effects of tyrosol on growth, redox homeostasis, intracellular microelement contents and activities of virulence-related enzymes released by C. auris were examined. To gain further information about the effect of tyrosol exposure, we revealed gene transcriptional changes using total transcriptome sequencing (RNA-Seq). At a concentration of 15 mM, tyrosol significantly decrease the growth of fungal cells within 2 h of its addition (5.6 × 107±1.2 × 107 and 2.5 × 107±0.6 × 107 colony forming unit/mL for control and tyrosol-treated cells, respectively). Furthermore, it enhanced the release of reactive oxygen species as confirmed by a dichlorofluorescein (DCF) assay (7.3 ± 1.8 [nmol DCF (OD640)-1] versus 16.8 ± 3.9 [nmol DCF (OD640)-1]), which was coincided with elevated superoxide dismutase, catalase and glutathione peroxidase activities. Tyrosol exerted in a 37%, 25%, 34% and 55% decrease in intracellular manganese, iron, zinc and copper contents, respectively, compared to control cells. The tyrosol treatment led to a 142 and 108 differentially transcripted genes with at least a 1.5-fold increase or decrease in transcription, respectively. Genes related to iron and fatty acid metabolism as well as nucleic acid synthesis were down-regulated, whereas those related to the antioxidative defence, adhesion and oxoacid metabolic processes were up-regulated. This study shows that tyrosol significantly influences growth, intracellular physiological processes and gene transcription in C. auris, which could highly support the development of novel treatment approaches against this important pathogen.
Collapse
Affiliation(s)
- Noémi Balla
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, 4032, Hungary
| | - Ágnes Jakab
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, 4032, Hungary
| | - Ágota Ragyák
- Department of Inorganic and Analytical Chemistry, Agilent Atomic Spectroscopy Partner Laboratory, University of Debrecen, Debrecen, Hungary
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Dávid Balázsi
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, 4032, Hungary
| | - Lajos Forgács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, 4032, Hungary
| | - Aliz Bozó
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Farah Al Refai
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Andrew M Borman
- UK National Mycology Reference Laboratory, Public Health England, Science Quarter, Southmead Hospital, Bristol, BS10 5NB, UK
- Medical Research Council Centre for Medical Mycology (MRCCMM), University of Exeter, Exeter, EX4 4QD, UK
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary.
| |
Collapse
|
2
|
Vitamin K3 inhibits FtsZ assembly, disrupts the Z-ring in Streptococcus pneumoniae, and displays anti-pneumococcal activity. Biochem J 2022; 479:1543-1558. [PMID: 35789252 DOI: 10.1042/bcj20220077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
The respiratory pathogen, Streptococcus pneumoniae has acquired multiple-drug resistance over the years. An attractive strategy to combat pneumococcal infection is to target cell division to inhibit the proliferation of S. pneumoniae. This work presents Vitamin K3 as a potential anti-pneumococcal drug that targets FtsZ, the master coordinator of bacterial cell division. Vitamin K3 strongly inhibited S. pneumoniae proliferation with a Minimum Inhibitory Concentration (MIC) and a Minimum Bactericidal Concentration (MBC) of 6 μg/mL. Vitamin K3 disrupted the Z-ring localization in both S. pneumoniae and Bacillus subtilis within 30 minutes of treatment, while the membrane integrity and nucleoid segregation remain unchanged. Several complementary experiments showed that Vitamin K3 inhibits the assembly of purified S. pneumoniae FtsZ (SpnFtsZ) and induces conformational changes in the protein. Interestingly, Vitamin K3 interfered with GTP-binding onto FtsZ and increased the GTPase activity of FtsZ polymers. The intrinsic tryptophan fluorescence of SpnFtsZ revealed that Vitamin K3 delays the nucleation of FtsZ polymers and reduces the rate of polymerization. In the presence of a non-hydrolyzable analog of GTP, Vitamin K3 did not show inhibition of FtsZ polymerization. These results indicated that Vitamin K3 induces conformational changes in FtsZ that increase GTP hydrolysis and thereby, destabilize the FtsZ polymers. Together, our data provide evidence that Vitamin K3 derives its potent anti-pneumococcal activity by inhibiting FtsZ assembly.
Collapse
|
3
|
de Souza AS, Ribeiro RCB, Costa DCS, Pauli FP, Pinho DR, de Moraes MG, da Silva FDC, Forezi LDSM, Ferreira VF. Menadione: a platform and a target to valuable compounds synthesis. Beilstein J Org Chem 2022; 18:381-419. [PMID: 35529893 PMCID: PMC9039524 DOI: 10.3762/bjoc.18.43] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 01/26/2023] Open
Abstract
Naphthoquinones are important natural or synthetic compounds belonging to the general class of quinones. Many compounds in this class have become drugs that are on the pharmaceutical market for the treatment of various diseases. A special naphthoquinone derivative is menadione, a synthetic naphthoquinone belonging to the vitamin K group. This compound can be synthesized by different methods and it has a broad range of biological and synthetic applications, which will be highlighted in this review.
Collapse
Affiliation(s)
- Acácio S de Souza
- Universidade Federal Fluminense, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, R. Dr. Mario Vianna, 523, Santa Rosa, CEP 24241-002, Niterói-RJ, Brazil
| | - Ruan Carlos B Ribeiro
- Universidade Federal Fluminense, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, R. Dr. Mario Vianna, 523, Santa Rosa, CEP 24241-002, Niterói-RJ, Brazil
| | - Dora C S Costa
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Fernanda P Pauli
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - David R Pinho
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - Matheus G de Moraes
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - Fernando de C da Silva
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - Luana da S M Forezi
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, R. Dr. Mario Vianna, 523, Santa Rosa, CEP 24241-002, Niterói-RJ, Brazil
| |
Collapse
|
4
|
Jakab Á, Emri T, Csillag K, Szabó A, Nagy F, Baranyai E, Sajtos Z, Géczi D, Antal K, Kovács R, Szabó K, Dombrádi V, Pócsi I. The Negative Effect of Protein Phosphatase Z1 Deletion on the Oxidative Stress Tolerance of Candida albicans Is Synergistic with Betamethasone Exposure. J Fungi (Basel) 2021; 7:jof7070540. [PMID: 34356919 PMCID: PMC8305657 DOI: 10.3390/jof7070540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/28/2022] Open
Abstract
The glucocorticoid betamethasone (BM) has potent anti-inflammatory and immunosuppressive effects; however, it increases the susceptibility of patients to superficial Candida infections. Previously we found that this disadvantageous side effect can be counteracted by menadione sodium bisulfite (MSB) induced oxidative stress treatment. The fungus specific protein phosphatase Z1 (CaPpz1) has a pivotal role in oxidative stress response of Candida albicans and was proposed as a potential antifungal drug target. The aim of this study was to investigate the combined effects of CaPPZ1 gene deletion and MSB treatment in BM pre-treated C. albicans cultures. We found that the combined treatment increased redox imbalance, enhanced the specific activities of antioxidant enzymes, and reduced the growth in cappz1 mutant (KO) strain. RNASeq data demonstrated that the presence of BM markedly elevated the number of differentially expressed genes in the MSB treated KO cultures. Accumulation of reactive oxygen species, increased iron content and fatty acid oxidation, as well as the inhibiting ergosterol biosynthesis and RNA metabolic processes explain, at least in part, the fungistatic effect caused by the combined stress exposure. We suggest that the synergism between MSB treatment and CaPpz1 inhibition could be considered in developing of a novel combinatorial antifungal strategy accompanying steroid therapy.
Collapse
Affiliation(s)
- Ágnes Jakab
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (T.E.); (K.C.); (A.S.); (D.G.); (I.P.)
- Correspondence:
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (T.E.); (K.C.); (A.S.); (D.G.); (I.P.)
| | - Kinga Csillag
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (T.E.); (K.C.); (A.S.); (D.G.); (I.P.)
| | - Anita Szabó
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (T.E.); (K.C.); (A.S.); (D.G.); (I.P.)
| | - Fruzsina Nagy
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.N.); (R.K.)
| | - Edina Baranyai
- Agilent Atomic Spectroscopy Partner Laboratory, Department of Inorganic and Analytical Chemistry, University of Debrecen, 4032 Debrecen, Hungary; (E.B.); (Z.S.)
| | - Zsófi Sajtos
- Agilent Atomic Spectroscopy Partner Laboratory, Department of Inorganic and Analytical Chemistry, University of Debrecen, 4032 Debrecen, Hungary; (E.B.); (Z.S.)
| | - Dóra Géczi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (T.E.); (K.C.); (A.S.); (D.G.); (I.P.)
| | - Károly Antal
- Department of Zoology, Faculty of Sciences, Eszterházy Károly University, 3300 Eger, Hungary;
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.N.); (R.K.)
- Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Krisztina Szabó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (V.D.)
| | - Viktor Dombrádi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (V.D.)
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (T.E.); (K.C.); (A.S.); (D.G.); (I.P.)
| |
Collapse
|
5
|
Drug repurposing strategies in the development of potential antifungal agents. Appl Microbiol Biotechnol 2021; 105:5259-5279. [PMID: 34151414 PMCID: PMC8214983 DOI: 10.1007/s00253-021-11407-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Abstract The morbidity and mortality caused by invasive fungal infections are increasing across the globe due to developments in transplant surgery, the use of immunosuppressive agents, and the emergence of drug-resistant fungal strains, which has led to a challenge in terms of treatment due to the limitations of three classes of drugs. Hence, it is imperative to establish effective strategies to identify and design new antifungal drugs. Drug repurposing is a potential way of expanding the application of existing drugs. Recently, various existing drugs have been shown to be useful in the prevention and treatment of invasive fungi. In this review, we summarize the currently used antifungal agents. In addition, the most up-to-date information on the effectiveness of existing drugs with antifungal activity is discussed. Moreover, the antifungal mechanisms of existing drugs are highlighted. These data will provide valuable knowledge to stimulate further investigation and clinical application in this field. Key points • Conventional antifungal agents have limitations due to the occurrence of drug-resistant strains. • Non-antifungal drugs act as antifungal agents in various ways toward different targets. • Non-antifungal drugs with antifungal activity are demonstrated as effective antifungal strategies.
Collapse
|
6
|
Identification of Genomewide Alternative Splicing Events in Sequential, Isogenic Clinical Isolates of Candida albicans Reveals a Novel Mechanism of Drug Resistance and Tolerance to Cellular Stresses. mSphere 2020; 5:5/4/e00608-20. [PMID: 32817456 PMCID: PMC7426172 DOI: 10.1128/msphere.00608-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of resistance in Candida albicans, an opportunistic pathogen, against the commonly used antifungals is becoming a major obstacle in its treatment. The necessity to identify new drug targets demands fundamental insights into the mechanisms used by this organism to develop drug resistance. C. albicans has introns in 4 to 6% of its genes, the functions of which remain largely unknown. Using the RNA-sequencing data from isogenic pairs of azole-sensitive and -resistant isolates of C. albicans, here, we show how C. albicans uses modulations in mRNA splicing to overcome antifungal drug stress. Alternative splicing (AS)—a process by which a single gene gives rise to different protein isoforms in eukaryotes—has been implicated in many basic cellular processes, but little is known about its role in drug resistance and fungal pathogenesis. The most common human fungal pathogen, Candida albicans, has introns in 4 to 6% of its genes, the functions of which remain largely unknown. Here, we report AS regulating drug resistance in C. albicans. Comparative RNA-sequencing of two different sets of sequential, isogenic azole-sensitive and -resistant isolates of C. albicans revealed differential expression of splice isoforms of 14 genes. One of these was the superoxide dismutase gene SOD3, which contains a single intron. The sod3Δ/Δ mutant was susceptible to the antifungals amphotericin B (AMB) and menadione (MND). While AMB susceptibility was rescued by overexpression of both the spliced and unspliced SOD3 isoforms, only the spliced isoform could overcome MND susceptibility, demonstrating the functional relevance of this splicing in developing drug resistance. Furthermore, unlike AMB, MND inhibits SOD3 splicing and acts as a splicing inhibitor. Consistent with these observations, MND exposure resulted in increased levels of unspliced SOD3 isoform that are unable to scavenge reactive oxygen species (ROS), resulting in increased drug susceptibility. Collectively, these observations suggest that AS is a novel mechanism for stress adaptation and overcoming drug susceptibility in C. albicans. IMPORTANCE The emergence of resistance in Candida albicans, an opportunistic pathogen, against the commonly used antifungals is becoming a major obstacle in its treatment. The necessity to identify new drug targets demands fundamental insights into the mechanisms used by this organism to develop drug resistance. C. albicans has introns in 4 to 6% of its genes, the functions of which remain largely unknown. Using the RNA-sequencing data from isogenic pairs of azole-sensitive and -resistant isolates of C. albicans, here, we show how C. albicans uses modulations in mRNA splicing to overcome antifungal drug stress.
Collapse
|
7
|
Nagy F, Vitális E, Jakab Á, Borman AM, Forgács L, Tóth Z, Majoros L, Kovács R. In vitro and in vivo Effect of Exogenous Farnesol Exposure Against Candida auris. Front Microbiol 2020; 11:957. [PMID: 32508780 PMCID: PMC7251031 DOI: 10.3389/fmicb.2020.00957] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
The spreading of multidrug-resistant Candida auris is considered as an emerging global health threat. The number of effective therapeutic regimens is strongly limited; therefore, development of novel strategies is needed. Farnesol is a quorum-sensing molecule with a potential antifungal and/or adjuvant effect; it may be a promising candidate in alternative treatment against Candida species including C. auris. To examine the effect of farnesol on C. auris, we performed experiments focusing on growth, biofilm production ability, production of enzymes related to oxidative stress, triazole susceptibility and virulence. Concentrations ranging from 100 to 300 μM farnesol caused a significant growth inhibition against C. auris planktonic cells for 24 h (p < 0.01-0.05). Farnesol treatment showed a concentration dependent inhibition in terms of biofilm forming ability of C. auris; however, it did not inhibit significantly the biofilm development at 24 h. Nevertheless, the metabolic activity of adhered farnesol pre-exposed cells (75 μM) was significantly diminished at 24 h depending on farnesol treatment during biofilm formation (p < 0.001-0.05). Moreover, 300 μM farnesol exerted a marked decrease in metabolic activity against one-day-old biofilms between 2 and 24 h (p < 0.001). Farnesol increased the production of reactive species remarkably, as revealed by 2',7'-dichlorofluorescein (DCF) assay {3.96 ± 0.89 [nmol DCF (OD640)-1] and 23.54 ± 4.51 [nmol DCF (OD640)-1] for untreated cells and farnesol exposed cells, respectively; p < 0.001}. This was in line with increased superoxide dismutase level {85.69 ± 5.42 [munit (mg protein)-1] and 170.11 ± 17.37 [munit (mg protein)-1] for untreated cells and farnesol exposed cells, respectively; p < 0.001}, but the catalase level remained statistically comparable between treated and untreated cells (p > 0.05). Concerning virulence-related enzymes, exposure to 75 μM farnesol did not influence phospholipase or aspartic proteinase activity (p > 0.05). The interaction between fluconazole, itraconazole, voriconazole, posaconazole, isavuconazole and farnesol showed clear synergism (FICI ranges from 0.038 to 0.375) against one-day-old biofilms. Regarding in vivo experiments, daily 75 μM farnesol treatment decreased the fungal burden in an immunocompromised murine model of disseminated candidiasis, especially in case of inocula pre-exposed to farnesol (p < 0.01). In summary, farnesol shows a promising therapeutic or adjuvant potential in traditional or alternative therapies such as catheter lock therapy.
Collapse
Affiliation(s)
- Fruzsina Nagy
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Eszter Vitális
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary.,Hospital Hygiene Ward, Clinical Centre, University of Debrecen, Debrecen, Hungary
| | - Ágnes Jakab
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary
| | - Andrew M Borman
- UK National Mycology Reference Laboratory, Public Health England, Bristol, United Kingdom
| | - Lajos Forgács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
8
|
Szabó K, Jakab Á, Póliska S, Petrényi K, Kovács K, Issa LHB, Emri T, Pócsi I, Dombrádi V. Deletion of the fungus specific protein phosphatase Z1 exaggerates the oxidative stress response in Candida albicans. BMC Genomics 2019; 20:873. [PMID: 31744473 PMCID: PMC6862791 DOI: 10.1186/s12864-019-6252-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/31/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Candida albicans is an opportunistic pathogen which is responsible for widespread nosocomial infections. It encompasses a fungus specific serine/threonine protein phosphatase gene, CaPPZ1 that is involved in cation transport, cell wall integrity, oxidative stress response, morphological transition, and virulence according to the phenotypes of the cappz1 deletion mutant. RESULTS We demonstrated that a short-term treatment with a sublethal concentration of tert-butyl hydroperoxide suppressed the growth of the fungal cells without affecting their viability, both in the cappz1 mutant and in the genetically matching QMY23 control strains. To reveal the gene expression changes behind the above observations we carried out a global transcriptome analysis. We used a pilot DNA microarray hybridization together with extensive RNA sequencing, and confirmed our results by quantitative RT-PCR. Novel functions of the CaPpz1 enzyme and oxidative stress mechanisms have been unraveled. The numbers of genes affected as well as the amplitudes of the transcript level changes indicated that the deletion of the phosphatase sensitized the response of C. albicans to oxidative stress conditions in important physiological functions like membrane transport, cell surface interactions, oxidation-reduction processes, translation and RNA metabolism. CONCLUSIONS We conclude that in the wild type C. albicans CaPPZ1 has a protective role against oxidative damage. We suggest that the specific inhibition of this phosphatase combined with mild oxidative treatment could be a feasible approach to topical antifungal therapy.
Collapse
Affiliation(s)
- Krisztina Szabó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágnes Jakab
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Petrényi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lama Hasan Bou Issa
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Viktor Dombrádi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary. .,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
9
|
Physiological and Transcriptional Responses of Candida parapsilosis to Exogenous Tyrosol. Appl Environ Microbiol 2019; 85:AEM.01388-19. [PMID: 31399405 DOI: 10.1128/aem.01388-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
Tyrosol plays a key role in fungal morphogenesis and biofilm development. Also, it has a remarkable antifungal effect at supraphysiological concentrations. However, the background of the antifungal effect remains unknown, especially in the case of non-albicans Candida species such as Candida parapsilosis We examined the effect of tyrosol on growth, adhesion, redox homeostasis, virulence, as well as fluconazole susceptibility. To gain further insights into the physiological consequences of tyrosol treatment, we also determined genome-wide gene expression changes using transcriptome sequencing (RNA-Seq). A concentration of 15 mM tyrosol caused significant growth inhibition within 2 h of the addition of tyrosol, while the adhesion of yeast cells was not affected. Tyrosol increased the production of reactive oxygen species remarkably, as revealed by a dichlorofluorescein test, and it was associated with elevated superoxide dismutase, glutathione peroxidase, and catalase activities. The interaction between fluconazole and tyrosol was antagonistic. Tyrosol exposure resulted in 261 and 181 differentially expressed genes with at least a 1.5-fold increase or decrease in expression, respectively, which were selected for further study. Genes involved in ribosome biogenesis showed downregulation, while genes related to the oxidative stress response and ethanol fermentation were upregulated. In addition, tyrosol treatment upregulated the expression of efflux pump genes, including MDR1 and CDR1, and downregulated the expression of the FAD2 and FAD3 virulence genes involved in desaturated fatty acid formation. Our data demonstrate that exogenous tyrosol significantly affects the physiology and gene expression of C. parapsilosis, which could contribute to the development of treatments targeting quorum sensing in the future.IMPORTANCE Candida-secreted quorum-sensing molecules (i.e., farnesol and tyrosol) are key regulators in fungal physiology, which induce phenotypic adaptations, including morphological changes, altered biofilm formation, and synchronized expression of virulence factors. Moreover, they have a remarkable antifungal activity at supraphysiological concentrations. Limited data are available concerning the tyrosol-induced molecular and physiological effects on non-albicans Candida species such as C. parapsilosis In addition, the background of the previously observed antifungal effect caused by tyrosol remains unknown. This study reveals that tyrosol exposure enhanced the oxidative stress response and the expression of efflux pump genes, while it inhibited growth and ribosome biogenesis as well as several virulence-related genes. Metabolism was changed toward glycolysis and ethanol fermentation. Furthermore, the initial adherence was not influenced significantly in the presence of tyrosol. Our results provide several potential explanations for the previously observed antifungal effect.
Collapse
|
10
|
Fan F, Huang X, Yuan K, Zhu B, Zhao Y, Hu R, Wan T, Zhu L, Jin X. Glucocorticoids May Exacerbate Fungal Keratitis by Increasing Fungal Aggressivity and Inhibiting the Formation of Neutrophil Extracellular Traps. Curr Eye Res 2019; 45:124-133. [PMID: 31429304 DOI: 10.1080/02713683.2019.1657464] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Purpose: To evaluate whether glucocorticoids affect the prognosis of fungal keratitis by inhibiting the formation of neutrophil extracellular traps (NETs).Methods: A mouse model of Candida albicans (C.albicans) keratitis was established. Animals were randomly assigned to treatment with 0.1% dexamethasone (DXM) eye drops and normal saline (3 times each day for 3 days). The effects of DXM on fungal keratitis were assessed using clinical scores, immunofluorescence staining, histopathological examination, scanning electron microscopy (SEM), and pathogen burden assay. All the analyses were performed using SPSS software version 17.0 (Chicago, IL).Results: NETs formation was noteworthy in the cornea lesions of fungal keratitis. The clinical score of the DXM-treated group was significantly higher than that of the control group (P < .05). During the measured period, corneas from DXM-treated group contained more C.albicans than those from the control group by histology and pathogen burden assay. Compared with the control group, the DXM treatment group had a higher depth of infiltration of C.albicans. Histological and immunofluorescence staining showed that there were fewer neutrophils in the cornea focus of DXM-treated group (P < .05), and the number of NETs formed in scrapings from control group was higher than that in the DXM treatment group on day 3 (P < .05, Z = -3.56)) and day 5 (P < .05, Z = -3.69). In a similar amount of cell scraping, the NETs of neutrophils formation from the DXM-treated group were also less than that from the control group.Conclusion: Our results indicated that NETs were involved in the immune response in C.albicans keratitis. Glucocorticoids may exacerbate fungal keratitis not only by increasing fungal aggressivity and reducing the infiltration of neutrophils but also by inhibiting the formation of NETs.
Collapse
Affiliation(s)
- Fangli Fan
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Ophthalmology, First People's Hospital of Yuhang District, Hangzhou, China
| | - Xiaodan Huang
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kelan Yuan
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Binbin Zhu
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingying Zhao
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Renjian Hu
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Wan
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lian Zhu
- Department of Ophthalmology, The people's Hospital of SND, Suzhou, China
| | - Xiuming Jin
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Jakab Á, Mogavero S, Förster TM, Pekmezovic M, Jablonowski N, Dombrádi V, Pócsi I, Hube B. Effects of the glucocorticoid betamethasone on the interaction of Candida albicans with human epithelial cells. Microbiology (Reading) 2016; 162:2116-2125. [DOI: 10.1099/mic.0.000383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ágnes Jakab
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Toni M. Förster
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Marina Pekmezovic
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Nadja Jablonowski
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Viktor Dombrádi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
- Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| |
Collapse
|
12
|
Bertóti R, Vasas G, Gonda S, Nguyen NM, Szőke É, Jakab Á, Pócsi I, Emri T. Glutathione protects Candida albicans against horseradish volatile oil. J Basic Microbiol 2016; 56:1071-1079. [PMID: 27272511 DOI: 10.1002/jobm.201600082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/19/2016] [Indexed: 01/21/2023]
Abstract
Horseradish essential oil (HREO; a natural mixture of different isothiocyanates) had strong fungicide effect against Candida albicans both in volatile and liquid phase. In liquid phase this antifungal effect was more significant than those of its main components allyl, and 2-phenylethyl isothiocyanate. HREO, at sublethal concentration, induced oxidative stress which was characterized with elevated superoxide content and up-regulated specific glutathione reductase, glutathione peroxidase, catalase and superoxide dismutase activities. Induction of specific glutathione S-transferase activities as marker of glutathione (GSH) dependent detoxification was also observed. At higher concentration, HREO depleted the GSH pool, increased heavily the superoxide production and killed the cells rapidly. HREO and the GSH pool depleting agent, 1-chlore-2,4-dinitrobenzene showed strong synergism when they were applied together to kill C. albicans cells. Based on all these, we assume that GSH metabolism protects fungi against isothiocyanates.
Collapse
Affiliation(s)
- Regina Bertóti
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary
| | - Gábor Vasas
- Department of Botany, University of Debrecen, Debrecen, Hungary
| | - Sándor Gonda
- Department of Botany, University of Debrecen, Debrecen, Hungary
| | | | - Éva Szőke
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary.
| | - Ágnes Jakab
- Department of Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Tamás Emri
- Department of Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|