1
|
Torres Vera R, Bernabé García AJ, Carmona Álvarez FJ, Martínez Ruiz J, Fernández Martín F. Application and effectiveness of Methylobacterium symbioticum as a biological inoculant in maize and strawberry crops. Folia Microbiol (Praha) 2024; 69:121-131. [PMID: 37526803 PMCID: PMC10876812 DOI: 10.1007/s12223-023-01078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
The effectiveness of Methylobacterium symbioticum in maize and strawberry plants was measured under different doses of nitrogen fertilisation. The biostimulant effect of the bacteria was observed in maize and strawberry plants treated with the biological inoculant under different doses of nitrogen fertiliser compared to untreated plants (control). It was found that bacteria allowed a 50 and 25% decrease in the amount of nitrogen applied in maize and strawberry crops, respectively, and the photosynthetic capacity increased compared with the control plant under all nutritional conditions. A decrease in nitrate reductase activity in inoculated maize plants indicated that the bacteria affects the metabolism of the plant. In addition, inoculated strawberry plants grown with a 25% reduction in nitrogen had a higher concentration of nitrogen in leaves than control plants under optimal nutritional conditions. Again, this indicates that Methylobacterium symbioticum provide an additional supply of nitrogen.
Collapse
|
2
|
Dourado MN, Pierry PM, Feitosa-Junior OR, Uceda-Campos G, Barbosa D, Zaini PA, Dandekar AM, da Silva AM, Araújo WL. Transcriptome and Secretome Analyses of Endophyte Methylobacterium mesophilicum and Pathogen Xylella fastidiosa Interacting Show Nutrient Competition. Microorganisms 2023; 11:2755. [PMID: 38004766 PMCID: PMC10673610 DOI: 10.3390/microorganisms11112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Xylella fastidiosa is the causal agent of several plant diseases affecting fruit and nut crops. Methylobacterium mesophilicum strain SR1.6/6 was isolated from Citrus sinensis and shown to promote plant growth by producing phytohormones, providing nutrients, inhibiting X. fastidiosa, and preventing Citrus Variegated Chlorosis. However, the molecular mechanisms involved in the interaction among these microbes are still unclear. The present work aimed to analyze physiological and molecular aspects of M. mesophilicum SR1.6/6 and X. fastidiosa 9a5c in co-culture. The transcriptome and secretome analyses indicated that X. fastidiosa down-regulates cell division and transport genes and up-regulates stress via induction of chaperones and pathogenicity-related genes including, the lipase-esterase LesA, a protease, as well as an oligopeptidase in response to M. mesophilicum competition. On the other hand, M. mesophilicum also down-regulated transport genes, except for iron uptake, which was up-regulated. Secretome analysis identified four proteins in M. mesophilicum exclusively produced in co-culture with X. fastidiosa, among these, three are related to phosphorous uptake. These results suggest that M. mesophilicum inhibits X. fastidiosa growth mainly due to nutrient competition for iron and phosphorous, thus promoting X. fastidiosa starvation, besides producing enzymes that degrade X. fastidiosa cell wall, mainly hydrolases. The understanding of these interactions provides a direction for control and management of the phytopathogen X. fastidiosa, and consequently, helps to improve citrus growth and productivity.
Collapse
Affiliation(s)
- Manuella Nobrega Dourado
- Microbiology Department, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo 05508-000, Brazil
- Agronomic Engineering College, University of Sorocaba, Sorocaba, Sao Paulo 18023-000, Brazil
| | - Paulo Marques Pierry
- Biochemistry Department, Chemistry Institute, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (P.M.P.); (O.R.F.-J.)
| | | | - Guillermo Uceda-Campos
- Biochemistry Department, Chemistry Institute, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (P.M.P.); (O.R.F.-J.)
| | - Deibs Barbosa
- Biochemistry Department, Chemistry Institute, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (P.M.P.); (O.R.F.-J.)
| | - Paulo A. Zaini
- Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, USA; (P.A.Z.)
| | - Abhaya M. Dandekar
- Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, USA; (P.A.Z.)
| | - Aline Maria da Silva
- Biochemistry Department, Chemistry Institute, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (P.M.P.); (O.R.F.-J.)
| | - Welington Luiz Araújo
- Microbiology Department, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
3
|
Cheng JE, Su P, Zhang ZH, Zheng LM, Wang ZY, Hamid MR, Dai JP, Du XH, Chen LJ, Zhai ZY, Kong XT, Liu Y, Zhang DY. Metagenomic analysis of the dynamical conversion of photosynthetic bacterial communities in different crop fields over different growth periods. PLoS One 2022; 17:e0262517. [PMID: 35834536 PMCID: PMC9282544 DOI: 10.1371/journal.pone.0262517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic bacteria are beneficial to plants, but knowledge of photosynthetic bacterial community dynamics in field crops during different growth stages is scarce. The factors controlling the changes in the photosynthetic bacterial community during plant growth require further investigation. In this study, 35 microbial community samples were collected from the seedling, flowering, and mature stages of tomato, cucumber, and soybean plants. 35 microbial community samples were assessed using Illumina sequencing of the photosynthetic reaction center subunit M (pufM) gene. The results revealed significant alpha diversity and community structure differences among the three crops at the different growth stages. Proteobacteria was the dominant bacterial phylum, and Methylobacterium, Roseateles, and Thiorhodococcus were the dominant genera at all growth stages. PCoA revealed clear differences in the structure of the microbial populations isolated from leaf samples collected from different crops at different growth stages. In addition, a dissimilarity test revealed significant differences in the photosynthetic bacterial community among crops and growth stages (P<0.05). The photosynthetic bacterial communities changed during crop growth. OTUs assigned to Methylobacterium were present in varying abundances among different sample types, which we speculated was related to the function of different Methylobacterium species in promoting plant growth development and enhancing plant photosynthetic efficiency. In conclusion, the dynamics observed in this study provide new research ideas for the detailed assessments of the relationship between photosynthetic bacteria and different growth stages of plants.
Collapse
Affiliation(s)
- Ju-E Cheng
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Pin Su
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhan-Hong Zhang
- Hunan Vegetable Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Li-Min Zheng
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Zhong-Yong Wang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Muhammad Rizwan Hamid
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Jian-Ping Dai
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Xiao-Hua Du
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Li-Jie Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Zhong-Ying Zhai
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Xiao-Ting Kong
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, China
| | - Yong Liu
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - De-Yong Zhang
- Hunan Hybrid Rice Research Center, Changsha, China
- * E-mail:
| |
Collapse
|
4
|
Lacava PT, Bogas AC, Cruz FDPN. Plant Growth Promotion and Biocontrol by Endophytic and Rhizospheric Microorganisms From the Tropics: A Review and Perspectives. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.796113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Currently, the tropics harbor a wide variety of crops to feed the global population. Rapid population expansion and the consequent major demand for food and agriculture-based products generate initiatives for tropical forest deforestation, which contributes to land degradation and the loss of macro and micronative biodiversity of ecosystems. Likewise, the entire dependence on fertilizers and pesticides also contributes to negative impacts on environmental and human health. To guarantee current and future food safety, as well as natural resource preservation, systems for sustainable crops in the tropics have attracted substantial attention worldwide. Therefore, the use of beneficial plant-associated microorganisms is a promising sustainable way to solve issues concerning modern agriculture and the environment. Efficient strains of bacteria and fungi are a rich source of natural products that might improve crop yield in numerous biological ways, such as nitrogen fixation, hormone production, mobilization of insoluble nutrients, and mechanisms related to plant biotic and abiotic stress alleviation. Additionally, these microorganisms also exhibit great potential for the biocontrol of phytopathogens and pest insects. This review addresses research regarding endophytic and rhizospheric microorganisms associated with tropical plants as a sustainable alternative to control diseases and enhance food production to minimize ecological damage in tropical ecosystems.
Collapse
|
5
|
Giampetruzzi A, Baptista P, Morelli M, Cameirão C, Lino Neto T, Costa D, D’Attoma G, Abou Kubaa R, Altamura G, Saponari M, Pereira JA, Saldarelli P. Differences in the Endophytic Microbiome of Olive Cultivars Infected by Xylella fastidiosa across Seasons. Pathogens 2020; 9:pathogens9090723. [PMID: 32887278 PMCID: PMC7558191 DOI: 10.3390/pathogens9090723] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
The dynamics of Xylella fastidiosa infections in the context of the endophytic microbiome was studied in field-grown plants of the susceptible and resistant olive cultivars Kalamata and FS17. Whole metagenome shotgun sequencing (WMSS) coupled with 16S/ITS rRNA gene sequencing was carried out on the same trees at two different stages of the infections: In Spring 2017 when plants were almost symptomless and in Autumn 2018 when the trees of the susceptible cultivar clearly showed desiccations. The progression of the infections detected in both cultivars clearly unraveled that Xylella tends to occupy the whole ecological niche and suppresses the diversity of the endophytic microbiome. However, this trend was mitigated in the resistant cultivar FS17, harboring lower population sizes and therefore lower Xylella average abundance ratio over total bacteria, and a higher α-diversity. Host cultivar had a negligible effect on the community composition and no clear associations of a single taxon or microbial consortia with the resistance cultivar were found with both sequencing approaches, suggesting that the mechanisms of resistance likely reside on factors that are independent of the microbiome structure. Overall, Proteobacteria, Actinobacteria, Firmicutes, and Bacteriodetes dominated the bacterial microbiome while Ascomycota and Basidiomycota those of Fungi.
Collapse
Affiliation(s)
- Annalisa Giampetruzzi
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari, 70126 Bari, Italy;
| | - Paula Baptista
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.B.); (C.C.); (J.A.P.)
| | - Massimiliano Morelli
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - Cristina Cameirão
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.B.); (C.C.); (J.A.P.)
| | - Teresa Lino Neto
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (T.L.N.); (D.C.)
| | - Daniela Costa
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (T.L.N.); (D.C.)
| | - Giusy D’Attoma
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - Raied Abou Kubaa
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - Giuseppe Altamura
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - Maria Saponari
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.B.); (C.C.); (J.A.P.)
| | - Pasquale Saldarelli
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
- Correspondence: ; Tel.: +39-0805443065
| |
Collapse
|
6
|
Bucci EM. Xylella fastidiosa , a new plant pathogen that threatens global farming: Ecology, molecular biology, search for remedies. Biochem Biophys Res Commun 2018; 502:173-182. [DOI: 10.1016/j.bbrc.2018.05.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 11/30/2022]
|
7
|
Braga RM, Dourado MN, Araújo WL. Microbial interactions: ecology in a molecular perspective. Braz J Microbiol 2016; 47 Suppl 1:86-98. [PMID: 27825606 PMCID: PMC5156507 DOI: 10.1016/j.bjm.2016.10.005] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/07/2016] [Indexed: 02/06/2023] Open
Abstract
The microorganism–microorganism or microorganism–host interactions are the key strategy to colonize and establish in a variety of different environments. These interactions involve all ecological aspects, including physiochemical changes, metabolite exchange, metabolite conversion, signaling, chemotaxis and genetic exchange resulting in genotype selection. In addition, the establishment in the environment depends on the species diversity, since high functional redundancy in the microbial community increases the competitive ability of the community, decreasing the possibility of an invader to establish in this environment. Therefore, these associations are the result of a co-evolution process that leads to the adaptation and specialization, allowing the occupation of different niches, by reducing biotic and abiotic stress or exchanging growth factors and signaling. Microbial interactions occur by the transference of molecular and genetic information, and many mechanisms can be involved in this exchange, such as secondary metabolites, siderophores, quorum sensing system, biofilm formation, and cellular transduction signaling, among others. The ultimate unit of interaction is the gene expression of each organism in response to an environmental (biotic or abiotic) stimulus, which is responsible for the production of molecules involved in these interactions. Therefore, in the present review, we focused on some molecular mechanisms involved in the microbial interaction, not only in microbial–host interaction, which has been exploited by other reviews, but also in the molecular strategy used by different microorganisms in the environment that can modulate the establishment and structuration of the microbial community.
Collapse
Affiliation(s)
- Raíssa Mesquita Braga
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Manuella Nóbrega Dourado
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Welington Luiz Araújo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Azevedo JL, Araújo WL, Lacava PT. The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants. Genet Mol Biol 2016; 39:476-491. [PMID: 27727362 PMCID: PMC5127157 DOI: 10.1590/1678-4685-gmb-2016-0056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/09/2016] [Indexed: 11/22/2022] Open
Abstract
The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC) and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.)] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms. The citrus endophytic bacterium Methylobacterium mesophilicum can trigger X. fastidiosa response in vitro, which results in reduced growth and induction of genes associated with energy production, stress, transport, and motility, indicating that X. fastidiosa has an adaptive response to M. mesophilicum. Although this response may result in reduced CVC symptoms, the colonization rate of the endophytic bacteria should be considered in studies that intend to use this endophyte to suppress CVC disease. Symbiotic control is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace pathogens. Candidate endophytes for symbiotic control of CVC must occupy the xylem of host plants and attach to the precibarium of sharpshooter insects to access the pathogen. In the present review, we focus on interactions between endophytic bacteria from sweet orange plants and X. fastidiosa, especially those that may be candidates for control of CVC.
Collapse
Affiliation(s)
- João Lúcio Azevedo
- Departamento de Genética, Escola Superior de Agricultura Luiz de
Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Welington Luiz Araújo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas,
Universidade de São Paulo, São Paulo, SP, Brazil
| | - Paulo Teixeira Lacava
- Departamento de Morfologia e Patologia, Centro de Ciências Biológicas
e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
9
|
Perilla-Henao LM, Casteel CL. Vector-Borne Bacterial Plant Pathogens: Interactions with Hemipteran Insects and Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1163. [PMID: 27555855 PMCID: PMC4977473 DOI: 10.3389/fpls.2016.01163] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/20/2016] [Indexed: 05/22/2023]
Abstract
Hemipteran insects are devastating pests of crops due to their wide host range, rapid reproduction, and ability to transmit numerous plant-infecting pathogens as vectors. While the field of plant-virus-vector interactions has flourished in recent years, plant-bacteria-vector interactions remain poorly understood. Leafhoppers and psyllids are by far the most important vectors of bacterial pathogens, yet there are still significant gaps in our understanding of their feeding behavior, salivary secretions, and plant responses as compared to important viral vectors, such as whiteflies and aphids. Even with an incomplete understanding of plant-bacteria-vector interactions, some common themes have emerged: (1) all known vector-borne bacteria share the ability to propagate in the plant and insect host; (2) particular hemipteran families appear to be incapable of transmitting vector-borne bacteria; (3) all known vector-borne bacteria have highly reduced genomes and coding capacity, resulting in host-dependence; and (4) vector-borne bacteria encode proteins that are essential for colonization of specific hosts, though only a few types of proteins have been investigated. Here, we review the current knowledge on important vector-borne bacterial pathogens, including Xylella fastidiosa, Spiroplasma spp., Liberibacter spp., and 'Candidatus Phytoplasma spp.'. We then highlight recent approaches used in the study of vector-borne bacteria. Finally, we discuss the application of this knowledge for control and future directions that will need to be addressed in the field of vector-plant-bacteria interactions.
Collapse
Affiliation(s)
| | - Clare L. Casteel
- Department of Plant Pathology, University of California at Davis, Davis, CAUSA
| |
Collapse
|