1
|
Eldin P, David A, Hirtz C, Battini JL, Briant L. SARS-CoV-2 Displays a Suboptimal Codon Usage Bias for Efficient Translation in Human Cells Diverted by Hijacking the tRNA Epitranscriptome. Int J Mol Sci 2024; 25:11614. [PMID: 39519170 PMCID: PMC11546939 DOI: 10.3390/ijms252111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Codon bias analysis of SARS-CoV-2 reveals suboptimal adaptation for translation in human cells it infects. The detailed examination of the codons preferentially used by SARS-CoV-2 shows a strong preference for LysAAA, GlnCAA, GluGAA, and ArgAGA, which are infrequently used in human genes. In the absence of an adapted tRNA pool, efficient decoding of these codons requires a 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2) modification at the U34 wobble position of the corresponding tRNAs (tLysUUU; tGlnUUG; tGluUUC; tArgUCU). The optimal translation of SARS-CoV-2 open reading frames (ORFs) may therefore require several adjustments to the host's translation machinery, enabling the highly biased viral genome to achieve a more favorable "Ready-to-Translate" state in human cells. Experimental approaches based on LC-MS/MS quantification of tRNA modifications and on alteration of enzymatic tRNA modification pathways provide strong evidence to support the hypothesis that SARS-CoV-2 induces U34 tRNA modifications and relies on these modifications for its lifecycle. The conclusions emphasize the need for future studies on the evolution of SARS-CoV-2 codon bias and its ability to alter the host tRNA pool through the manipulation of RNA modifications.
Collapse
Affiliation(s)
- Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS UMR 9004, 1919 route de Mende, 34293 Montpellier, France
| | - Alexandre David
- Institut de Génomique Fonctionnelle (IGF), INSERM U1191, 141 Rue de la Cardonille, 34000 Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB)-Plateforme de Protéomique Clinique (PPC), Institut des Neurosciences de Montpellier (INM), University of Montpellier, CHU Montpellier, INSERM CNRS, 298 Rue du Truel, 34090 Montpellier, France
| | - Christophe Hirtz
- Institute for Regenerative Medicine and Biotherapy (IRMB)-Plateforme de Protéomique Clinique (PPC), Institut des Neurosciences de Montpellier (INM), University of Montpellier, CHU Montpellier, INSERM CNRS, 298 Rue du Truel, 34090 Montpellier, France
| | - Jean-Luc Battini
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS UMR 9004, 1919 route de Mende, 34293 Montpellier, France
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS UMR 9004, 1919 route de Mende, 34293 Montpellier, France
| |
Collapse
|
2
|
Kanduc D. The Role of Codon Usage, tRNA Availability, and Cell Proliferation in EBV Latency and (Re)Activation. Glob Med Genet 2022; 9:219-225. [PMID: 36118264 PMCID: PMC9477563 DOI: 10.1055/s-0042-1751301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Epstein–Barr nuclear antigen 1 (EBNA1) protein synthesis is inhibited during Epstein–Barr virus (EBV) latency and is resumed in EBV (re)activation. In analyzing the molecular mechanisms underpinning the translation of
EBNA1
in the human host, this article deals with two orders of data. First, it shows that the heavily biased codon usage of the
EBNA1
open reading frame cannot be translated due to its noncompliance with the human codon usage pattern and the corresponding tRNA pool. The
EBNA1
codon bias resides in the sequence composed exclusively of glycine and alanine, i.e., the Gly-Ala repeat (GAR). Removal of the nucleotide sequence coding for GAR results in an
EBNA1
codon usage pattern with a lower codon bias, thus conferring translatability to EBNA1. Second, the data bring cell proliferation to the fore as a conditio sine qua non for qualitatively and quantitatively modifying the host's tRNA pool as required by the translational needs of EBNA1, thus enabling viral reactivation. Taken together, the present work provides a biochemical mechanism for the pathogen's shift from latency to (re)activation and confirms the role of human codon usage as a first-line tool of innate immunity in inhibiting pathogens' expression. Immunologically, this study cautions against using codon optimization and proliferation-inducing substances such as glucocorticoids and adjuvants, which can (re)activate the otherwise quiescent, asymptomatic, and innocuous EBV infection. Lastly, the data pose the question whether the causal pathogenic role attributed to EBV should instead be ascribed to the carcinogenesis-associated cellular proliferation.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
3
|
Abstract
Infectious diseases pose two main compelling issues. First, the identification of the molecular factors that allow chronic infections, that is, the often completely asymptomatic coexistence of infectious agents with the human host. Second, the definition of the mechanisms that allow the switch from pathogen dormancy to pathologic (re)activation. Furthering previous studies, the present study (1) analyzed the frequency of occurrence of synonymous codons in coding DNA, that is, codon usage, as a genetic tool that rules protein expression; (2) described how human codon usage can inhibit protein expression of infectious agents during latency, so that pathogen genes the codon usage of which does not conform to the human codon usage cannot be translated; and (3) framed human codon usage among the front-line instruments of the innate immunity against infections. In parallel, it was shown that, while genetics can account for the molecular basis of pathogen latency, the changes of the quantitative relationship between codon frequencies and isoaccepting tRNAs during cell proliferation offer a biochemical mechanism that explains the pathogen switching to (re)activation. Immunologically, this study warns that using codon optimization methodologies can (re)activate, potentiate, and immortalize otherwise quiescent, asymptomatic pathogens, thus leading to uncontrollable pandemics.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
4
|
Kanduc D. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Codon Usage and Replicative Fitness. Glob Med Genet 2020; 7:92-94. [PMID: 33392612 PMCID: PMC7772010 DOI: 10.1055/s-0040-1721080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) codon usage, as shown by the polyprotein coding sequence, shows better translation potential in the human host when compared with human coronavirus OC43 (HCoV-OC43) codon usage. Such translational advantage might facilitate SARS-CoV-2 replication, immunogenicity, and pathogenicity, thus also accounting for the less harmful character of HCoV-OC43 infection.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
5
|
Nunes A, Ribeiro DR, Marques M, Santos MAS, Ribeiro D, Soares AR. Emerging Roles of tRNAs in RNA Virus Infections. Trends Biochem Sci 2020; 45:794-805. [PMID: 32505636 DOI: 10.1016/j.tibs.2020.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
Viruses rely on the host cell translation machinery for efficient synthesis of their own proteins. Emerging evidence highlights different roles for host transfer RNAs (tRNAs) in the process of virus replication. For instance, different RNA viruses manipulate host tRNA pools to favor viral protein translation. Interestingly, specific host tRNAs are used as reverse transcription primers and are packaged into retroviral virions. Recent data also demonstrate the formation of tRNA-derived fragments (tRFs) upon infection to facilitate viral replication. Here, we comprehensively discuss how RNA viruses exploit distinct aspects of the host tRNA biology for their benefit. In light of the recent advances in the field, we propose that host tRNA-related pathways and mechanisms represent promising cellular targets for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Alexandre Nunes
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Diana Roberta Ribeiro
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mariana Marques
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Manuel A S Santos
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Daniela Ribeiro
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Ana Raquel Soares
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
6
|
Kanduc D. Rare Human Codons and HCMV Translational Regulation. J Mol Microbiol Biotechnol 2017; 27:213-216. [PMID: 28858877 DOI: 10.1159/000478093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/06/2017] [Indexed: 11/19/2022] Open
Abstract
Restriction of protein synthesis characterizes human cytomegalovirus (HCMV) latency in the human host. In analyzing the molecular factors that hinder HCMV expression, the present study shows that HCMV genes frequently use 6 rare codons, i.e., GCG (Ala), CCG (Pro), CGT (Arg), CGC (Arg), TCG (Ser), and ACG (Thr). In some instances, the rare host codons are clustered along viral nucleotide sequences and represent the majority in sequences encoding short alanine and proline repeats. Given the positive correlation between codon usage, tRNA content, and protein production, the results support the hypothesis that HCMV usage of rare human codons might hinder HCMV protein synthesis, in this way leading to HCMV latency.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
7
|
Kumar CS, Kumar S. Synonymous codon usage of genes in polymerase complex of Newcastle disease virus. J Basic Microbiol 2017; 57:481-503. [PMID: 28387456 DOI: 10.1002/jobm.201600740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 02/26/2017] [Accepted: 03/04/2017] [Indexed: 11/10/2022]
Abstract
Newcastle disease virus (NDV) is pathogenic to both avian and non-avian species but extensively finds poultry as its primary host and causes heavy economic losses in the poultry industry. In this study, a total of 186 polymerase complex comprising of nucleoprotein (N), phosphoprotein (P), and large polymerase (L) genes of NDV was analyzed for synonymous codon usage. The relative synonymous codon usage and effective number of codons (ENC) values were used to estimate codon usage variation in each gene. Correspondence analysis (COA) was used to study the major trend in codon usage variation. Analyzing the ENC plot values against GC3s (at synonymous third codon position) we concluded that mutational pressure was the main factor determining codon usage bias than translational selection in NDV N, P, and L genes. Moreover, correlation analysis indicated, that aromaticity of N, P, and L genes also influenced the codon usage variation. The varied distribution of pathotypes for N, P, and L gene clearly suggests that change in codon usage for NDV is pathotype specific. The codon usage preference similarity in N, P, and L gene might be detrimental for polymerase complex functioning. The study represents a comprehensive analysis to date of N, P, and L genes codon usage pattern of NDV and provides a basic understanding of the mechanisms for codon usage bias.
Collapse
Affiliation(s)
- Chandra Shekhar Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|