1
|
Baliga P, Shekar M, Tg P, Sk G. Investigation into the prevalent CRISPR-Cas systems among the Aeromonas genus. J Basic Microbiol 2021; 61:874-882. [PMID: 34486151 DOI: 10.1002/jobm.202100234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/12/2021] [Accepted: 08/21/2021] [Indexed: 01/15/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) is a prokaryotic adaptive immune system that checks invasion by mobile genetic elements through nuclease targeting. In this study, we investigated the occurrence, diversity, and features of the CRISPR system in the genus Aeromonas using bioinformatics tools. Only 13 out of 122 complete genomes (10.66%) of the genus Aeromonas from the NCBI GenBank database harbored the CRISPR system. The Type I-F system was the most prevalent CRISPR system among the Aeromonads, followed by the Type I-E system. Only one strain harbored a Type I-C CRISPR system. Among the Aeromonads, Aeromonas caviae (22.7%) and Aeromonas veronii (20%) had a higher prevalence rate of the complete CRISPR system. The analysis of direct repeat (DR) sequences showed that all could form stable RNA secondary structures. A phylogenetic tree generated for the Cas1 protein classified CRISPR subtypes into three distinct clusters. Among the 748 spacers investigated, 41.98% and 17.25% showed perfect homology to phage and plasmid sequences, respectively. Some arrays had duplicated spacers. The CRISPR loci are closely linked to antibiotic resistance genes in most strains. Collectively, our results would contribute to research on antibiotic resistance in the Aeromonas group, and provide new insights into the diversity and evolution of the CRISPR-Cas system.
Collapse
Affiliation(s)
- Pallavi Baliga
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, Karnataka, India
| | - Malathi Shekar
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, Karnataka, India
| | - Puneeth Tg
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, Karnataka, India
| | - Girisha Sk
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, Karnataka, India
| |
Collapse
|
2
|
Safari F, Afarid M, Rastegari B, Borhani-Haghighi A, Barekati-Mowahed M, Behzad-Behbahani A. CRISPR systems: Novel approaches for detection and combating COVID-19. Virus Res 2021; 294:198282. [PMID: 33428981 PMCID: PMC7832022 DOI: 10.1016/j.virusres.2020.198282] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/13/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023]
Abstract
Type V and VI CRISPR enzymes are RNA-guided, DNA and RNA-targeting effectors that allow specific gene knockdown. Cas12 and Cas13 are CRISPR proteins that are efficient agents for diagnosis and combating single-stranded RNA (ssRNA) viruses. The programmability of these proteins paves the way for the detection and degradation of RNA viruses by targeting RNAs complementary to its CRISPR RNA (crRNA). Approximately two-thirds of viruses causing diseases contain ssRNA genomes. The Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) has caused the outbreak of the coronavirus disease 2019 (COVID-19), which has infected more than 88 million people worldwide with near 2 million deaths since December 2019. Thus, accurate and rapid diagnostic and therapeutic tools are essential for early detection and treatment of this widespread infectious disease. For us, the CRISPR based platforms seem to be a plausible new approach for an accurate detection and treatment of SARS-CoV-2. In this review, we talk about Cas12 and Cas13 CRISPR systems and their applications in diagnosis and treatment of RNA virus mediated diseases. In continue, the SARS-CoV-2 pathogenicity, and its conventional diagnostics and antivirals will be discussed. Moreover, we highlight novel CRISPR based diagnostic platforms and therapies for COVID-19. We also discuss the challenges of diagnostic CRISPR based platforms as well as clarifying the proposed solution for high efficient selective in vivo delivery of CRISPR components into SARS-CoV-2-infected cells.
Collapse
Affiliation(s)
- Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Afarid
- Shooshtari Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Banafsheh Rastegari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mazyar Barekati-Mowahed
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, OH, USA
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Safari F, Sharifi M, Farajnia S, Akbari B, Karimi Baba Ahmadi M, Negahdaripour M, Ghasemi Y. The interaction of phages and bacteria: the co-evolutionary arms race. Crit Rev Biotechnol 2019; 40:119-137. [PMID: 31793351 DOI: 10.1080/07388551.2019.1674774] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since the dawn of life, bacteria and phages are locked in a constant battle and both are perpetually changing their tactics to overcome each other. Bacteria use various strategies to overcome the invading phages, including adsorption inhibition, restriction-modification (R/E) systems, CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) systems, abortive infection (Abi), etc. To counteract, phages employ intelligent tactics for the nullification of bacterial defense systems, such as accessing host receptors, evading R/E systems, and anti-CRISPR proteins. Intense knowledge about the details of these defense pathways is the basis for their broad utilities in various fields of research from microbiology to biotechnology. Hence, in this review, we discuss some strategies used by bacteria to inhibit phage infections as well as phage tactics to circumvent bacterial defense systems. In addition, the application of these strategies will be described as a lesson learned from bacteria and phage combats. The ecological factors that affect the evolution of bacterial immune systems is the other issue represented in this review.
Collapse
Affiliation(s)
- Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Sharifi
- Department of Emergency Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Akbari
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Qu D, Lu S, Wang P, Jiang M, Yi S, Han J. Analysis of CRISPR/Cas system of Proteus and the factors affected the functional mechanism. Life Sci 2019; 231:116531. [PMID: 31175856 DOI: 10.1016/j.lfs.2019.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND The Proteus is one of the most common human and animal pathogens. Clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR/Cas) are inheritable genetic elements found in a variety of archaea and bacteria in the evolution, providing immune function against foreign invasion. OBJECTIVES To analyze the characteristics and functions of the CRISPR/Cas system in Proteus genomes, as well as the internal and external factors affecting the system. METHODS CRISPR loci were identified and divided into groups based on the repeat sequence in 96 Proteus strains by identification. Compared the RNA secondary structure and minimum free energy of CRISPR loci through bioinformatics, the evolution of cas genes, and the effects of related elements were also discussed. RESULTS 85 CRISPR loci were identified and divided into six groups based on the sequence of repeats, and the more stable the secondary structure of RNA, the smaller the minimum free energy, the fewer base mutations in the repeat, the more stable the CRISPR and the more complete the evolution of the system. In addition, Cas1 gene can be a symbol to distinguish species to some extent. Of all the influencing factors, CRISPR/Cas had the greatest impact on plasmids. CONCLUSIONS This study examined the diversity of CRISPR/Cas system in Proteus and found statistically significant positive/negative correlations between variety factors (the RNA stability, free energy, etc.) and the CRISPR locus, which played a vital role in regulating the CRISPR/Cas system.
Collapse
Affiliation(s)
- Daofeng Qu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Shiyao Lu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Peng Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Mengxue Jiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Songqiang Yi
- Jiangxi Animal Husbandry Technology Extension Station, Nanchang 330046, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
5
|
Safari F, Zare K, Negahdaripour M, Barekati-Mowahed M, Ghasemi Y. CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Biosci 2019; 9:36. [PMID: 31086658 PMCID: PMC6507119 DOI: 10.1186/s13578-019-0298-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/20/2019] [Indexed: 12/19/2022] Open
Abstract
CRISPR and CRISPR-associated (Cas) protein, as components of microbial adaptive immune system, allows biologists to edit genomic DNA in a precise and specific way. CRISPR-Cas systems are classified into two main classes and six types. Cpf1 is a putative type V (class II) CRISPR effector, which can be programmed with a CRISPR RNA to bind and cleave complementary DNA targets. Cpf1 has recently emerged as an alternative for Cas9, due to its distinct features such as the ability to target T-rich motifs, no need for trans-activating crRNA, inducing a staggered double-strand break and potential for both RNA processing and DNA nuclease activity. In this review, we attempt to discuss the evolutionary origins, basic architectures, and molecular mechanisms of Cpf1 family proteins, as well as crRNA designing and delivery strategies. We will also describe the novel Cpf1 variants, which have broadened the versatility and feasibility of this system in genome editing, transcription regulation, epigenetic modulation, and base editing. Finally, we will be reviewing the recent studies on utilization of Cpf1as a molecular tool for genome editing.
Collapse
Affiliation(s)
- Fatemeh Safari
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Zare
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazyar Barekati-Mowahed
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Ohio, USA
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Qin K, Liang X, Sun G, Shi X, Wang M, Liu H, Chen Y, Liu X, He Z. Highly efficient correction of structural mutations of 450 kb KIT locus in kidney cells of Yorkshire pig by CRISPR/Cas9. BMC Mol Cell Biol 2019; 20:4. [PMID: 31041890 PMCID: PMC6446502 DOI: 10.1186/s12860-019-0184-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 03/11/2019] [Indexed: 11/23/2022] Open
Abstract
The white coat colour of Yorkshire and Landrace pig breeds is caused by the dominant white I allele of KIT, associated with 450-kb duplications and a splice mutation (G > A) at the first base in intron 17. To test whether genome editing can be employed to correct this structural mutation, and to investigate the role of KIT in the control of porcine coat colour, we designed sgRNAs targeting either intron 16 or intron 17 of KIT, and transfected Cas9/sgRNA co-expression plasmids into the kidney cells of Yorkshire pigs. The copy number of KIT was reduced by about 13%, suggesting the possibility of obtaining cells with corrected structural mutations of the KIT locus. Using single cell cloning, from 24 successfully expanded single cell clones derived from cells transfected with sgRNA targeting at intron 17, we obtained 3 clones with a single copy of KIT without the splice mutation. Taken together, the 12.5% (3/24) efficiency of correction of structural mutations of 450 kb fragments is highly efficient, providing a solid basis for the generation of genome edited Yorkshire pigs with a normal KIT locus. This provides an insight into the underlying genetic mechanisms of porcine coat colour.
Collapse
Affiliation(s)
- Ke Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xinyu Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Guanjie Sun
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xuan Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Min Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Hongbo Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
7
|
Dorosti H, Eslami M, Negahdaripour M, Ghoshoon MB, Gholami A, Heidari R, Dehshahri A, Erfani N, Nezafat N, Ghasemi Y. Vaccinomics approach for developing multi-epitope peptide pneumococcal vaccine. J Biomol Struct Dyn 2019; 37:3524-3535. [DOI: 10.1080/07391102.2018.1519460] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hesam Dorosti
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Eslami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Bagher Ghoshoon
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrollah Erfani
- Cancer Immunology Group, Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Zhang J, Li X, Deng Z, Ou HY. Comparative Analysis of CRISPR Loci Found in Streptomyces Genome Sequences. Interdiscip Sci 2018; 10:848-853. [DOI: 10.1007/s12539-018-0301-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 12/24/2022]
|
9
|
Negahdaripour M, Nezafat N, Eslami M, Ghoshoon MB, Shoolian E, Najafipour S, Morowvat MH, Dehshahri A, Erfani N, Ghasemi Y. Structural vaccinology considerations for in silico designing of a multi-epitope vaccine. INFECTION GENETICS AND EVOLUTION 2018; 58:96-109. [DOI: 10.1016/j.meegid.2017.12.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 01/26/2023]
|
10
|
Eslami M, Nezafat N, Khajeh S, Mostafavi-Pour Z, Bagheri Novir S, Negahdaripour M, Ghasemi Y, Razban V. Deep analysis of N-cadherin/ADH-1 interaction: a computational survey. J Biomol Struct Dyn 2018; 37:210-228. [PMID: 29301458 DOI: 10.1080/07391102.2018.1424035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Due to the considerable role of N-cadherin in cancer metastasis, tumor growth, and progression, inhibition of this protein has been highly regarded in recent years. Although ADH-1 has been known as an appropriate inhibitor of N-cadherin in clinical trials, its chemical nature and binding mode with N-cadherin have not been precisely specified yet. Accordingly, in this study, quantum mechanics calculations were used to investigate the chemical nature of ADH-1. These calculations clarify the molecular properties of ADH-1 and determine its reactive sites. Based on the results, the oxygen atoms are suitable for electrophilic reactivity, while the hydrogen atoms that are connected to nitrogen atoms are the favorite sites for nucleophilic reactivity. The higher electronegativity of the oxygen atoms makes them the most reactive portions in this molecule. Molecular docking and molecular dynamics (MD) simulation have also been applied to specify the binding mode of ADH-1 with N-cadherin and determine the important residues of N-cadherin involving in the interaction with ADH-1. Moreover, the verified model by MD simulation has been studied to extract the free energy value and find driving forces. These calculations and molecular electrostatic potential map of ADH-1 indicated that hydrophobic and electrostatic interactions are almost equally involved in the implantation of ADH-1 in the N-cadherin binding site. The presented results not only enable a closer examination of N-cadherin in complex with ADH-1 molecule, but also are very beneficial in designing new inhibitors for N-cadherin and can help to save time and cost in this field.
Collapse
Affiliation(s)
- Mahboobeh Eslami
- a Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Navid Nezafat
- a Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Sahar Khajeh
- b Biochemistry Department, Medical School , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Zohreh Mostafavi-Pour
- b Biochemistry Department, Medical School , Shiraz University of Medical Sciences , Shiraz , Iran.,c Recombinant Protein Lab, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Samaneh Bagheri Novir
- d Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch , Islamic Azad University , Tehran , Iran
| | - Manica Negahdaripour
- a Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran.,e Department of Pharmaceutical Biotechnology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Younes Ghasemi
- a Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran.,e Department of Pharmaceutical Biotechnology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Vahid Razban
- f Molecular Medicine Department , School of Advanced Medical Sciences and Technology, Shiraz University of Medical Sciences , Shiraz , Iran.,g Stem Cell Technology Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
11
|
Bangpanwimon K, Sottisuporn J, Mittraparp-Arthorn P, Ueaphatthanaphanich W, Rattanasupar A, Pourcel C, Vuddhakul V. CRISPR-like sequences in Helicobacter pylori and application in genotyping. Gut Pathog 2017; 9:65. [PMID: 29177012 PMCID: PMC5693588 DOI: 10.1186/s13099-017-0215-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023] Open
Abstract
Background Many bacteria and archaea possess a defense system called clustered regularly interspaced short palindromic repeats (CRISPR) associated proteins (CRISPR-Cas system) against invaders such as phages or plasmids. This system has not been demonstrated in Helicobacter pylori. The numbers of spacer in CRISPR array differ among bacterial strains and can be used as a genetic marker for bacterial typing. Results A total of 36 H. pylori isolates were collected from patients in three hospitals located in the central (PBH) and southern (SKH) regions of Thailand. It is of interest that CRISPR-like sequences of this bacterium were detected in vlpC encoded for VacA-like protein C. Virulence genes were investigated and the most pathogenic genotype (cagA vacA s1m1) was detected in 17 out of 29 (58.6%) isolates from PBH and 5 out of 7 (71.4%) from SKH. vapD gene was identified in each one isolate from PBH and SKH. CRISPR-like sequences and virulence genes of 20 isolates of H. pylori obtained in this study were analyzed and CRISPR-virulence typing was constructed and compared to profiles obtained by the random amplification of polymorphic DNA (RAPD) technique. The discriminatory power (DI) of CRISPR-virulence typing was not different from RAPD typing. Conclusion CRISPR-virulence typing in H. pylori is easy and reliable for epidemiology and can be used for inter-laboratory interpretation. Electronic supplementary material The online version of this article (10.1186/s13099-017-0215-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Khotchawan Bangpanwimon
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Jaksin Sottisuporn
- NKC Institute of Gastroenterology and Hepatology, Songklanagarind Hospital, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | | | | | - Attapon Rattanasupar
- KC Center of Gastroenterology and Hepatology, Hat Yai Hospital, Hat Yai, Thailand
| | - Christine Pourcel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Varaporn Vuddhakul
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
12
|
Negahdaripour M, Eslami M, Nezafat N, Hajighahramani N, Ghoshoon MB, Shoolian E, Dehshahri A, Erfani N, Morowvat MH, Ghasemi Y. A novel HPV prophylactic peptide vaccine, designed by immunoinformatics and structural vaccinology approaches. INFECTION GENETICS AND EVOLUTION 2017; 54:402-416. [DOI: 10.1016/j.meegid.2017.08.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 12/19/2022]
|
13
|
Investigating CRISPR-Cas systems in Clostridium botulinum via bioinformatics tools. INFECTION GENETICS AND EVOLUTION 2017; 54:355-373. [DOI: 10.1016/j.meegid.2017.06.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022]
|
14
|
Negahdaripour M, Golkar N, Hajighahramani N, Kianpour S, Nezafat N, Ghasemi Y. Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Biotechnol Adv 2017; 35:575-596. [PMID: 28522213 PMCID: PMC7127164 DOI: 10.1016/j.biotechadv.2017.05.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/23/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022]
Abstract
Vaccination has been one of the most successful breakthroughs in medical history. In recent years, epitope-based subunit vaccines have been introduced as a safer alternative to traditional vaccines. However, they suffer from limited immunogenicity. Nanotechnology has shown value in solving this issue. Different kinds of nanovaccines have been employed, among which virus-like nanoparticles (VLPs) and self-assembled peptide nanoparticles (SAPNs) seem very promising. Recently, SAPNs have attracted special interest due to their unique properties, including molecular specificity, biodegradability, and biocompatibility. They also resemble pathogens in terms of their size. Their multivalency allows an orderly repetitive display of antigens on their surface, which induces a stronger immune response than single immunogens. In vaccine design, SAPN self-adjuvanticity is regarded an outstanding advantage, since the use of toxic adjuvants is no longer required. SAPNs are usually composed of helical or β-sheet secondary structures and are tailored from natural peptides or de novo structures. Flexibility in subunit selection opens the door to a wide variety of molecules with different characteristics. SAPN engineering is an emerging area, and more novel structures are expected to be generated in the future, particularly with the rapid progress in related computational tools. The aim of this review is to provide a state-of-the-art overview of self-assembled peptide nanoparticles and their use in vaccine design in recent studies. Additionally, principles for their design and the application of computational approaches to vaccine design are summarized.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Golkar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutics Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Hajighahramani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Kianpour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Hajighahramani N, Nezafat N, Eslami M, Negahdaripour M, Rahmatabadi SS, Ghasemi Y. Immunoinformatics analysis and in silico designing of a novel multi-epitope peptide vaccine against Staphylococcus aureus. INFECTION GENETICS AND EVOLUTION 2017; 48:83-94. [DOI: 10.1016/j.meegid.2016.12.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 11/29/2016] [Accepted: 12/09/2016] [Indexed: 12/19/2022]
|
16
|
Roointan A, Morowvat MH. Road to the future of systems biotechnology: CRISPR-Cas-mediated metabolic engineering for recombinant protein production. Biotechnol Genet Eng Rev 2017; 32:74-91. [PMID: 28052722 DOI: 10.1080/02648725.2016.1270095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rising potential for CRISPR-Cas-mediated genome editing has revolutionized our strategies in basic and practical bioengineering research. It provides a predictable and precise method for genome modification in a robust and reproducible fashion. Emergence of systems biotechnology and synthetic biology approaches coupled with CRISPR-Cas technology could change the future of cell factories to possess some new features which have not been found naturally. We have discussed the possibility and versatile potentials of CRISPR-Cas technology for metabolic engineering of a recombinant host for heterologous protein production. We describe the mechanisms involved in this metabolic engineering approach and present the diverse features of its application in biotechnology and protein production.
Collapse
Affiliation(s)
- Amir Roointan
- a Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies , Shiraz , Iran.,c Department of Medical Biotechnology, School of Medicine , Fasa University of Medical Sciences , Fasa , Iran
| | - Mohammad Hossein Morowvat
- a Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies , Shiraz , Iran.,b Pharmaceutical Sciences Research Center, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|