1
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
2
|
Shi J, Feng Z, Song Q, Wang F, Zhang Z, Liu J, Li F, Wen A, Liu T, Ye Z, Zhang C, Das K, Wang S, Feng Y, Lin W. Structural and functional insights into transcription activation of the essential LysR-type transcriptional regulators. Protein Sci 2024; 33:e5012. [PMID: 38723180 PMCID: PMC11081524 DOI: 10.1002/pro.5012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
The enormous LysR-type transcriptional regulators (LTTRs), which are diversely distributed amongst prokaryotes, play crucial roles in transcription regulation of genes involved in basic metabolic pathways, virulence and stress resistance. However, the precise transcription activation mechanism of these genes by LTTRs remains to be explored. Here, we determine the cryo-EM structure of a LTTR-dependent transcription activation complex comprising of Escherichia coli RNA polymerase (RNAP), an essential LTTR protein GcvA and its cognate promoter DNA. Structural analysis shows two N-terminal DNA binding domains of GcvA (GcvA_DBD) dimerize and engage the GcvA activation binding sites, presenting the -35 element for specific recognition with the conserved σ70R4. In particular, the versatile C-terminal domain of α subunit of RNAP directly interconnects with GcvA_DBD, σ70R4 and promoter DNA, providing more interfaces for stabilizing the complex. Moreover, molecular docking supports glycine as one potential inducer of GcvA, and single molecule photobleaching experiments kinetically visualize the occurrence of tetrameric GcvA-engaged transcription activation complex as suggested for the other LTTR homologs. Thus, a general model for tetrameric LTTR-dependent transcription activation is proposed. These findings will provide new structural and functional insights into transcription activation of the essential LTTRs.
Collapse
Affiliation(s)
- Jing Shi
- Department of Pathogen BiologySchool of Medicine, Nanjing University of Chinese MedicineNanjingChina
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhenzhen Feng
- Department of Pathogen BiologySchool of Medicine, Nanjing University of Chinese MedicineNanjingChina
| | - Qian Song
- Department of Pathogen BiologySchool of Medicine, Nanjing University of Chinese MedicineNanjingChina
| | - Fulin Wang
- Department of Pathogen BiologySchool of Medicine, Nanjing University of Chinese MedicineNanjingChina
| | - Zhipeng Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal UniversityGuangzhouGuangdongChina
- Guangdong Key Laboratory of Laser Life ScienceCollege of Biophotonics, South China Normal UniversityGuangzhouGuangdongChina
- Songshan Lake Materials LaboratoryDongguanGuangdongChina
| | - Jian Liu
- Department of Pathogen BiologySchool of Medicine, Nanjing University of Chinese MedicineNanjingChina
| | - Fangfang Li
- Department of Pathogen BiologySchool of Medicine, Nanjing University of Chinese MedicineNanjingChina
| | - Aijia Wen
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Tianyu Liu
- Department of Pathogen BiologySchool of Medicine, Nanjing University of Chinese MedicineNanjingChina
| | - Zonghang Ye
- Department of Pathogen BiologySchool of Medicine, Nanjing University of Chinese MedicineNanjingChina
| | - Chao Zhang
- Department of Pathogen BiologySchool of Medicine, Nanjing University of Chinese MedicineNanjingChina
| | - Kalyan Das
- Rega Institute for Medical Research, Department of MicrobiologyImmunology and Transplantation, KU LeuvenLeuvenBelgium
| | - Shuang Wang
- Songshan Lake Materials LaboratoryDongguanGuangdongChina
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of Physics, Chinese Academy of SciencesBeijingChina
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Wei Lin
- Department of Pathogen BiologySchool of Medicine, Nanjing University of Chinese MedicineNanjingChina
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
- Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
3
|
The LysR-Type Transcription Regulator YhjC Promotes the Systemic Infection of Salmonella Typhimurium in Mice. Int J Mol Sci 2023; 24:ijms24021302. [PMID: 36674819 PMCID: PMC9867438 DOI: 10.3390/ijms24021302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
Salmonella Typhimurium is a Gram-negative intestinal pathogen that can infect humans and a variety of animals, causing gastroenteritis or serious systemic infection. Replication within host macrophages is essential for S. Typhimurium to cause systemic infection. By analyzing transcriptome data, the expression of yhjC gene, which encodes a putative regulator in S. Typhimurium, was found to be significantly up-regulated after the internalization of Salmonella by macrophages. Whether yhjC gene is involved in S. Typhimurium systemic infection and the related mechanisms were investigated in this study. The deletion of yhjC reduced the replication ability of S. Typhimurium in macrophages and decreased the colonization of S. Typhimurium in mouse systemic organs (liver and spleen), while increasing the survival rate of the infected mice, suggesting that YhjC protein promotes systemic infection by S. Typhimurium. Furthermore, by using transcriptome sequencing and RT-qPCR assay, the transcription of several virulence genes, including spvD, iroCDE and zraP, was found to be down-regulated after the deletion of yhjC. Electrophoretic mobility shift assay showed that YhjC protein can directly bind to the promoter region of spvD and zraP to promote their transcription. These findings suggest that YhjC contributes to the systemic virulence of S. Typhimurium via the regulation of multiple virulence genes and YhjC could represent a promising target to control S. Typhimurium infection.
Collapse
|
4
|
Characterization and comparative transcriptome analyses of Salmonella enterica Enteritidis strains possessing different chlorine tolerance profiles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Tate H, Hsu CH, Chen JC, Han J, Foley SL, Folster JP, Francois Watkins LK, Reynolds J, Tillman GE, Nyirabahizi E, Zhao S. Genomic Diversity, Antimicrobial Resistance, and Virulence Gene Profiles of Salmonella Serovar Kentucky Isolated from Humans, Food, and Animal Ceca Content Sources in the United States. Foodborne Pathog Dis 2022; 19:509-521. [PMID: 35960531 DOI: 10.1089/fpd.2022.0005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Salmonella serovar Kentucky is frequently isolated from chickens and dairy cattle, but recovery from humans is comparatively low based on the U.S. National Antimicrobial Resistance Monitoring System (NARMS) reports. We aimed to better describe the genetic diversity, antimicrobial resistance, and virulence determinants of Salmonella Kentucky isolates from humans, food animal ceca, retail meat and poultry products, imported foods and food products, and other samples. We analyzed the genomes of 774 Salmonella Kentucky isolates and found that 63% (54/86) of human isolates were sequence type (ST)198, 33% (29/86) were ST152, and 3.5% (3/86) were ST314. Ninety-one percent (570/629) of cecal isolates and retail meat and poultry isolates were ST152 or ST152-like (one allele difference), and 9.2% (58/629) were ST198. Isolates from imported food were mostly ST198 (60%, 22/37) and ST314 (29.7%, 11/37). ST198 isolates clustered into two main lineages. Clade ST198.2 comprised almost entirely isolates from humans and imported foods, all containing triple mutations in the quinolone resistance-determining region (QRDR) that confer resistance to fluoroquinolones. Clade ST198.1 contained isolates from humans, ceca, retail meat and poultry products, and imported foods that largely lacked QRDR mutations. ST152 isolates from cattle had a lineage (Clade 2) distinct from ST152 isolates from chicken (Clade 4), and half of ST152 human isolates clustered within two other clades (Clades 1 and 3), largely distinct from Clades 2 and 4. Although clinical illness associated with Salmonella Kentucky is low, ST198 appears to account for most human infections in the Unites States but is uncommon among ceca of domestic food animals and retail meat and poultry products. These findings, combined with human exposure data, suggest that fluoroquinolone-resistant ST198 infections may be linked to the consumption of food products that are imported or consumed while traveling. We also found unique differences in the composition of virulence genes and antimicrobial resistance genes among the clades, which may provide clues to the host specificity and pathogenicity of Salmonella Kentucky lineages.
Collapse
Affiliation(s)
- Heather Tate
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Chih-Hao Hsu
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Jessica C Chen
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jing Han
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Steven L Foley
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Jason P Folster
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Louise K Francois Watkins
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jared Reynolds
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Glenn E Tillman
- Food Safety and Inspection Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Epiphanie Nyirabahizi
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| |
Collapse
|
6
|
Ma Z, Li NA, Ning C, Liu Y, Guo Y, Ji C, Zhu X, Meng Q, Xia X, Zhang X, Cai X, Cai K, Jun Q. A Novel LysR Family Factor STM0859 is Associated with The Responses of Salmonella Typhimurium to Environmental Stress and Biofilm Formation. Pol J Microbiol 2022; 70:479-487. [PMID: 35003279 PMCID: PMC8702606 DOI: 10.33073/pjm-2021-045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/04/2021] [Indexed: 12/01/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Typhimurium (ST) is an intracellularly parasitic bacterium. This zoonotic pathogen causes food poisoning and thus imposes a severe threat to food safety. Here, to understand the regulatory roles of the novel transcription factor STM0859 on the response of ST to environmental stress and biofilm formation, the STM0859 gene-deficient strain and the complementation strain ΔSTM0859/STM0859 were generated, respectively. Then, its capacity of responding to environmental stresses and biofilm (BF) formation ability under different stresses, including acid, alkali, high salt, cholate, and oxidative stresses was tested. We further analyzed the interaction between the STM0859 protein and the promoter of the acid stress response-related gene rcsB by performing an electrophoresis mobility shift assay (EMSA). The results showed that acid resistance and BF formation capacities of ST-ΔSTM0859 strain were significantly weaker, as compared with those of Salmonella Typhimurium SL1344 (ST-SL1344) wild strain (p < 0.01). Quantitative qRT-PCR analysis showed that the expression levels of acid stress and BF formation-related genes, rcsB and rpoS, of ST-ΔSTM0859 strain were significantly reduced at the transcription levels, while the transcription levels of these genes were fully restored in complementation strain ST-ΔSTM0859/STM0859. The results of EMSA showed that STM0859 was capable of binding the promoter DNA fragments of the rcsB gene, suggesting that STM0859 can promote the transcription of the rcsB gene through interaction with its promoter, thereby exerting an indirectly regulatory role on the adaptive responses to acid stress and BF formation of ST. This study provided new insights into the regulatory mechanisms of the LysR family factors on the tolerances of ST under adverse environmental stresses.
Collapse
Affiliation(s)
- Zhongmei Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - N A Li
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chengcheng Ning
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yucheng Liu
- Institute of Animal Science and Veterinary Research, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Yun Guo
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chunhui Ji
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xiaozhen Zhu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Qingling Meng
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xianzhu Xia
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xingxing Zhang
- Institute of Animal Science and Veterinary Research, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xuepeng Cai
- State Key Lab of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kuojun Cai
- Center for Animal Disease Prevention and Control, Urumqi, China
| | - Qiao Jun
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
7
|
Wójcicki M, Świder O, Daniluk KJ, Średnicka P, Akimowicz M, Roszko MŁ, Sokołowska B, Juszczuk-Kubiak E. Transcriptional Regulation of the Multiple Resistance Mechanisms in Salmonella-A Review. Pathogens 2021; 10:pathogens10070801. [PMID: 34202800 PMCID: PMC8308502 DOI: 10.3390/pathogens10070801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
The widespread use of antibiotics, especially those with a broad spectrum of activity, has resulted in the development of multidrug resistance in many strains of bacteria, including Salmonella. Salmonella is among the most prevalent causes of intoxication due to the consumption of contaminated food and water. Salmonellosis caused by this pathogen is pharmacologically treated using antibiotics such as fluoroquinolones, ceftriaxone, and azithromycin. This foodborne pathogen developed several molecular mechanisms of resistance both on the level of global and local transcription modulators. The increasing rate of antibiotic resistance in Salmonella poses a significant global concern, and an improved understanding of the multidrug resistance mechanisms in Salmonella is essential for choosing the suitable antibiotic for the treatment of infections. In this review, we summarized the current knowledge of molecular mechanisms that control gene expression related to antibiotic resistance of Salmonella strains. We characterized regulators acting as transcription activators and repressors, as well as two-component signal transduction systems. We also discuss the background of the molecular mechanisms of the resistance to metals, regulators of multidrug resistance to antibiotics, global regulators of the LysR family, as well as regulators of histone-like proteins.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Kamila J. Daniluk
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Monika Akimowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Marek Ł. Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
- Correspondence: ; Tel.: +48-22-6063605
| |
Collapse
|
8
|
Jin L, Gao H, Cao X, Han S, Xu L, Ma Z, Shang Y, Ma XX. Significance and roles of synonymous codon usage in the evolutionary process of Proteus. J Basic Microbiol 2020; 60:424-434. [PMID: 32162710 DOI: 10.1002/jobm.201900647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/02/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022]
Abstract
Proteus spp. bacteria frequently serve as opportunistic pathogens that can infect many animals and show positive survival and existence in various natural environments. The evolutionary pattern of Proteus spp. is an unknown topic, which benefits understanding the different evolutionary dynamics for excellent bacterial adaptation to various environments. Here, the eight whole genomes of different Proteus species were analyzed for the interplay between nucleotide usage and synonymous codon usage. Although the orthologous average nucleotide identity and average nucleotide identity display the genetic diversity of these Proteus species at the genome level, the principal component analysis further shows that these species sustain the specific genetic niche at the aspect of synonymous codon usage patterns. Interestingly, although these Proteus species have A/T rich genes with underrepresented G (guanine) or C (cytosine) at the third codon positions and overrepresented A or T at these positions, some synonymous codons with A or T end are obviously suppressed in usage. The overall codon usage pattern reflected by the effective number of codons (ENC) has a significantly positive correlation with GC3 content (GC content at the third codon position), and ENC has a significantly negative correlation with the adaptation index for these species. These results suggest that the mutation pressure caused by nucleotide composition constraint serves as a dominant evolutionary dynamic driving evolutionary trend of Proteus spp., along with other selections related to natural selection, replication and fine-tune translation, and so on. Taken together, the analyses help to understand the evolutionary interplay between nucleotide and codon usage at the gene level of Proteus.
Collapse
Affiliation(s)
- Li Jin
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Han Gao
- Department of College of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaoan Cao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shengyi Han
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.,College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Long Xu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.,College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Youjun Shang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiao-Xia Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|