1
|
Shah S, Paudel MR, Thapa BB, Sharma H, Kashyap AK, Rekadwad BN, Sharma R, Sharma J, Pant B. Extract from endophytic Fusarium isolates stimulates seed germination of the host and protocorm development of non-host orchids. Commun Integr Biol 2024; 18:2439798. [PMID: 39703375 PMCID: PMC11654709 DOI: 10.1080/19420889.2024.2439798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
We isolated endophytic Fusarium strains from the healthy roots, stems, and leaves of Dendrobium moschatum to investigate their plant growth-promoting activities in vitro. Subsequently, Indole acetic acid (IAA) was quantified and the IaaM gene (responsible for IAA synthesis in fungi) was amplified and sequenced. Finally, a germination assay was performed with seeds of D. moschatum and a plant growth assay with protocorms of Dendrobium longicornu to test their plant growth-promoting activities. Five Fusarium isolates (CDS11, PDL1, PDL3, PDR6, PDR7) were identified in this study. The highest amount (60µgml-1) of indole acetic acid was recorded in the PDR7 extract, whereas it was not detected in PDR6 and CDS11. The fungal extracts of isolates PDR6 and PDR7 were highly effective for seed germination by approximately 80% and 90% (respectively) of the host plant. The fungal extract of PDR7 showed a high IAA content and promoted in vitro seed germination of the host (D. moschatum) and protocorm development of the non-host (D. longicornu). In contrast, IAA content in the fungal extract of PDR6 remained undetected but was effective in both seed germination and protocorm development. Our results demonstrated the potential beneficial application of endophytic Fusarium in orchid mass propagation.
Collapse
Affiliation(s)
- Sujit Shah
- Central Department of Botany, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Department of Plant Science and Soil Science, Texas Tech University, Lubbock, TX, USA
| | - Mukti Ram Paudel
- Central Department of Botany, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Bir Bahadur Thapa
- Central Department of Botany, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Harshita Sharma
- Department of Plant Science and Soil Science, Texas Tech University, Lubbock, TX, USA
| | - Arun Kumar Kashyap
- Department of Biotechnology, Govt. E Raghavendra Rao PG Science College, Bilaspur, India
| | - Bhagwan Narayan Rekadwad
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- National Centre for Microbial Resource (NCMR), DBT-National Centre for Cell Science (DBT-NCCS), Savitribai Phule Pune University Campus, Pune, India
| | - Rohit Sharma
- National Centre for Microbial Resource (NCMR), DBT-National Centre for Cell Science (DBT-NCCS), Savitribai Phule Pune University Campus, Pune, India
- School of Sciences, SAM Global University, Raisen, India
| | - Jyotsna Sharma
- Department of Plant Science and Soil Science, Texas Tech University, Lubbock, TX, USA
| | - Bijaya Pant
- Central Department of Botany, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
2
|
Sarsaiya S, Jain A, Shu F, Yang M, Pu M, Jia Q, Gong Q, Wu Q, Qian X, Shi J, Chen J. Enhancing dendrobine production in Dendrobium nobile through mono-culturing of endophytic fungi, Trichoderma longibrachiatum (MD33) in a temporary immersion bioreactor system. FRONTIERS IN PLANT SCIENCE 2024; 15:1302817. [PMID: 38348269 PMCID: PMC10859523 DOI: 10.3389/fpls.2024.1302817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
INTRODUCTION Dendrobine, a valuable alkaloid found in Dendrobium nobile, possesses significant pharmaceutical potential. METHODS In this study, we explored innovative approaches to enhance dendrobine production by utilizing endophytic fungi in a Temporary Immersion Bioreactor System (TIBS, Nanjing BioFunction Co. Ltd., China) and traditional test bottles. Dendrobine was unequivocally identified and characterised in D. nobile co-culture seedlings through UHPLC analysis and LC-MS qTOF analysis, supported by reference standards. RESULTS The CGTB (control group) and EGTB (experimental group) 12-month-old D. nobile seedlings exhibited similar peak retention times at 7.6±0.1 minutes, with dendrobine identified as C16H25NO2 (molecular weight 264.195). The EGTB, co-cultured with Trichoderma longibrachiatum (MD33), displayed a 2.6-fold dendrobine increase (1804.23 ng/ml) compared to the CGTB (685.95 ng/ml). Furthermore, a bioanalytical approach was applied to investigate the mono-culture of T. longibrachiatum MD33 with or without D. nobile seedlings in test bottles. The newly developed UHPLC-MS method allowed for dendrobine identification at a retention time of 7.6±0.1 minutes for control and 7.6±0.1 minutes for co-culture. Additionally, we explored TIBS to enhance dendrobine production. Co-culturing D. nobile seedlings with Trichoderma longibrachiatum (MD33) in the TIBS system led to a substantial 9.7-fold dendrobine increase (4415.77 ng/ml) compared to the control (454.01 ng/ml) after just 7 days. The comparative analysis of dendrobine concentration between EGTB and EGTIBS highlighted the remarkable potential of TIBS for optimizing dendrobine production. Future research may focus on scaling up the TIBS approach for commercial dendrobine production and investigating the underlying mechanisms for enhanced dendrobine biosynthesis in D. nobile. The structural elucidation of dendrobine was achieved through 1H and 13C NMR spectroscopy, revealing a complex array of proton environments and distinct carbon environments, providing essential insights for the comprehensive characterization of the compound. DISCUSSION These findings hold promise for pharmaceutical and industrial applications of dendrobine and underline the role of endophytic fungi in enhancing secondary metabolite production in medicinal plants.
Collapse
Affiliation(s)
- Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Bioresource Institute for Healthy Utilization (BIHU), Zunyi Medical University, Zunyi, China
| | - Archana Jain
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Fuxing Shu
- Bioresource Institute for Healthy Utilization (BIHU), Zunyi Medical University, Zunyi, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Mingfa Yang
- Bioresource Institute for Healthy Utilization (BIHU), Zunyi Medical University, Zunyi, China
| | - Mengxuan Pu
- Bioresource Institute for Healthy Utilization (BIHU), Zunyi Medical University, Zunyi, China
| | - Qi Jia
- Bioresource Institute for Healthy Utilization (BIHU), Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xu Qian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jishuang Chen
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Bioresource Institute for Healthy Utilization (BIHU), Zunyi Medical University, Zunyi, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
3
|
Endophytic fungal communities and their biotechnological implications for agro-environmental sustainability. Folia Microbiol (Praha) 2022; 67:203-232. [PMID: 35122218 DOI: 10.1007/s12223-021-00939-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023]
Abstract
Endophytic fungal communities have attracted a great attention to chemists, ecologists, and microbiologists as a treasure trove of biological resource. Endophytic fungi play incredible roles in the ecosystem including abiotic and biotic stress tolerance, eco-adaptation, enhancing growth and development, and maintaining the health of their host. In recent times, endophytic fungi have drawn a special focus owing to their indispensable diversity, unique distribution, and unparalleled metabolic pathways. The endophytic fungal communities belong to three phyla, namely Mucoromycota, Basidiomycota, and Ascomycota with seven predominant classes Agaricomycetes, Dothideomycetes, Eurotiomycetes, Mortierellomycotina, Mucoromycotina, Saccharomycetes, and Sordariomycetes. In a review of a huge number of research finding, it was found that endophytic fungal communities of genera Aspergillus, Chaetomium, Fusarium, Gaeumannomyces, Metarhizium, Microsphaeropsis, Paecilomyces, Penicillium, Piriformospora, Talaromyces, Trichoderma, Verticillium, and Xylaria have been sorted out and well characterized for diverse biotechnological applications for future development. Furthermore, these communities are remarkable source of novel bioactive compounds with amazing biological activity for use in agriculture, food, and pharmaceutical industry. Endophytes are endowed with a broad range of structurally unique bioactive natural products, including alkaloids, benzopyranones, chinones, flavonoids, phenolic acids, and quinines. Subsequently, there is still an excellent opportunity to explore novel compounds from endophytic fungi among numerous plants inhabiting different niches. Furthermore, high-throughput sequencing could be a tool to study interaction between plants and endophytic fungi which may provide further opportunities to reveal unknown functions of endophytic fungal communities. The present review deals with the biodiversity of endophytic fungal communities and their biotechnological implications for agro-environmental sustainability.
Collapse
|
4
|
Li T, Wu S, Yang W, Selosse MA, Gao J. How Mycorrhizal Associations Influence Orchid Distribution and Population Dynamics. FRONTIERS IN PLANT SCIENCE 2021; 12:647114. [PMID: 34025695 PMCID: PMC8138319 DOI: 10.3389/fpls.2021.647114] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/13/2021] [Indexed: 05/04/2023]
Abstract
Orchid distribution and population dynamics are influenced by a variety of ecological factors and the formation of holobionts, which play key roles in colonization and ecological community construction. Seed germination, seedling establishment, reproduction, and survival of orchid species are strongly dependent on orchid mycorrhizal fungi (OMF), with mycorrhizal cheating increasingly observed in photosynthetic orchids. Therefore, changes in the composition and abundance of OMF can have profound effects on orchid distribution and fitness. Network analysis is an important tool for the study of interactions between plants, microbes, and the environment, because of the insights that it can provide into the interactions and coexistence patterns among species. Here, we provide a comprehensive overview, systematically describing the current research status of the effects of OMF on orchid distribution and dynamics, phylogenetic signals in orchid-OMF interactions, and OMF networks. We argue that orchid-OMF associations exhibit complementary and specific effects that are highly adapted to their environment. Such specificity of associations may affect the niche breadth of orchid species and act as a stabilizing force in plant-microbe coevolution. We postulate that network analysis is required to elucidate the functions of fungal partners beyond their effects on germination and growth. Such studies may lend insight into the microbial ecology of orchids and provide a scientific basis for the protection of orchids under natural conditions in an efficient and cost-effective manner.
Collapse
Affiliation(s)
- Taiqiang Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Shimao Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Wenke Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Marc-André Selosse
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
- Institut de Systématique, Évolution, Biodiversité, UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jiangyun Gao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| |
Collapse
|