1
|
Voga M, Majdic G. Articular Cartilage Regeneration in Veterinary Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:23-55. [DOI: 10.1007/5584_2022_717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
2
|
Gaina G, Popa (Gruianu) A. Muscular dystrophy: Experimental animal models and therapeutic approaches (Review). Exp Ther Med 2021; 21:610. [PMID: 33936267 PMCID: PMC8082581 DOI: 10.3892/etm.2021.10042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
The muscular dystrophies are a heterogeneous group of genetically inherited diseases characterized by muscle weakness and progressive wasting, which can cause premature death in severe forms. Although >30 years have passed since the identification of the first protein involved in a type of muscular dystrophy, there is no effective treatment for these disabling disorders. In the last decade, several novel therapeutic approaches have been developed and investigated as promising therapeutic approaches aimed to ameliorate the dystrophic phenotype either by restoring dystrophin expression or by compensating for dystrophin deficiency. Concurrently, with the development of therapeutic approaches, in addition to naturally occurring animal models, a wide range of genetically engineered animal models has been generated. The use of animals as models of muscular dystrophies has greatly improved the understanding of the pathogenicity of these diseases and has proven useful in gene therapy studies. In this review, we summarize these latest innovative therapeutic approaches to muscular dystrophies and the usefulness of the various most common experimental animal models.
Collapse
Affiliation(s)
- Gisela Gaina
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Alexandra Popa (Gruianu)
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Department of Animal Production and Public Health, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 050097 Bucharest, Romania
| |
Collapse
|
3
|
Native tissue-based strategies for meniscus repair and regeneration. Cell Tissue Res 2018; 373:337-350. [PMID: 29397425 DOI: 10.1007/s00441-017-2778-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
Meniscus injuries appear to be becoming increasingly common and pose a challenge for orthopedic surgeons. However, there is no curative approach for dealing with defects in the inner meniscus region due to its avascular nature. Numerous strategies have been applied to regenerate and repair meniscus defects and native tissue-based strategies have received much attention. Native tissue usually has good biocompatibility, excellent mechanical properties and a suitable microenvironment for cellular growth, adhesion, redifferentiation, extracellular matrix deposition and remodeling. Classically, native tissue-based strategies for meniscus repair and regeneration are divided into autogenous and heterogeneous tissue transplantation. Autogenous tissue transplantation is performed more widely than heterogeneous tissue transplantation because there is no immunological rejection and the success rates are higher. This review first discusses the native meniscus structure and function and then focuses on the use of the autogenous tissue for meniscus repair and regeneration. Finally, it summarizes the advantages and disadvantages of heterogeneous tissue transplantation. We hope that this review provides some suggestions for the future design of meniscus repair and regeneration strategies.
Collapse
|
4
|
Catabolic effects of FGF-1 on chondrocytes and its possible role in osteoarthritis. J Cell Commun Signal 2017; 11:255-263. [PMID: 28343287 DOI: 10.1007/s12079-017-0384-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/21/2017] [Indexed: 02/02/2023] Open
Abstract
Fibroblast growth factor 1 (FGF-1) is a classical member of the FGF family and is produced by chondrocytes cultured from osteoarthritic patients. Also, this growth factor was shown to bind to CCN family protein 2 (CCN2), which regenerates damaged articular cartilage and counteracts osteoarthritis (OA) in an animal model. However, the pathophysiological role of FGF-1 in cartilage has not been well investigated. In this study, we evaluated the effects of FGF-1 in vitro and its production in vivo by use of an OA model. Treatment of human chondrocytic cells with FGF-1 resulted in marked repression of genes for cartilaginous extracellular matrix components, whereas it strongly induced matrix metalloproteinase 13 (MMP-13), representing its catabolic effects on cartilage. Interestingly, expression of the CCN2 gene was dramatically repressed by FGF-1, which repression eventually caused the reduced production of CCN2 protein from the chondrocytic cells. The results of a reporter gene assay revealed that this repression could be ascribed, at least in part, to transcriptional regulation. In contrast, the gene expression of FGF-1 was enhanced by exogenous FGF-1, indicating a positive feedback system in these cells. Of note, induction of FGF-1 was observed in the articular cartilage of a rat OA model. These results collectively indicate a pathological role of FGF-1 in OA development, which includes an insufficient cartilage regeneration response caused by CCN2 down regulation.
Collapse
|
5
|
van Caam A, Madej W, Thijssen E, Garcia de Vinuesa A, van den Berg W, Goumans MJ, Ten Dijke P, Blaney Davidson E, van der Kraan PM. Expression of TGFβ-family signalling components in ageing cartilage: age-related loss of TGFβ and BMP receptors. Osteoarthritis Cartilage 2016; 24:1235-45. [PMID: 26975812 DOI: 10.1016/j.joca.2016.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/11/2016] [Accepted: 02/26/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Ageing is the main risk factor for osteoarthritis (OA). We investigated if expression of transforming growth factor β (TGFβ)-family components, a family which is crucial for the maintenance of healthy articular cartilage, is altered during ageing in cartilage. Moreover, we investigated the functional significance of selected age-related changes. DESIGN Age-related changes in expression of TGFβ-family members were analysed by quantitative PCR in healthy articular cartilage obtained from 42 cows (age: ¾-10 years). To obtain functional insight of selected changes, cartilage explants were stimulated with TGFβ1 or bone morphogenetic protein (BMP) 9, and TGFβ1 and BMP response genes were measured. RESULTS Age-related cartilage thinning and loss of collagen type 2a1 expression (∼256-fold) was observed, validating our data set for studying ageing in cartilage. Expression of the TGFβ-family type I receptors; bAlk2, bAlk3, bAlk4 and bAlk5 dropped significantly with advancing age, whereas bAlk1 expression did not. Of the type II receptors, expression of bBmpr2 decreased significantly. Type III receptor expression was unaffected by ageing. Expression of the ligands bTgfb1 and bGdf5 also decreased with age. In explants, an age-related decrease in TGFβ1-response was observed for the pSmad3-dependent gene bSerpine1 (P = 0.016). In contrast, ageing did not affect BMP9 signalling, an Alk1 ligand, as measured by expression of the pSmad1/5 dependent gene bId1. CONCLUSIONS Ageing negatively affects both the TGFβ-ALK5 and BMP-BMPR signalling routes, and aged chondrocytes display a lowered pSmad3-dependent response to TGFβ1. Because pSmad3 signalling is essential for cartilage homeostasis, we propose that this change contributes to OA development.
Collapse
Affiliation(s)
- A van Caam
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - W Madej
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands; Orthopaedics Research Lab, Radboud University Medical Center, Nijmegen, The Netherlands
| | - E Thijssen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Garcia de Vinuesa
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - W van den Berg
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M-J Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - P Ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - E Blaney Davidson
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - P M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Xing D, Chen J, Yang J, Heng BC, Ge Z, Lin J. Perspectives on Animal Models Utilized for the Research and Development of Regenerative Therapies for Articular Cartilage. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40610-016-0038-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Scotti C, Gobbi A, Karnatzikos G, Martin I, Shimomura K, Lane JG, Peretti GM, Nakamura N. Cartilage Repair in the Inflamed Joint: Considerations for Biological Augmentation Toward Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2015; 22:149-59. [PMID: 26467024 DOI: 10.1089/ten.teb.2015.0297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cartilage repair/regeneration procedures (e.g., microfracture, autologous chondrocyte implantation [ACI]) typically result in a satisfactory outcome in selected patients. However, the vast majority of patients with chronic symptoms and, in general, a more diseased joint, do not benefit from these surgical techniques. The aims of this work were to (1) review factors negatively influencing the joint environment; (2) review current adjuvant therapies that can be used to improve results of cartilage repair/regeneration procedures in patients with more diseased joints, (3) outline future lines of research and promising experimental approaches. Chronicity of symptoms and advancing patient age appear to be the most relevant factors negatively affecting clinical outcome of cartilage repair/regeneration. Preliminary experience with hyaluronic acid, platelet-rich plasma, and mesenchymal stem cell has been positive but there is no strong evidence supporting the use of these products and this requires further assessment with high-quality, prospective clinical trials. The use of a Tissue Therapy strategy, based on more mature engineered tissues, holds promise to tackle limitations of standard ACI procedures. Current research has highlighted the need for more targeted therapies, and (1) induction of tolerance with granulocyte colony-stimulating factor (G-CSF) or by preventing IL-6 downregulation; (2) combined IL-4 and IL-10 local release; and (3) selective activation of the prostaglandin E2 (PGE2) signaling appear to be the most promising innovative strategies. For older patients and for those with chronic symptoms, adjuvant therapies are needed in combination with microfracture and ACI.
Collapse
Affiliation(s)
| | - Alberto Gobbi
- 2 Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation , Gobbi Onlus, Milan, Italy
| | - Georgios Karnatzikos
- 2 Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation , Gobbi Onlus, Milan, Italy
| | - Ivan Martin
- 3 Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel , Basel, Switzerland
| | - Kazunori Shimomura
- 4 Department of Orthopedics, Osaka University Graduate School of Medicine , Osaka, Japan
| | - John G Lane
- 5 COAST Surgery Center, University of California , San Diego, California
| | - Giuseppe Michele Peretti
- 1 IRCCS Istituto Ortopedico Galeazzi , Milan, Italy .,6 Department of Biomedical Sciences for Health, University of Milan , Milan, Italy
| | - Norimasa Nakamura
- 7 Institute for Medical Science in Sports, Osaka Health Science University , Osaka, Japan .,8 Center for Advanced Medical Engineering and Informatics, Osaka University , Osaka, Japan
| |
Collapse
|
8
|
Sakata R, Iwakura T, Reddi AH. Regeneration of Articular Cartilage Surface: Morphogens, Cells, and Extracellular Matrix Scaffolds. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:461-73. [DOI: 10.1089/ten.teb.2014.0661] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ryosuke Sakata
- Center for Tissue Regeneration and Repair, Department of Orthopaedic Surgery, University of California, Sacramento, California
| | - Takashi Iwakura
- Center for Tissue Regeneration and Repair, Department of Orthopaedic Surgery, University of California, Sacramento, California
| | - A. Hari Reddi
- Center for Tissue Regeneration and Repair, Department of Orthopaedic Surgery, University of California, Sacramento, California
| |
Collapse
|
9
|
Zhu Y, Tao H, Jin C, Liu Y, Lu X, Hu X, Wang X. Transforming growth factor-β1 induces type II collagen and aggrecan expression via activation of extracellular signal-regulated kinase 1/2 and Smad2/3 signaling pathways. Mol Med Rep 2015; 12:5573-9. [PMID: 26165845 DOI: 10.3892/mmr.2015.4068] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 06/17/2015] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor (TGF)‑β regulates the anabolic metabolism of articular cartilage and prevents cartilage degradation. TGF‑β1 influences cellular proliferation, differentiation and the extracellular matrix through activation of the extracellular signal‑regulated kinase (ERK)1/2 and Smad2/3 signaling pathways. However, it has remained to be fully elucidated precisely how the ERK1/2 and Smad2/3 signaling pathways mediate anabolic processes of articular cartilage. The present study investigated how ERK1/2 and Smad2/3 signaling mediate TGF‑β1‑stimulated type II collagen and aggrecan expression in rat chondrocytes. The results confirmed that TGF‑β1 stimulates type II collagen and aggrecan expression in rat chondrocytes, and furthermore, that the ERK1/2 and Smad2/3 signaling pathways were activated by TGF‑β1. Conversely, the TGF‑β receptor I (ALK5) kinase inhibitor SB525334 significantly impaired TGF‑β1‑induced type II collagen and aggrecan expression, coinciding with a reduction of ERK1/2 and Smad3 phosphorylation. In addition, TGF‑β1‑induced type II collagen and aggrecan expression were significantly suppressed by ERK1/2 inhibitor PD98059. Similarly, TGF‑β1‑stimulated type II collagen and aggrecan expression were decreased in the presence of a Smad3 phosphorylation inhibitor SIS3. Therefore, the present study demonstrated that the ERK1/2 and Smad2/3 signaling pathways regulate type II collagen and aggrecan expression in rat chondrocytes.
Collapse
Affiliation(s)
- Yanhui Zhu
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, P.R. China
| | - Hairong Tao
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, P.R. China
| | - Chen Jin
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, P.R. China
| | - Yonzhang Liu
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, P.R. China
| | - Xiongwei Lu
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, P.R. China
| | - Xiaopeng Hu
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, P.R. China
| | - Xiang Wang
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, P.R. China
| |
Collapse
|
10
|
Forriol F, Ripalda P, Duart J, Esparza R, Gortazar AR. Meniscal repair possibilities using bone morphogenetic protein-7. Injury 2014; 45 Suppl 4:S15-21. [PMID: 25384469 DOI: 10.1016/s0020-1383(14)70005-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study analysed the influence of bone morphogenetic protein-7 (BMP-7) on cells and meniscal structure. The effect of treatment with BMP-7 was assessed in vitro and in vivo in lesions in the avascular area of the meniscus. Cells were extracted from the outer and inner part of eight menisci of four 2-year-old merino sheep. The menisci were digested with a collagenase mix, and meniscus cells of the synovium, vascular area and avascular area were extracted. The expression of genes for collagen (Col1 and Col2A), matrix metalloproteinases (MMP-2 and MMP-13) and aggrecan was analysed by real time quantitative polymerase chain reaction (qPCR) at baseline and after incubation with BMP-7. Eight sheep aged 2 years and weighing 35-40 kg were used for the in vivo study. Surgery was performed in both knees of every animal. Two holes were made in the avascular area of the medial meniscus of both knees and filled using Putty(®) (control groups) or OP-1 Putty(®), which comprises BMP-7 mixed with a cellulose putty carrier (experimental groups). Animals were sacrificed at 6, 12 and 25 weeks. Adding BMP-7 to vascular cells of the meniscus was associated with a 15-fold increase in Col2A expression and a 78-fold increase in BMP-7 expression. BMP-7 inhibited MMP-2 and MMP-13 expression. Adding BMP-7 to synovial cells inhibited the expression of Col1, doubled the expression of Col2A and reduced the expression of BMP-7; the expression of MMP-2 was inhibited, while that of MMP-13 was increased three-fold. Incubation of cells from the avascular region with BMP-7 was associated with a 2.4-fold increase in Col1 expression, and a 4.4-fold increase in Col2A expression compared with the control. The expression of MMP-2 and BMP-7 was inhibited. In the in vivo study, treatment of the holes in the avascular area of the meniscus with BMP-7 was associated with an important cell presence inside the holes and the appearance of fibrous tissue after 12 weeks; these features were not seen in the control groups. BMP-7 may be a suitable growth factor for stimulation of meniscal cell and collagen formation.
Collapse
Affiliation(s)
| | | | - Julio Duart
- Orthopedic Department, Complejo Hospitalario Navarra, Pamplona, Spain
| | - Raul Esparza
- University San Pablo - CEU, School of Medicine, Madrid, Spain
| | | |
Collapse
|
11
|
Warnock JJ, Bobe G, Duesterdieck-Zellmer KF. Fibrochondrogenic potential of synoviocytes from osteoarthritic and normal joints cultured as tensioned bioscaffolds for meniscal tissue engineering in dogs. PeerJ 2014; 2:e581. [PMID: 25289180 PMCID: PMC4183955 DOI: 10.7717/peerj.581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/26/2014] [Indexed: 12/11/2022] Open
Abstract
Meniscal tears are a common cause of stifle lameness in dogs. Use of autologous synoviocytes from the affected stifle is an attractive cell source for tissue engineering replacement fibrocartilage. However, the diseased state of these cells may impede in vitro fibrocartilage formation. Synoviocytes from 12 osteoarthritic (“oaTSB”) and 6 normal joints (“nTSB”) were cultured as tensioned bioscaffolds and compared for their ability to synthesize fibrocartilage sheets. Gene expression of collagens type I and II were higher and expression of interleukin-6 was lower in oaTSB versus nTSB. Compared with nTSB, oaTSB had more glycosaminoglycan and alpha smooth muscle staining and less collagen I and II staining on histologic analysis, whereas collagen and glycosaminoglycan quantities were similar. In conclusion, osteoarthritic joint—origin synoviocytes can produce extracellular matrix components of meniscal fibrocartilage at similar levels to normal joint—origin synoviocytes, which makes them a potential cell source for canine meniscal tissue engineering.
Collapse
Affiliation(s)
- Jennifer J Warnock
- College of Veterinary Medicine, Oregon State University , Corvallis, OR , United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University , Corvallis, OR , United States
| | | |
Collapse
|
12
|
Sanz-Ramos P, Duart J, Rodríguez-Goñi MV, Vicente-Pascual M, Dotor J, Mora G, Izal-Azcárate I. Improved Chondrogenic Capacity of Collagen Hydrogel-Expanded Chondrocytes: In Vitro and in Vivo Analyses. J Bone Joint Surg Am 2014; 96:1109-1117. [PMID: 24990976 DOI: 10.2106/jbjs.m.00271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The use of autologous chondrocytes in cartilage repair is limited because of loss of the cartilage phenotype during expansion. The mechanosensing capacity of chondrocytes suggests evaluating the use of soft substrates for in vitro expansion. Our aim was to test the expansion of chondrocytes on collagen hydrogels to improve their capacity for chondrogenesis after a number of passages. METHODS Rat cartilage cells were expanded on collagen hydrogels and on plastic, and the preservation of their chondrogenic capacity was tested both in vitro and in vivo. The expression of relevant markers during expansion on each surface was measured by real-time PCR (polymerase chain reaction). Expanded cells were then implanted in focal lesions in the medial femoral condyle of healthy sheep, and the newly formed tissue was analyzed by histomorphometry. RESULTS Compared with cells cultured on plastic, cells cultured on hydrogels had better maintenance of the expression of the Sox9, Col2 (type-II collagen), FGFR3, and Alk-5 genes and decreased expression of Alk-1 and BMP-2. Pellets also showed increased expression of the cartilage marker genes aggrecan, Sox9, and Col2, and decreased expression of Col1 and Col10 (type-I and type-X collagen). ELISA (enzyme-linked immunosorbent assay) also showed a higher ratio of type-II to type-I collagen in pellets formed from cells expanded on hydrogels. When sheep chondrocytes were expanded and implanted in cartilage lesions in the femoral condyle of healthy sheep, hydrogel-expanded cells produced histologically better tissue compared with plastic-expanded cells. CONCLUSIONS The expansion of chondrocytes on collagen hydrogels yielded cells with an improved chondrogenic capacity compared with cells expanded on plastic. CLINICAL RELEVANCE The study results favor the use of hydrogel-expanded cells over the traditional plastic-expanded cells for autologous chondrocyte implantation.
Collapse
Affiliation(s)
- Patricia Sanz-Ramos
- Laboratory for Orthopaedic Research, School of Medicine, Ed. Los Castaños, University of Navarra, Irunlarrea 1, 31008 Pamplona, Navarra, Spain. E-mail address for I. Izal-Azcárate:
| | - Julio Duart
- Trauma and Orthopaedic Surgery, Servicio Navarro de Salud, Irunlarrea 3, 31008 Pamplona, Navarra, Spain
| | | | - Mikel Vicente-Pascual
- Laboratory for Orthopaedic Research, School of Medicine, Ed. Los Castaños, University of Navarra, Irunlarrea 1, 31008 Pamplona, Navarra, Spain. E-mail address for I. Izal-Azcárate:
| | - Javier Dotor
- DIGNA Biotech, Pio XII 22, 31008 Pamplona, Navarra, Spain
| | - Gonzalo Mora
- Laboratory for Orthopaedic Research, School of Medicine, Ed. Los Castaños, University of Navarra, Irunlarrea 1, 31008 Pamplona, Navarra, Spain. E-mail address for I. Izal-Azcárate:
| | - Iñigo Izal-Azcárate
- Laboratory for Orthopaedic Research, School of Medicine, Ed. Los Castaños, University of Navarra, Irunlarrea 1, 31008 Pamplona, Navarra, Spain. E-mail address for I. Izal-Azcárate:
| |
Collapse
|
13
|
Abd El Kader T, Kubota S, Anno K, Tanaka S, Nishida T, Furumatsu T, Aoyama E, Kuboki T, Takigawa M. Direct interaction between CCN family protein 2 and fibroblast growth factor 1. J Cell Commun Signal 2014; 8:157-63. [PMID: 24903028 DOI: 10.1007/s12079-014-0232-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/15/2014] [Indexed: 01/19/2023] Open
Abstract
In an attempt to find out a new molecular counterpart of CCN family protein 2 (CCN2), a matricellular protein with multiple functions, we performed an interactome analysis and found fibroblast growth factor (FGF) -1 as one of the candidates. Solid-phase binding assay indicated specific binding between CCN2 and FGF-1. This binding was also confirmed by surface plasmon resonance (SPR) analysis that revealed a dissociation constant (Kd) of 3.98 nM indicating strong molecular interaction between the two. RNA analysis suggested that both FGF-1 and CCN2 could be produced by chondrocytes and thus their interaction in the cartilage is possible. These findings for the first time indicate the direct interaction of CCN2 and FGF-1 and suggest the co-presence of these molecules in the cartilage microenvironment. CCN2 is a well-known promoter of cartilage development and regeneration, whereas the physiological and pathological role of FGF-1 in cartilage mostly remains unclear. Biological role of FGF-1 itself in cartilage is also suspected.
Collapse
Affiliation(s)
- Tarek Abd El Kader
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ono Y, Sakai T, Hiraiwa H, Hamada T, Omachi T, Nakashima M, Ishizuka S, Matsukawa T, Knudson W, Knudson CB, Ishiguro N. Chondrogenic capacity and alterations in hyaluronan synthesis of cultured human osteoarthritic chondrocytes. Biochem Biophys Res Commun 2013; 435:733-9. [PMID: 23702485 DOI: 10.1016/j.bbrc.2013.05.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 05/12/2013] [Indexed: 12/20/2022]
Abstract
During osteoarthritis there is a disruption and loss of the extracellular matrix of joint cartilage, composed primarily of type II collagen, aggrecan and hyaluronan. In young patients, autologous chondrocyte implantation can be used to repair cartilage defects. However, for more elderly patients with osteoarthritis, such a repair approach is contraindicated because the procedure requires a large expansion of autologous chondrocytes in vitro leading a rapid, perhaps irreversible, loss of the chondrocyte phenotype. This study investigates whether osteoarthritic chondrocytes obtained from older patients can be expanded in vitro and moreover, induced to re-activate their chondrocyte phenotype. A decrease in chondrocyte phenotype markers, collagen II, aggrecan and SOX9 mRNA was observed with successive expansion of cells in monolayer culture. However, chondrogenic induction in three-dimensional pellet culture successfully rescued the expression of all three marker genes to native levels, even with 4th passage cells-cells representing an approximate 625-fold expansion in cell number. This data supports the use of osteoarthritic cells for autologous implantation repair. In addition, another set of gene products were explored as useful markers of the chondrocyte phenotype. Differentiated primary chondrocytes exhibited a common pattern of hyaluronan synthase isoforms that changed upon cell expansion in vitro and, reverted back to the original pattern following pellet culture. Moreover, the change in isoform pattern correlated with changes in the molecular size of synthesized hyaluronan.
Collapse
Affiliation(s)
- Yohei Ono
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Esparza R, Gortazar AR, Forriol F. Cell study of the three areas of the meniscus: effect of growth factors in an experimental model in sheep. J Orthop Res 2012; 30:1647-51. [PMID: 22447524 DOI: 10.1002/jor.22110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 02/23/2012] [Indexed: 02/04/2023]
Abstract
Meniscus had two areas with different vascular supply. Cells of the two areas and the synovium were monolayer cultivated. We analyzed the expression of genes of Col1, Col 2A, MMP-2, MMP-13, and aggrecan in a baseline state and after incubation with VEGF, TGF-β, FGF, and IGF. We found that the growth factors used produced a major increase in the MMP-13 in all three areas. In the vascular area, the stimulation of MMP-3 was produced by FGF, while in the synovial and avascular areas, it was caused by TGF-β. MMP-2 was only stimulated in the synovial area by IGF. Col 2A was stimulated in the synovial area by VEGF, and in the avascular area by TGF-β, FGF, and IGF, whereas Col 1 was stimulated in the avascular area by IGF, FGF, and VEGF. The vascular or avascular areas of the meniscus, behave differently in terms of repair, and their cells express different factors. The growth factors act in a different way in each meniscal area.
Collapse
Affiliation(s)
- Raul Esparza
- Orthopaedic Department, School of Medicine, University CEU Campus de Montepríncipe, 28886 - Boadilla del Monte, Madrid, Spain
| | | | | |
Collapse
|
16
|
Sanz-Ramos P, Mora G, Ripalda P, Vicente-Pascual M, Izal-Azcárate I. Identification of signalling pathways triggered by changes in the mechanical environment in rat chondrocytes. Osteoarthritis Cartilage 2012; 20:931-9. [PMID: 22609478 DOI: 10.1016/j.joca.2012.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/24/2012] [Accepted: 04/28/2012] [Indexed: 02/02/2023]
Abstract
AIM The aim of this work was to determine the pathways implicated in the mechanosensing of chondrocytes. METHODS Rat chondrocytes were cultured in collagen hydrogels of different stiffness (2-20 Pa) in normoxia and hypoxia, in monolayer and embedded inside hydrogels. First, chondrocyte were cultured on hydrogels in the presence of antibodies to block integrins. Second, custom RT-PCR array plates and western blot were used to detect changes in expression of genes implicated in downstream signalling pathways. RESULTS The results allowed us to demonstrate the mechanosensing of chondrocytes for changes in stiffness in the range of Pascals. We also identified Non-Muscle Myosin II (NMMII) and integrins α1, β1 and β3 as participants in the mechanosensing, since their blockade inhibits the sensing of the stiffness, and they are up-regulated in the process. RT-PCR arrays and western blot detected up-regulation of Paxillin, RhoA, Fos, Jun and Sox9. We detected no expression of Src in the monolayer cultures, but we found a role for this protein in 3D. The expression of HIF-1α was not modified under normoxia but was found to participate under hypoxia. Focal Adhesion Kinase (FAK), showed a direct relationship with the expression of Aggrecan in hypoxia and an inverse one in normoxia. Finally, immunofluorescence analysis located the expression of factors AP-1, Sox-9 and HIF-1α inside the cell nuclei and RhoA, Src, Paxillin and FAK close to the cytoplasmic membrane. CONCLUSIONS We determined here some of the genes that are up-regulated during the process of chondrocyte mechanosensing.
Collapse
Affiliation(s)
- P Sanz-Ramos
- Laboratory for Orthopaedic Research, University of Navarra, School of Medicine, Pamplona, Spain
| | | | | | | | | |
Collapse
|
17
|
Vaquero J, Forriol F. Knee chondral injuries: clinical treatment strategies and experimental models. Injury 2012; 43:694-705. [PMID: 21733516 DOI: 10.1016/j.injury.2011.06.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 05/30/2011] [Accepted: 06/15/2011] [Indexed: 02/02/2023]
Abstract
Articular cartilage has a very limited capacity to repair and as such premature joint degeneration is often the end point of articular injuries. Patients with chondral injury have asymptomatic periods followed by others in which discomfort or pain is bearable. The repair of focal cartilage injuries requires a precise diagnosis, a completed knee evaluation to give the correct indication for surgery proportional to the damage and adapted to each patient. Many of the surgical techniques currently performed involve biotechnology. The future of cartilage repair should be based on an accurate diagnosis using new MRI techniques. Clinical studies would allow us to establish the correct indications and surgical techniques implanting biocompatible and biodegradable matrices with or without stem cells and growth factors. Arthroscopic techniques with the design of new instruments can facilitate repair of patella and tibial plateau lesions.
Collapse
Affiliation(s)
- Javier Vaquero
- Hospital Gregorio Marañon, Orthopaedic Surgery Department, Madrid, Spain
| | | |
Collapse
|
18
|
Surrao DC, Khan AA, McGregor AJ, Amsden BG, Waldman SD. Can Microcarrier-Expanded Chondrocytes Synthesize Cartilaginous TissueIn Vitro? Tissue Eng Part A 2011; 17:1959-67. [DOI: 10.1089/ten.tea.2010.0434] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Denver C. Surrao
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
- Human Mobility Research Centre, Kingston General Hospital, Kingston, Ontario, Canada
| | - Aasma A. Khan
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
- Human Mobility Research Centre, Kingston General Hospital, Kingston, Ontario, Canada
| | - Aaron J. McGregor
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
- Human Mobility Research Centre, Kingston General Hospital, Kingston, Ontario, Canada
| | - Brian G. Amsden
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
- Human Mobility Research Centre, Kingston General Hospital, Kingston, Ontario, Canada
| | - Stephen D. Waldman
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
- Human Mobility Research Centre, Kingston General Hospital, Kingston, Ontario, Canada
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
19
|
Warnock JJ, Fox DB, Stoker AM, Cook JL. Evaluation of in vitro growth factor treatments on fibrochondrogenesis by synovial membrane cells from osteoarthritic and nonosteoarthritic joints of dogs. Am J Vet Res 2011; 72:500-11. [PMID: 21453151 DOI: 10.2460/ajvr.72.4.500] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the in vitro effects of selected growth factors on fibrochondrogenesis by synovial membrane cells from nonosteoarthritic (normal) and osteoarthritic joints of dogs. ANIMALS 5 dogs with secondary osteoarthritis of shoulder or stifle joints and 6 dogs with normal joints. PROCEDURES Synovial membrane cells were harvested from normal and osteoarthritic joints and cultured in monolayer with or without (control) basic fibroblast growth factor, transforming growth factor-β1, and insulin-like growth factor-1. In the cultured cells, fibrochondrogenesis was measured by use of a real-time reverse transcriptase PCR assay to determine relative expressions of collagen I, collagen II, and aggrecan genes and of 3 genes involved in embryonic chondrogenesis: Sry-type homeobox protein-9 (SOX-9), frizzled-motif associated with bone development (Frzb), and regulator of G-protein signaling-10 (RGS-10). Tissue collagen content was measured via a hydroxyproline assay, and sulfated glycosaminoglycan content was measured via a 1,9-dimethylmethylene blue assay. Cellularity was determined via a double-stranded DNA assay. Immunohistochemical analysis for collagens I and II was also performed. RESULTS In vitro collagen synthesis was enhanced by growth factor stimulation. Although osteoarthritic-joint synoviocytes could undergo a fibrocartilage-like phenotypic shift, their production of collagenous extracellular matrix was less than that of normal-joint synoviocytes. Gene expressions of SOX-9 and RGS-10 were highest in the osteoarthritic-joint cells; Frzb expression was highest in growth factor treated cells. CONCLUSIONS AND CLINICAL RELEVANCE Autogenous synovium may be a viable cell source for meniscal tissue engineering. Gene expressions of SOX-9 and RGS-10 may be potential future targets for in vitro enhancement of chondrogenesis.
Collapse
Affiliation(s)
- Jennifer J Warnock
- Comparative Orthopaedic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
20
|
Agar G, Blumenstein S, Bar-Ziv Y, Kardosh R, Schrift-Tzadok M, Gal-Levy R, Fischler T, Goldschmid R, Yayon A. The Chondrogenic Potential of Mesenchymal Cells and Chondrocytes from Osteoarthritic Subjects: A Comparative Analysis. Cartilage 2011; 2:40-9. [PMID: 26069568 PMCID: PMC4300788 DOI: 10.1177/1947603510380899] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE The multipotential nature of stem or progenitor cells apparently makes them the ideal choice for any cell therapy, but this as yet remains to be proven. This study (30 subjects) was designed to compare the potential to repair articular cartilage of chondrocytes taken from different regions in osteoarthritic cartilage with that of mesenchymal stem cells prepared from bone marrow of the same subject. DESIGN Cartilage biopsies, bone marrow, and blood samples were taken from each of 30 individuals with chronic osteoarthritis (aged 62-85 years) undergoing total knee replacement. The chondrogenic potential of chondrocytes isolated from cartilage biopsies taken from different regions of osteoarthritic cartilage was compared with that of mesenchymal cells by quantitative analysis of several chondrocyte specific markers and an ex vivo cartilage differentiation assay. RESULTS Cartilage-derived articular chondrocytes are superior to bone marrow-derived cells when compared for their ex vivo chondrogenic potential. Interestingly, there was marked and significant difference in the expression of chondrocytic markers between chondrocytes derived from adjacent, visually distinct regions of the diseased cartilage. When cultured in the presence of a fibroblast growth factor 2 variant, all cell samples from both tissues showed a high degree of chondrogenic potential. CONCLUSIONS Although bone marrow-derived mesenchymal cells, when supplemented with the appropriate chondrogenic factors, are a suitable source for autologous cartilage implantation, adult chondroprogenitor cells, particularly those from moderately affected regions of the osteoarthritic joints, demonstrate superior chondrogenic potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Avner Yayon
- ProChon Biotech Ltd., Ness Ziona, Israel,Avner Yayon, PhD, MD, ProChon Biotech Ltd., 7, Golda Meir Street, Weizmann Science Park, P.O. Box 4082, Ness Ziona 70400, Israel
| |
Collapse
|
21
|
Abstract
Menisci and articular cartilage are easily injured but difficult to repair. Both tissues are structures of low cellular density. The cells are highly differentiated and specialised, with a limited capacity for proliferation. The main effects of growth factors on chondrocytes are stimulation of the extracellular cartilage matrix and inhibition and activation of proteases. Growth factors with anabolic effects promoting chondrogenesis and maintenance of the phenotype of the chondrocyte could be useful in the treatment of injured cartilage or meniscus. An important aspect of treatment with growth factors is their insertion into suitable scaffolds. Ongoing research is focusing on the repair of defects in articular cartilage with hyaline tissue instead of fibrocartilage, and the repair of meniscal lesions with a stronger fibrocartilage. This article examines the latest advances made in this field of regenerative medicine.
Collapse
|
22
|
Dehne T, Karlsson C, Ringe J, Sittinger M, Lindahl A. Chondrogenic differentiation potential of osteoarthritic chondrocytes and their possible use in matrix-associated autologous chondrocyte transplantation. Arthritis Res Ther 2009; 11:R133. [PMID: 19723327 PMCID: PMC2787268 DOI: 10.1186/ar2800] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 07/27/2009] [Accepted: 09/02/2009] [Indexed: 02/08/2023] Open
Abstract
Introduction Autologous chondrocyte transplantation (ACT) is a routine technique to regenerate focal cartilage lesions. However, patients with osteoarthritis (OA) are lacking an appropriate long-lasting treatment alternative, partly since it is not known if chondrocytes from OA patients have the same chondrogenic differentiation potential as chondrocytes from donors not affected by OA. Methods Articular chondrocytes from patients with OA undergoing total knee replacement (Mankin Score > 3, Ahlbäck Score > 2) and from patients undergoing ACT, here referred to as normal donors (ND), were isolated applying protocols used for ACT. Their chondrogenic differentiation potential was evaluated both in high-density pellet and scaffold (Hyaff-11) cultures by histological proteoglycan assessment (Bern Score) and immunohistochemistry for collagen types I and II. Chondrocytes cultured in monolayer and scaffolds were subjected to gene expression profiling using genome-wide oligonucleotide microarrays. Expression data were verified by using real-time PCR. Results Chondrocytes from ND and OA donors demonstrated accumulation of comparable amounts of cartilage matrix components, including sulphated proteoglycans and collagen types I and II. The mRNA expression of cartilage markers (ACAN, COL2A1, COMP, CRTL1, SOX9) and genes involved in matrix synthesis (BGN, CILP2, COL9A2, COL11A1, TIMP4) was highly induced in 3D cultures of chondrocytes from both donor groups. Genes associated with hypertrophic or OA cartilage (ALPL, COL1A1, COL3A1, COL10A1, MMP13, POSTN, PTH1R, RUNX2) were not significantly regulated between the two groups of donors. The expression of 661 genes, including COMP, FN1, and SOX9, was differentially regulated between OA and ND chondrocytes cultured in monolayer. During scaffold culture, the differences diminished between the OA and ND chondrocytes, and only 184 genes were differentially regulated. Conclusions Only few genes were differentially expressed between OA and ND chondrocytes in Hyaff-11 culture. The risk of differentiation into hypertrophic cartilage does not seem to be increased for OA chondrocytes. Our findings suggest that the chondrogenic capacity is not significantly affected by OA, and OA chondrocytes fulfill the requirements for matrix-associated ACT.
Collapse
Affiliation(s)
- Tilo Dehne
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Tucholskystrasse 2, Berlin, 10117, Germany.
| | | | | | | | | |
Collapse
|
23
|
Davies LC, Blain EJ, Gilbert SJ, Caterson B, Duance VC. The potential of IGF-1 and TGFbeta1 for promoting "adult" articular cartilage repair: an in vitro study. Tissue Eng Part A 2008; 14:1251-61. [PMID: 18399732 DOI: 10.1089/ten.tea.2007.0211] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Research into articular cartilage repair, a tissue unable to spontaneously regenerate once injured, has focused on the generation of a biomechanically functional repair tissue with the characteristics of hyaline cartilage. This study was undertaken to provide insight into how to improve ex vivo chondrocyte amplification, without cellular dedifferentiation for cell-based methods of cartilage repair. We investigated the effects of insulin-like growth factor 1 (IGF-1) and transforming growth factor beta 1 (TGFbeta1) on cell proliferation and the de novo synthesis of sulfated glycosaminoglycans and collagen in chondrocytes isolated from skeletally mature bovine articular cartilage, whilst maintaining their chondrocytic phenotype. Here we demonstrate that mature differentiated chondrocytes respond to growth factor stimulation to promote de novo synthesis of matrix macromolecules. Additionally, chondrocytes stimulated with IGF-1 or TGFbeta1 induced receptor expression. We conclude that IGF-1 and TGFbeta1 in addition to autoregulatory effects have differential effects on each other when used in combination. This may be mediated by regulation of receptor expression or endogenous factors; these findings offer further options for improving strategies for repair of cartilage defects.
Collapse
Affiliation(s)
- Lindsay C Davies
- Department of Oral Surgery, Medicine, and Pathology, School of Dentistry, Cardiff University, Heath Park, Cardiff, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Kaupp JA, Waldman SD. Mechanical vibrations increase the proliferation of articular chondrocytes in high-density culture. Proc Inst Mech Eng H 2008; 222:695-703. [DOI: 10.1243/09544119jeim376] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tissue engineering is a promising approach for articular cartilage repair; however, it still has proven a challenge to produce tissue from the limited number of cells that can be extracted from a single individual. Relatively few cell expansion methods exist without the problems of dedifferentiation and/or loss of potency. Previously, it has been shown that mechanical vibrations can enhance chondrocyte proliferation in monolayer culture. Thus, it was hypothesized that chondrocytes grown in high-density culture would respond in a similar fashion while maintaining phenotypic stability. Isolated bovine articular chondrocytes were seeded in high-density culture on Millicell™ filters and subjected to mechanical vibrations 48 h after seeding. Mechanical vibrations enhanced chondrocyte proliferation at frequencies above 350 Hz, with the peak response occurring at a 1 g amplitude for a duration of 30 min. Under these conditions, the gene expression of cartilage-specific and dedifferentiation markers (collagen II, collagen I, and aggrecan) were unchanged by the imposed stimulus. To determine the effect of accumulated extracellular matrix (ECM) on this proliferative response, selected cultures were stimulated under the same conditions after varying lengths of preculture. The amount of accumulated ECM (collagen and proteoglycans) decreased this proliferative response, with the cultures becoming insensitive to the stimulus after 1 week of preculture. Thus, mechanical vibration can serve as an effective means preferentially to stimulate the proliferation of chondrocytes during culture, but its effects appear to be limited to the early stages where ECM accumulation is at a minimum.
Collapse
Affiliation(s)
- J A Kaupp
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada
| | - S D Waldman
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
25
|
Davies LC, Blain EJ, Gilbert SJ, Caterson B, Duance VC. The Potential of IGF-1 and TGFβ1 for Promoting “Adult” Articular Cartilage Repair: An In VitroStudy. Tissue Eng Part A 2008. [DOI: 10.1089/tea.2007.0211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
van der Kraan PM, van den Berg WB. Osteoarthritis in the context of ageing and evolution. Loss of chondrocyte differentiation block during ageing. Ageing Res Rev 2008; 7:106-13. [PMID: 18054526 DOI: 10.1016/j.arr.2007.10.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 10/16/2007] [Indexed: 02/03/2023]
Abstract
Ageing is the main risk factor of primary osteoarthritis (OA) and OA is the disease most strongly correlated with ageing. Both in humans and other animals OA development appears to be not strictly time-dependent but to hold pace with ageing processes. A characteristic of OA is deviant behaviour of chondrocytes in articular cartilage. These chondrocytes resemble terminal differentiated chondrocytes in growth plates and actively produce matrix degrading enzymes. The latter results in cartilage degeneration and eventually OA. We postulate that at a young age progression of chondrocyte differentiation is actively blocked in articular cartilage. This block declines when the evolutionary pressure to maintain this block, after reproductive life, is minimized. The loss of this differentiation block, maybe as a result of changes in chondrocyte TGF beta signalling, results in combination with normal joint loading in cartilage degeneration and OA.
Collapse
Affiliation(s)
- Peter M van der Kraan
- Experimental Rheumatology & Advanced Therapeutics, NCMLS, Radboud University, Medical Centre, Geert Grooteplein 28, Nijmegen, The Netherlands.
| | | |
Collapse
|