1
|
Cheng K, Zhu H, Peng Y, Wen X, Ding H. Computer-aided design and 3D printing for a stable construction of segmental bone defect model in Beagles: a short term observation. 3D Print Med 2024; 10:20. [PMID: 38914872 PMCID: PMC11197206 DOI: 10.1186/s41205-024-00217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/16/2024] [Indexed: 06/26/2024] Open
Abstract
OBJECTIVE Segmental bone defect animal studies require stable fixation which is a continuous experimental challenge. Large animal models are comparable to the human bone, but with obvious drawbacks of housing and costs. Our study aims to utilize CAD and 3D printing in the construction of a stable and reproducible segmental bone defect animal mode. METHODS CAD-aided 3D printed surgical instruments were incorporated into the construction of the animal model through preoperative surgical emulation. 20 3D printed femurs were divided into either experimental group using 3D surgical instruments or control group. In Vitro surgical time and accuracy of fixation were analysed and compared between the two groups. A mature surgical plan using the surgical instruments was then utilized in the construction of 3 segmental bone defect Beagle models in vivo. The Beagles were postoperatively assessed through limb function and imaging at 1, 2 and 3 months postoperatively. RESULTS In vitro experiments showed a significant reduction in surgical time from 40.6 ± 14.1 (23-68 min) to 26 ± 4.6 (19-36 min) (n = 10, p < 0.05) and the accuracy of intramedullary fixation placement increased from 71.6 ± 23.6 (33.3-100) % to 98.3 ± 5.37 (83-100) %, (n = 30, p < 0.05) with the use of CAD and 3D printed instruments. All Beagles were load-bearing within 1 week, and postoperative radiographs showed no evidence of implant failure. CONCLUSION Incorporation of CAD and 3D printing significantly increases stability, while reducing the surgical time in the construction of the animal model, significantly affecting the success of the segmental bone defect model in Beagles.
Collapse
Affiliation(s)
- Kai Cheng
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Haotian Zhu
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou, 510180, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yuanhao Peng
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Xinghua Wen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, China
| | - Huanwen Ding
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou, 510180, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Gentili C, Palamà MEF, Sexton G, Maybury S, Shanahan M, Omowunmi-Kayode YY, Martin J, Johnson M, Thompson K, Clarkin O, Coleman CM. Sustainably cultured coral scaffold supports human bone marrow mesenchymal stromal cell osteogenesis. Regen Ther 2024; 26:366-381. [PMID: 39050552 PMCID: PMC11267040 DOI: 10.1016/j.reth.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 07/27/2024] Open
Abstract
The current gold standard grafting material is autologous bone due to its osteoinductive and osteoconductive properties. Autograft harvesting results in donors site morbidity. Coral scaffolds offer a natural autograft alternative, sharing the density and porosity of human bone. This study investigated the biocompatibility and osteogenic potential of a novel, sustainably grown Pocillopora scaffold with human bone marrow-derived mesenchymal stromal cells (MSCs). The coral-derived scaffold displays a highly textured topography, with concavities of uniform size and a high calcium carbonate content. Large scaffold samples exhibit compressive and diametral tensile strengths in the range of trabecular bone, with strengths likely increasing for smaller particulate samples. Following the in vitro seeding of MSCs adjacent to the scaffold, the MSCs remained viable, continued proliferating and metabolising, demonstrating biocompatibility. The seeded MSCs densely covered the coral scaffold with organized, aligned cultures with a fibroblastic morphology. In vivo coral scaffolds with MSCs supported earlier bone and blood vessel formation as compared to control constructs containing TCP-HA and MSCs. This work characterized a novel, sustainably grown coral scaffold that was biocompatible with MSCs and supports their in vivo osteogenic differentiation, advancing the current repertoire of biomaterials for bone grafting.
Collapse
Affiliation(s)
- Chiara Gentili
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | | | - Gillian Sexton
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Sophie Maybury
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Megan Shanahan
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Yeyetunde Yvonne Omowunmi-Kayode
- DCU Biomaterials Research Group, Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - James Martin
- Zoan Nuáil Teoranta T/A Zoan BioMed, The Hatchery Building, Cloonacarton, Recess, Galway, Ireland
| | - Martin Johnson
- Zoan Nuáil Teoranta T/A Zoan BioMed, The Hatchery Building, Cloonacarton, Recess, Galway, Ireland
- Ecodiversity Ltd, Derryconnell, Schull, Co. Cork, Ireland
| | - Kerry Thompson
- College of Medicine, Nursing and Health Science, School of Medicine, Anatomy Imaging and Microscopy Facility, University of Galway, Galway, Ireland
| | - Owen Clarkin
- DCU Biomaterials Research Group, Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Cynthia M. Coleman
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Haam DW, Bae CS, Kim JM, Hann SY, Yim CMR, Moon HS, Oh DS. Reconstruction of Segmental Bone Defect in Canine Tibia Model Utilizing Bi-Phasic Scaffold: Pilot Study. Int J Mol Sci 2024; 25:4604. [PMID: 38731827 PMCID: PMC11083235 DOI: 10.3390/ijms25094604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
The reunion and restoration of large segmental bone defects pose significant clinical challenges. Conventional strategies primarily involve the combination of bone scaffolds with seeded cells and/or growth factors to regulate osteogenesis and angiogenesis. However, these therapies face inherent issues related to immunogenicity, tumorigenesis, bioactivity, and off-the-shelf transplantation. The biogenic micro-environment created by implanted bone grafts plays a crucial role in initiating the bone regeneration cascade. To address this, a highly porous bi-phasic ceramic synthetic bone graft, composed of hydroxyapatite (HA) and alumina (Al), was developed. This graft was employed to repair critical segmental defects, involving the creation of a 2 cm segmental defect in a canine tibia. The assessment of bone regeneration within the synthetic bone graft post-healing was conducted using scintigraphy, micro-CT, histology, and dynamic histomorphometry. The technique yielded pore sizes in the range of 230-430 μm as primary pores, 40-70 μm as secondary inner microchannels, and 200-400 nm as tertiary submicron surface holes. These three components are designed to mimic trabecular bone networks and to provide body fluid adsorption, diffusion, a nutritional supply, communication around the cells, and cell anchorage. The overall porosity was measured at 82.61 ± 1.28%. Both micro-CT imaging and histological analysis provided substantial evidence of robust bone formation and the successful reunion of the critical defect. Furthermore, an histology revealed the presence of vascularization within the newly formed bone area, clearly demonstrating trabecular and cortical bone formation at the 8-week mark post-implantation.
Collapse
Affiliation(s)
- Dae-Won Haam
- Department of Prosthodontics, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea;
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Jong-Min Kim
- College of Health and Medical Sciences, Cheongju University, Cheongju 28503, Republic of Korea;
| | - Sung-Yun Hann
- Department of Precision Mechanical Engineering, Kyungpook National University, Sangju 37224, Republic of Korea;
| | | | - Hong-Seok Moon
- Department of Prosthodontics, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea;
| | - Daniel S. Oh
- Department of Dental Biomaterials, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Garot C, Schoffit S, Monfoulet C, Machillot P, Deroy C, Roques S, Vial J, Vollaire J, Renard M, Ghanem H, El‐Hafci H, Decambron A, Josserand V, Bordenave L, Bettega G, Durand M, Manassero M, Viateau V, Logeart‐Avramoglou D, Picart C. 3D-Printed Osteoinductive Polymeric Scaffolds with Optimized Architecture to Repair a Sheep Metatarsal Critical-Size Bone Defect. Adv Healthc Mater 2023; 12:e2301692. [PMID: 37655491 PMCID: PMC11468956 DOI: 10.1002/adhm.202301692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/10/2023] [Indexed: 09/02/2023]
Abstract
The reconstruction of critical-size bone defects in long bones remains a challenge for clinicians. A new osteoinductive medical device is developed here for long bone repair by combining a 3D-printed architectured cylindrical scaffold made of clinical-grade polylactic acid (PLA) with a polyelectrolyte film coating delivering the osteogenic bone morphogenetic protein 2 (BMP-2). This film-coated scaffold is used to repair a sheep metatarsal 25-mm long critical-size bone defect. In vitro and in vivo biocompatibility of the film-coated PLA material is proved according to ISO standards. Scaffold geometry is found to influence BMP-2 incorporation. Bone regeneration is followed using X-ray scans, µCT scans, and histology. It is shown that scaffold internal geometry, notably pore shape, influenced bone regeneration, which is homogenous longitudinally. Scaffolds with cubic pores of ≈870 µm and a low BMP-2 dose of ≈120 µg cm-3 induce the best bone regeneration without any adverse effects. The visual score given by clinicians during animal follow-up is found to be an easy way to predict bone regeneration. This work opens perspectives for a clinical application in personalized bone regeneration.
Collapse
Affiliation(s)
- Charlotte Garot
- CNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)INSERM U1292 BiosantéCEAUniversité Grenoble Alpes17 avenue des MartyrsGrenobleF‐38054France
| | - Sarah Schoffit
- Ecole Nationale Vétérinaire d'AlfortUniversité Paris‐EstMaisons‐AlfortF‐94704France
- CNRSINSERMENVAB3OAUniversité Paris CitéParisF‐75010France
| | - Cécile Monfoulet
- INSERMInstitut BergoniéUniversity of BordeauxCIC 1401BordeauxF‐33000France
- CIC‐ITINSERMInstitut BergoniéCHU de BordeauxCIC 1401BordeauxF‐33000France
| | - Paul Machillot
- CNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)INSERM U1292 BiosantéCEAUniversité Grenoble Alpes17 avenue des MartyrsGrenobleF‐38054France
| | - Claire Deroy
- INSERMInstitut BergoniéUniversity of BordeauxCIC 1401BordeauxF‐33000France
- CIC‐ITINSERMInstitut BergoniéCHU de BordeauxCIC 1401BordeauxF‐33000France
| | - Samantha Roques
- INSERMInstitut BergoniéUniversity of BordeauxCIC 1401BordeauxF‐33000France
- CIC‐ITINSERMInstitut BergoniéCHU de BordeauxCIC 1401BordeauxF‐33000France
| | - Julie Vial
- Ecole Nationale Vétérinaire d'AlfortUniversité Paris‐EstMaisons‐AlfortF‐94704France
- CNRSINSERMENVAB3OAUniversité Paris CitéParisF‐75010France
| | - Julien Vollaire
- INSERM U1209Institute of Advanced BiosciencesGrenobleF‐38000France
- Institute of Advanced BiosciencesUniversité Grenoble AlpesGrenobleF‐38000France
| | - Martine Renard
- INSERMInstitut BergoniéUniversity of BordeauxCIC 1401BordeauxF‐33000France
- CIC‐ITINSERMInstitut BergoniéCHU de BordeauxCIC 1401BordeauxF‐33000France
| | - Hasan Ghanem
- CNRSINSERMENVAB3OAUniversité Paris CitéParisF‐75010France
| | | | - Adeline Decambron
- Ecole Nationale Vétérinaire d'AlfortUniversité Paris‐EstMaisons‐AlfortF‐94704France
- CNRSINSERMENVAB3OAUniversité Paris CitéParisF‐75010France
| | - Véronique Josserand
- INSERM U1209Institute of Advanced BiosciencesGrenobleF‐38000France
- Institute of Advanced BiosciencesUniversité Grenoble AlpesGrenobleF‐38000France
| | - Laurence Bordenave
- INSERMInstitut BergoniéUniversity of BordeauxCIC 1401BordeauxF‐33000France
- CIC‐ITINSERMInstitut BergoniéCHU de BordeauxCIC 1401BordeauxF‐33000France
| | - Georges Bettega
- INSERM U1209Institute of Advanced BiosciencesGrenobleF‐38000France
- Service de Chirurgie Maxillo‐FacialeCentre Hospitalier Annecy Genevois1 avenue de l'hôpitalEpagny Metz‐TessyF‐74370France
| | - Marlène Durand
- INSERMInstitut BergoniéUniversity of BordeauxCIC 1401BordeauxF‐33000France
- CIC‐ITINSERMInstitut BergoniéCHU de BordeauxCIC 1401BordeauxF‐33000France
| | - Mathieu Manassero
- Ecole Nationale Vétérinaire d'AlfortUniversité Paris‐EstMaisons‐AlfortF‐94704France
- CNRSINSERMENVAB3OAUniversité Paris CitéParisF‐75010France
| | - Véronique Viateau
- Ecole Nationale Vétérinaire d'AlfortUniversité Paris‐EstMaisons‐AlfortF‐94704France
- CNRSINSERMENVAB3OAUniversité Paris CitéParisF‐75010France
| | | | - Catherine Picart
- CNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)INSERM U1292 BiosantéCEAUniversité Grenoble Alpes17 avenue des MartyrsGrenobleF‐38054France
- Institut Universitaire de France (IUF)1 rue DescartesParis CEDEX 0575231France
| |
Collapse
|
5
|
Rossi N, Hadad H, Bejar-Chapa M, Peretti GM, Randolph MA, Redmond RW, Guastaldi FPS. Bone Marrow Stem Cells with Tissue-Engineered Scaffolds for Large Bone Segmental Defects: A Systematic Review. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:457-472. [PMID: 36905366 DOI: 10.1089/ten.teb.2022.0213] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Critical-sized bone defects (CSBDs) represent a significant clinical challenge, stimulating researchers to seek new methods for successful bone reconstruction. The aim of this systematic review is to assess whether bone marrow stem cells (BMSCs) combined with tissue-engineered scaffolds have demonstrated improved bone regeneration in the treatment of CSBD in large preclinical animal models. A search of electronic databases (PubMed, Embase, Web of Science, and Cochrane Library) focused on in vivo large animal studies identified 10 articles according to the following inclusion criteria: (1) in vivo large animal models with segmental bone defects; (2) treatment with tissue-engineered scaffolds combined with BMSCs; (3) the presence of a control group; and (4) a minimum of a histological analysis outcome. Animal research: reporting of in Vivo Experiments guidelines were used for quality assessment, and Systematic Review Center for Laboratory animal Experimentation's risk of bias tool was used to define internal validity. The results demonstrated that tissue-engineered scaffolds, either from autografts or allografts, when combined with BMSCs provide improved bone mineralization and bone formation, including a critical role in the remodeling phase of bone healing. BMSC-seeded scaffolds showed improved biomechanical properties and microarchitecture properties of the regenerated bone when compared with untreated and scaffold-alone groups. This review highlights the efficacy of tissue engineering strategies for the repair of extensive bone defects in preclinical large-animal models. In particular, the use of mesenchymal stem cells, combined with bioscaffolds, seems to be a successful method in comparison to cell-free scaffolds.
Collapse
Affiliation(s)
- Nicolò Rossi
- Wellman Center for Photomedicine and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Henrique Hadad
- Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Maria Bejar-Chapa
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Giuseppe M Peretti
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Mark A Randolph
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert W Redmond
- Wellman Center for Photomedicine and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fernando P S Guastaldi
- Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Blázquez-Carmona P, Mora-Macías J, Martínez-Vázquez FJ, Morgaz J, Domínguez J, Reina-Romo E. Mechanics Predicts Effective Critical-Size Bone Regeneration Using 3D-Printed Bioceramic Scaffolds. Tissue Eng Regen Med 2023; 20:893-904. [PMID: 37606809 PMCID: PMC10519928 DOI: 10.1007/s13770-023-00577-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND 3D-printed bioceramic scaffolds have gained popularity due to their controlled microarchitecture and their proven biocompatibility. However, their high brittleness makes their surgical implementation complex for weight-bearing bone treatments. Thus, they would require difficult-to-instrument rigid internal fixations that limit a rigorous evaluation of the regeneration progress through the analysis of mechanic-structural parameters. METHODS We investigated the compatibility of flexible fixations with fragile ceramic implants, and if mechanical monitoring techniques are applicable to bone tissue engineering applications. Tissue engineering experiments were performed on 8 ovine metatarsi. A 15 mm bone segment was directly replaced with a hydroxyapatite scaffold and stabilized by an instrumented Ilizarov-type external fixator. Several in vivo monitoring techniques were employed to assess the mechanical and structural progress of the tissue. RESULTS The applied surgical protocol succeeded in combining external fixators and subject-specific bioceramic scaffolds without causing fatal fractures of the implant due to stress concentrator. The bearing capacity of the treated limb was initially altered, quantifying a 28-56% reduction of the ground reaction force, which gradually normalized during the consolidation phase. A faster recovery was reported in the bearing capacity, stiffening and bone mineral density of the callus. It acquired a predominant mechanical role over the fixator in the distribution of internal forces after one post-surgical month. CONCLUSION The bioceramic scaffold significantly accelerated in vivo the bone formation compared to other traditional alternatives in the literature (e.g., distraction osteogenesis). In addition, the implemented assessment techniques allowed an accurate quantitative evaluation of the bone regeneration through mechanical and imaging parameters.
Collapse
Affiliation(s)
- Pablo Blázquez-Carmona
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Avenida Camino de los Descubrimientos s/n, 41092, Seville, Spain.
- Instituto de Biomedicina de Sevilla (IBiS), Universidad de Sevilla, Seville, Spain.
| | - Juan Mora-Macías
- Escuela Técnica Superior de Ingeniería, Universidad de Huelva, Huelva, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Universidad de Sevilla, Seville, Spain
| | - Francisco J Martínez-Vázquez
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Avenida Camino de los Descubrimientos s/n, 41092, Seville, Spain
| | - Juan Morgaz
- Departamento Medicina y Cirugía Animal, Universidad de Córdoba, Campus Universitario de Rabanales, Córdoba, Spain
| | - Jaime Domínguez
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Avenida Camino de los Descubrimientos s/n, 41092, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Universidad de Sevilla, Seville, Spain
| | - Esther Reina-Romo
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Avenida Camino de los Descubrimientos s/n, 41092, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Universidad de Sevilla, Seville, Spain
| |
Collapse
|
7
|
Kaya O, Mirioglu A, Ozkan C, Bicer OS, Deveci MA, Tekin M, Ates KE. Reconstruction of critical size segmental femoral diaphyseal defects of New Zealand rabbits by using combined titanium mesh cage and induced membrane technique. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2023; 33:629-637. [PMID: 35852612 DOI: 10.1007/s00590-022-03330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Long bone defects due to fractures resulting from high-energy trauma, infections and tumor resections are problems that orthopedic surgeons commonly face. We investigated the effects of a titanium mesh cage on bone healing with an induced membrane technique. METHODS Three groups, each composed of eight rabbits, were formed. Extraarticular diaphyseal bone defects were created. Femora of the first group were fixed with an empty titanium mesh cage and two K-wires. After formation of the defect, polymethylmethacrylate was inserted and fixed with a K-wire in the second group. At the third week, the cement was removed, a sterilized cancellous graft-filled titanium mesh cage was placed into the defect, and the membrane that was previously formed over the cement was placed on the cage and repaired. In the third group, sterilized cancellous grafts were filled into the titanium mesh cage, and the titanium mesh cage was fitted into the bone defect area. RESULTS At the end of the third month, all subjects were killed. Radiological data revealed that the healing of the bone in the second and third groups was significantly better than that in the first group. There was no difference between the second and third groups. A histological evaluation of the healing status, such as fibrous tissue, cartilage tissue and mature or immature bone formation, was performed. Histological healing in the second and third groups was also significantly better than that in the first group. CONCLUSION We concluded that the combination of membrane-induced bone healing and graft-filled titanium mesh cages expedites osteogenesis in extraarticular bone defects.
Collapse
Affiliation(s)
- Onur Kaya
- Department of Orthopaedic and Traumatology, Abdulkadir Yüksel State Hospital, 27100, Gaziantep, Turkey.
| | - Akif Mirioglu
- Department of Orthopaedic and Traumatology, Medicine Faculty, Cukurova University, Çukurova University Balcalı Kampüs, 01330, Sarıçam, Adana, Turkey
| | - Cenk Ozkan
- Department of Orthopaedic and Traumatology, Medicine Faculty, Cukurova University, Çukurova University Balcalı Kampüs, 01330, Sarıçam, Adana, Turkey
| | - Omer Sunkar Bicer
- Department of Orthopaedic and Traumatology, Medicine Faculty, Cukurova University, Çukurova University Balcalı Kampüs, 01330, Sarıçam, Adana, Turkey
| | - Mehmet Ali Deveci
- Department of Orthopaedic and Traumatology, Koc University Medicine Faculty, Topkapı, Koç Üniversitesi Hastanesi, Davutpaşa Cd. No:4, 34010, Zeytinburnu, Istanbul, Turkey
| | - Mustafa Tekin
- Department of Orthopaedic and Traumatology, Medicine Faculty, Cukurova University, Çukurova University Balcalı Kampüs, 01330, Sarıçam, Adana, Turkey
| | - Kivilcim Eren Ates
- Department of Pathology, Medicine Faculty, Cukurova University, Çukurova University Balcalı Kampüs, 01330, Sarıçam, Adana, Turkey
| |
Collapse
|
8
|
Kresakova L, Medvecky L, Vdoviakova K, Varga M, Danko J, Totkovic R, Spakovska T, Vrzgula M, Giretova M, Briancin J, Šimaiová V, Kadasi M. Long-Bone-Regeneration Process in a Sheep Animal Model, Using Hydroxyapatite Ceramics Prepared by Tape-Casting Method. Bioengineering (Basel) 2023; 10:bioengineering10030291. [PMID: 36978682 PMCID: PMC10044976 DOI: 10.3390/bioengineering10030291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/30/2023] Open
Abstract
This study was designed to investigate the effects of hydroxyapatite (HA) ceramic implants (HA cylinders, perforated HA plates, and nonperforated HA plates) on the healing of bone defects, addressing biocompatibility, biodegradability, osteoconductivity, osteoinductivity, and osteointegration with the surrounding bone tissue. The HA ceramic implants were prepared using the tape-casting method, which allows for shape variation in samples after packing HA paste into 3D-printed plastic forms. In vitro, the distribution and morphology of the MC3T3E1 cells grown on the test discs for 2 and 9 days were visualised with a fluorescent live/dead staining assay. The growth of the cell population was clearly visible on the entire ceramic surfaces and very good osteoblastic cell adhesion and proliferation was observed, with no dead cells detected. A sheep animal model was used to perform in vivo experiments with bone defects created on the metatarsal bones, where histological and immunohistochemical tissue analysis as well as X-ray and CT images were applied. After 6 months, all implants showed excellent biocompatibility with the surrounding bone tissue with no observed signs of inflammatory reaction. The histomorphological findings revealed bone growth immediately over and around the implants, indicating the excellent osteoconductivity of the HA ceramic implants. A number of islands of bone tissue were observed towards the centres of the HA cylinders. The highest degree of biodegradation, bioresorption, and new bone formation was observed in the group in which perforated HA plates were applied. The results of this study suggest that HA cylinders and HA plates may provide a promising material for the functional long-bone-defect reconstruction and further research.
Collapse
Affiliation(s)
- Lenka Kresakova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Lubomir Medvecky
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia
| | - Katarina Vdoviakova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Maros Varga
- Hospital AGEL Kosice-Saca, Lucna 57, 040 15 Kosice, Slovakia
| | - Ján Danko
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Roman Totkovic
- Hospital AGEL Kosice-Saca, Lucna 57, 040 15 Kosice, Slovakia
| | | | - Marko Vrzgula
- Department of Anatomy, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Trieda SNP 1, 040 11 Kosice, Slovakia
| | - Maria Giretova
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia
| | | | - Veronika Šimaiová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Marian Kadasi
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| |
Collapse
|
9
|
Sun H, Zhou X, Zhang Y, Zhang L, Yu X, Ye Z, Laurencin CT. Bone Implants (Bone Regeneration and Bone Cancer Treatments). BIOFABRICATION FOR ORTHOPEDICS 2022:265-321. [DOI: 10.1002/9783527831371.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Li D, Zhao D, Zeng Z, Huang F, Jiang Z, Xiong H, Guan T, Fang B, Li Y. Ternary regulation mechanism of Rhizoma drynariae total flavonoids on induced membrane formation and bone remodeling in Masquelet technique. PLoS One 2022; 17:e0278688. [PMID: 36473008 PMCID: PMC9725127 DOI: 10.1371/journal.pone.0278688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
CONTEXT Rhizoma drynariae total flavonoids (RDTF) are used to treat fractures. CD31hiEmcnhi vessels induced by PDGF-BB secreted by osteoclast precursors, together with osteoblasts and osteoclasts, constitute the ternary regulatory mechanism of bone tissue reconstruction. OBJECTIVE This study aimed to determine whether RDTF can promote bone tissue remodeling and induce membrane growth in the rat Masquelet model and to explore its molecular mechanism based on the ternary regulation theory. METHODS Thirty-six SD rats were randomized to three groups: blank, induced membrane, and RDTF treatment (n = 12/group). The gross morphological characteristics of the new bone tissue were observed after 6 weeks. Sixty SD rats were also randomized to five groups: blank, induction membrane, low-dose RDTF, medium-dose RDTF, and high-dose RDTF (n = 12/group). After 4 weeks, immunohistochemistry and western blot were used to detect the expression of membrane tissue-related proteins. The mRNA expression of key factors of ternary regulation was analyzed by qRT-PCR. RESULTS RDTF positively affected angiogenesis and bone tissue reconstruction in the bone defect area. RDTF could upregulate the expression of key factors (PDGF-BB, CD31, and endomucin), VEGF, and HMGB1 mRNA and proteins in the ternary regulation pathway. DISCUSSION AND CONCLUSION Although the expected CD31hiEmcnhi vessels in the induction membrane were not observed, this study confirmed that RDTF could promote the secretion of angiogenic factors in the induced membrane. The specific mechanisms still need to be further studied.
Collapse
Affiliation(s)
- Ding Li
- Department of Orthopedic, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dun Zhao
- Department of Orthopedic, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhikui Zeng
- Department of Orthopedics, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Feng Huang
- Department of Orthopedic, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziwei Jiang
- Department of Orthopedic, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Xiong
- Department of Orthopedic, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianan Guan
- Department of Orthopedic, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Fang
- Department of Orthopedic, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Li
- Department of Orthopedic, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Liu X, Yang J, Wang H, Lu S, Fan C, Wen G. Simultaneous reconstruction of septic composite defects in lower extremities: Combination of fasciocutaneous perforator flap and Masquelet technique. Front Surg 2022; 9:900796. [PMID: 36090325 PMCID: PMC9454341 DOI: 10.3389/fsurg.2022.900796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Management of composite defects with deep infection is a challenge to reconstructive surgeons. This study aimed to demonstrate the versatility, safety, and complications of simultaneous reconstruction of infectious composite defects with fasciocutaneous perforator flap combined with the Masquelet technique. METHODS This study presents 10 patients in whom a fasciocutaneous perforator flap combined with the Masquelet technique was used to restore soft tissue and bone defects of the lower extremity, and were admitted in two level 1 trauma centers in Shanghai. The first stage included debridement of necrotic bone and infected tissues, implantation of a polymethylmethacrylate cement spacer to cover the void; bridging fixation of the osseous defect using external or internal fixators, and soft-tissue reconstruction with a fasciocutaneous perforator flap. The second stage included cement spacer removal with membrane preservation, refreshing bone edges, and grafting the cavity with bone morphogenetic proteins and autologous iliac bone graft. RESULTS The mean follow-up duration after autologous bone graft was 17.5 months. The average bony defects and average flap dimensions were 7.1 cm and 44.9 cm2, respectively. All flaps survived uneventfully. No recurrence of infection was detected in either the second stage of surgery or follow-up period. The mean duration of bone consolidation was 31.9 weeks. One patient had a 2 cm leg length discrepancy, and one patient had mild foot drop. No residual deformity requiring a secondary procedure occurred. CONCLUSION Fasciocutaneous perforator flap combined with Masquelet technique provides a reliable and versatile alternative for patients with composite defects resulting from lower extremity infection.
Collapse
Affiliation(s)
- Xuanzhe Liu
- Shanghai Jiao Tong University affiliated Sixth People’s Hospital
| | - Jin Yang
- First Affiliated Hospital of Kunming Medical University
| | - Hongshu Wang
- Shanghai Jiao Tong University affiliated Sixth People’s Hospital
| | - Shengdi Lu
- Shanghai Jiao Tong University affiliated Sixth People’s Hospital
| | - Cunyi Fan
- Shanghai Jiao Tong University affiliated Sixth People’s Hospital
| | - Gen Wen
- Shanghai Jiao Tong University affiliated Sixth People’s Hospital
| |
Collapse
|
12
|
Schätzlein E, Kicker C, Söhling N, Ritz U, Neijhoft J, Henrich D, Frank J, Marzi I, Blaeser A. 3D-Printed PLA-Bioglass Scaffolds with Controllable Calcium Release and MSC Adhesion for Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14122389. [PMID: 35745964 PMCID: PMC9229101 DOI: 10.3390/polym14122389] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Large bone defects are commonly treated by replacement with auto- and allografts, which have substantial drawbacks including limited supply, donor site morbidity, and possible tissue rejection. This study aimed to improve bone defect treatment using a custom-made filament for tissue engineering scaffolds. The filament consists of biodegradable polylactide acid (PLA) and a varying amount (up to 20%) of osteoconductive S53P4 bioglass. By employing an innovative, additive manufacturing technique, scaffolds with optimized physico-mechanical and biological properties were produced. The scaffolds feature adjustable macro- and microporosity (200–2000 µm) with adaptable mechanical properties (83–135 MPa). Additionally, controllable calcium release kinetics (0–0.25 nMol/µL after 24 h), tunable mesenchymal stem cell (MSC) adhesion potential (after 24 h by a factor of 14), and proliferation (after 168 h by a factor of 18) were attained. Microgrooves resulting from the 3D-printing process on the surface act as a nucleus for cell aggregation, thus being a potential cell niche for spheroid formation or possible cell guidance. The scaffold design with its adjustable biomechanics and the bioglass with its antimicrobial properties are of particular importance for the preclinical translation of the results. This study comprehensibly demonstrates the potential of a 3D-printed bioglass composite scaffold for the treatment of critical-sized bone defects.
Collapse
Affiliation(s)
- Eva Schätzlein
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, 64289 Darmstadt, Germany;
| | | | - Nicolas Söhling
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt am Main, 60323 Frankfurt am Main, Germany; (N.S.); (J.N.); (D.H.); (J.F.); (I.M.)
| | - Ulrike Ritz
- BiomaTiCS Group, Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University Mainz, 55122 Mainz, Germany;
| | - Jonas Neijhoft
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt am Main, 60323 Frankfurt am Main, Germany; (N.S.); (J.N.); (D.H.); (J.F.); (I.M.)
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt am Main, 60323 Frankfurt am Main, Germany; (N.S.); (J.N.); (D.H.); (J.F.); (I.M.)
| | - Johannes Frank
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt am Main, 60323 Frankfurt am Main, Germany; (N.S.); (J.N.); (D.H.); (J.F.); (I.M.)
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt am Main, 60323 Frankfurt am Main, Germany; (N.S.); (J.N.); (D.H.); (J.F.); (I.M.)
| | - Andreas Blaeser
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, 64289 Darmstadt, Germany;
- Centre for Synthetic Biology, Technical University of Darmstadt, 64289 Darmstadt, Germany
- Correspondence:
| |
Collapse
|
13
|
Clinical translation of a patient-specific scaffold-guided bone regeneration concept in four cases with large long bone defects. J Orthop Translat 2022; 34:73-84. [PMID: 35782964 PMCID: PMC9213234 DOI: 10.1016/j.jot.2022.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 02/08/2023] Open
Abstract
Background Bone defects after trauma, infection, or tumour resection present a challenge for patients and clinicians. To date, autologous bone graft (ABG) is the gold standard for bone regeneration. To address the limitations of ABG such as limited harvest volume as well as overly fast remodelling and resorption, a new treatment strategy of scaffold-guided bone regeneration (SGBR) was developed. In a well-characterized sheep model of large to extra-large tibial segmental defects, three-dimensional (3D) printed composite scaffolds have shown clinically relevant biocompatibility and osteoconductive capacity in SGBR strategies. Here, we report four challenging clinical cases with large complex posttraumatic long bone defects using patient-specific SGBR as a successful treatment. Methods After giving informed consent computed tomography (CT) images were used to design patient-specific biodegradable medical-grade polycaprolactone-tricalcium phosphate (mPCL-TCP, 80:20 wt%) scaffolds. The CT scans were segmented using Materialise Mimics to produce a defect model and the scaffold parts were designed with Autodesk Meshmixer. Scaffold prototypes were 3D-printed to validate robust clinical handling and bone defect fit. The final scaffold design was additively manufactured under Food and Drug Administration (FDA) guidelines for patient-specific and custom-made implants by Osteopore International Pte Ltd. Results Four patients (age: 23–42 years) with posttraumatic lower extremity large long bone defects (case 1: 4 cm distal femur, case 2: 10 cm tibia shaft, case 3: complex malunion femur, case 4: irregularly shaped defect distal tibia) are presented. After giving informed consent, the patients were treated surgically by implanting a custom-made mPCL-TCP scaffold loaded with ABG (case 2: additional application of recombinant human bone morphogenetic protein-2) harvested with the Reamer-Irrigator-Aspirator system (RIA, Synthes®). In all cases, the scaffolds matched the actual anatomical defect well and no perioperative adverse events were observed. Cases 1, 3 and 4 showed evidence of bony ingrowth into the large honeycomb pores (pores >2 mm) and fully interconnected scaffold architecture with indicative osseous bridges at the bony ends on the last radiographic follow-up (8–9 months after implantation). Comprehensive bone regeneration and full weight bearing were achieved in case 2 at follow-up 23 months after implantation. Conclusion This study shows the bench to bedside translation of guided bone regeneration principles into scaffold-based bone tissue engineering. The scaffold design in SGBR should have a tissue-specific morphological signature which stimulates and directs the stages from the initial host response towards the full regeneration. Thereby, the scaffolds provide a physical niche with morphology and biomaterial properties that allow cell migration, proliferation, and formation of vascularized tissue in the first one to two months, followed by functional bone formation and the capacity for physiological bone remodelling. Great design flexibility of composite scaffolds to support the one to three-year bone regeneration was observed in four patients with complex long bone defects. The translational potential of this article This study reports on the clinical efficacy of SGBR in the treatment of long bone defects. Moreover, it presents a comprehensive narrative of the rationale of this technology, highlighting its potential for bone regeneration treatment regimens in patients with any type of large and complex osseous defects.
Collapse
|
14
|
Isaacson N, Lopez-Ambrosio K, Chubb L, Waanders N, Hoffmann E, Witt C, James S, Prawel DA. Compressive properties and failure behavior of photocast hydroxyapatite gyroid scaffolds vary with porosity. J Biomater Appl 2022; 37:55-76. [PMID: 35331033 DOI: 10.1177/08853282211073904] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydroxyapatite is commonly used in tissue engineered scaffolds for bone regeneration due to its excellent bioactivity and slow degradation rate in the human body. A method of layer-wise, photopolymerized viscous extrusion, a type of additive manufacturing, was developed to fabricate hydroxyapatite gyroid scaffolds with 60%, 70%, and 80% porosities. This study uses this method to produce and evaluate calcium phosphate-based scaffolds. Gyroid topology was selected due to its interconnected porosity and superior, isotropic mechanical properties compared to typical rectilinear lattice structures. These 3D printed scaffolds were mechanically tested in compression and examined to determine the relationship between porosity, ultimate compressive strength, and fracture behavior. Compressive strength increased with decreasing porosity. Ultimate compressive strengths of the 60% and 70% porous gyroids are comparable to that of human cancellous bone, and higher than previously reported for hydroxyapatite rectilinear scaffolds. These gyroid scaffolds exhibited ultimate compressive strength increases between 1.5 and 6.5 times greater than expected, based on volume of material, as porosity is decreased. The Weibull moduli, a measure of failure predictability, were predictive of failure mode and found to be in the accepted range for engineering ceramics. The gyroid scaffolds were also found to be self-reinforcing such that initial failures due to minor manufacturing inconsistencies did not appear to be the primary cause of early failure of the scaffold. The porous gyroids exhibited scaffold failure characteristics that varied with porosity, ranging from monolithic failure to layer-by-layer failure, and demonstrated self-reinforcement in each porosity tested.
Collapse
Affiliation(s)
- Nelson Isaacson
- School of Advanced Materials Discovery, 3447Colorado State University, Fort Collins, CO, USA
| | | | - Laura Chubb
- College of Veterinary Medicine and Biomedical Sciences, 3447Colorado State University, Fort Collins, CO, USA
| | - Nathan Waanders
- School of Biomedical Engineering, 3447Colorado State University, Fort Collins, CO, USA
| | - Emily Hoffmann
- School of Biomedical Engineering, 3447Colorado State University, Fort Collins, CO, USA
| | - Connor Witt
- Department of Chemical and Biological Engineering, 3447Colorado State University, Fort Collins, CO, USA
| | - Susan James
- School of Advanced Materials Discovery, 3447Colorado State University, Fort Collins, CO, USA.,School of Biomedical Engineering, 3447Colorado State University, Fort Collins, CO, USA.,Mechanical Engineering, 3447Colorado State University, Fort Collins, CO, USA
| | - David A Prawel
- School of Advanced Materials Discovery, 3447Colorado State University, Fort Collins, CO, USA.,School of Biomedical Engineering, 3447Colorado State University, Fort Collins, CO, USA.,Mechanical Engineering, 3447Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
15
|
The induced membrane technique in animal models: a systematic review. OTA Int 2022; 5:e176. [PMID: 35282388 PMCID: PMC8900461 DOI: 10.1097/oi9.0000000000000176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023]
Abstract
Objectives: Data Sources: Study Selection: Data Extraction: Data Synthesis: Conclusions:
Collapse
|
16
|
Mathieu L, Murison JC, de Rousiers A, de l’Escalopier N, Lutomski D, Collombet JM, Durand M. The Masquelet Technique: Can Disposable Polypropylene Syringes be an Alternative to Standard PMMA Spacers? A Rat Bone Defect Model. Clin Orthop Relat Res 2021; 479:2737-2751. [PMID: 34406150 PMCID: PMC8726567 DOI: 10.1097/corr.0000000000001939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Usually, the two-stage Masquelet induced-membrane technique for extremity reconstruction begins with a polymethylmethacrylate (PMMA) cement spacer-driven membrane, followed by an autologous cancellous bone graft implanted into the membrane cavity to promote healing of large bone defects. In exceptional cases, spacers made of polypropylene disposable syringes were successfully used instead of the usual PMMA spacers because of a PMMA cement shortage caused by a lack of resources. However, this approach lacks clinical evidence and requires experimental validation before being recommended as an alternative to the conventional technique. QUESTIONS/PURPOSES To (1) develop and (2) validate a critical-sized femoral defect model in rats for two stages of the Masquelet technique and to (3) compare the biological and bone healing properties of polypropylene-induced membranes and PMMA-induced membranes in this model. METHODS Fifty male Sprague Dawley rats aged 8 weeks old received a 6-mm femur defect, which was stabilized with an external fixator that was converted into an internal device. In the development phase, the defect was filled with PMMA in 16 rats to determine the most favorable timing for bone grafting. Two rats were excluded since they died of anesthetic complications. The other 14 were successively euthanized after 2 weeks (n = 3), 4 weeks (n = 4), 6 weeks (n = 4), and 8 weeks (n = 3) for induced membrane analyses. In the validation phase, 12 rats underwent both stages of the procedure using a PMMA spacer and were randomly assigned to two groups, whether the induced membrane was preserved or removed before grafting. To address our final objective, we implanted either polypropylene or PMMA spacers into the defect (Masquelet technique Stage 1; n = 11 rats per group) for the period established by the development phase. In each group, 6 of 11 rats were euthanized to compare the biological properties of polypropylene-induced membranes and PMMA-induced membranes using histological qualitative analysis, semiquantitative assessment of the bone morphogenic protein-2 content by immunostaining, and qualitative assessment of the mesenchymal stromal cell (MSC; CD31-, CD45-, CD90+, and CD73+ phenotypes) content by flow cytometry. Quantitative measurements from serum bone turnover markers were also performed. The five remaining rats of each group were used for Masquelet technique Stage 2, in which rat bone allografts were implanted in the induced membrane cavity after the polypropylene or PMMA spacers were removed. These rats recovered for 10 weeks before being euthanized for microCT quantitative measurements and bone histology qualitative assessment to evaluate and compare the extent of bone regeneration between groups. RESULTS Induced membrane analyses together with serum bone turnover measurements indicated that a 4-week interval time between stages was the most favorable. Removal of the induced membrane before grafting led to almost constant early implant failures with poor bone formation. Four-week-old rats with polypropylene-triggered induced membranes displayed similar histologic organization as rats with PMMA-driven induced membranes, without any difference in the cell density of the extracellular matrix (4933 ± 916 cells per mm2 for polypropylene versus 4923 ± 1284 cells per mm2 for PMMA; p = 0.98). Induced membrane-derived MSCs were found in both groups with no difference (4 of 5 with polypropylene versus 3 of 3 with PMMA; p > 0.99). Induced membrane bone morphogenic protein-2 immunolabeling and serum bone turnover marker levels were comparable between the polypropylene and PMMA groups. MicroCT analysis found that bone regeneration in the polypropylene group seemed comparable with that in the PMMA group (29 ± 26 mm3 for polypropylene versus 24 ± 18 mm3 for PMMA; p > 0.99). Finally, qualitative histological assessment revealed a satisfactory endochondral ossification maturation in both groups. CONCLUSION Using a critical-sized femoral defect model in rats, we demonstrated that polypropylene spacers could induce membrane encapsulation with histologic characteristics and bone regenerative capacities that seem like those of PMMA spacers. CLINICAL RELEVANCE In a same bone site, polymers with close physical properties seem to lead to similar foreign body reactions and induce encapsulating membranes with comparable bone healing properties. Polypropylene spacers made from disposable syringes could be a valuable alternative to PMMA. These results support the possibility of a cementless Masquelet technique in cases of PMMA shortage caused by a lack of resources.
Collapse
Affiliation(s)
- Laurent Mathieu
- Department of Orthopedic, Trauma and Reconstructive Surgery, Percy Military Hospital, Clamart, France
- French Military Health Service Academy, Ecole du Val-de-Grâce, Paris, France
| | - James Charles Murison
- Department of Orthopedic, Trauma and Reconstructive Surgery, Percy Military Hospital, Clamart, France
| | - Arnaud de Rousiers
- Department of Orthopedic, Trauma and Reconstructive Surgery, Percy Military Hospital, Clamart, France
| | - Nicolas de l’Escalopier
- Department of Orthopedic, Trauma and Reconstructive Surgery, Percy Military Hospital, Clamart, France
| | - Didier Lutomski
- Tissue Engineering and Proteomics Team, Université Paris, Bobigny, France
| | | | - Marjorie Durand
- Military Biomedical Research Institute, Brétigny-sur-Orge, France
| |
Collapse
|
17
|
Karimi Ghahfarrokhi E, Meimandi-Parizi A, Oryan A, Ahmadi N. Effects of Combination of BMP7, PFG, and Autograft on Healing of the Experimental Critical Radial Bone Defect by Induced Membrane (Masquelet) Technique in Rabbit. THE ARCHIVES OF BONE AND JOINT SURGERY 2021; 9:585-597. [PMID: 34692943 DOI: 10.22038/abjs.2020.50852.2532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/02/2020] [Indexed: 01/08/2023]
Abstract
Background Healing of large segmental bone defects can be challenging for orthopedic surgeons. This research was conducted to provide further insight into the effects of BMP7 in combination with autograft and platelet fibrin glue (PFG) on bone regeneration by Masquelet technique (MT). Methods Twenty five domestic male rabbits, more than 6 months old, weighing 2.00±0.25 kg were randomly divided into five equal groups as follows: MT-blank cavity (without any biological or synthetic materials) (1), blank cavity (2), MT-autograft (3), MT-autograft-BMP7 (4), and MT-BMP7-PFG (5). A 20 mm segmental defect was made in radial bone in both forelimbs. The Masquelet technique was done in all groups except group 2. The study was evaluated by radiology, biomechanics, histopathology and scanning electron microscopy. Results The results showed that Masquelet technique enhanced the healing process, as, the structural and functional criteria of the injured bone showed significantly improved bone healing (P<0.05). Treatment by PFG-BMP7, Autograft-BMP7, and autograft demonstrated beneficial effects on bone healing. However, Autograft-BMP7 was more effective than autograft in healing of the radial defect in rabbits. Conclusion Our findings introduce the osteogenic materials in combination with Masquelet technique as an alternative for reconstruction of the big diaphyseal defects in the long bones in animal models. Our findings may be useful for clinical application in future.
Collapse
Affiliation(s)
| | | | - Ahmad Oryan
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Nasrollah Ahmadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
18
|
Alford AI, Nicolaou D, Hake M, McBride-Gagyi S. Masquelet's induced membrane technique: Review of current concepts and future directions. J Orthop Res 2021; 39:707-718. [PMID: 33382115 PMCID: PMC8005442 DOI: 10.1002/jor.24978] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 12/28/2020] [Indexed: 02/04/2023]
Abstract
Masquelet's induced membrane technique (MIMT) is a relatively new, two-stage surgical procedure to reconstruct segmental bone defects. First performed by Dr. Masquelet in the mid-1980s, MIMT has shown great promise to revolutionize critical-sized bone defect repair and has several advantages over its alternative, distraction osteogenesis (DO). Also, its success in extremely challenging cases (defects > 15 cm) suggests that its study could lead to discovery of novel biological mechanisms that might be at play during segmental defect healing and fracture non-union. MIMT's advantages over DO have led to a world-wide increase in MIMT procedures over the past decades. However, MIMT often needs to be repeated and so the average initial success rate in adults lags significantly behind that of DO (86% vs 95%, respectively). The autologous foreign-body membrane created during the first stage by the immune system's response to a polymethyl methacrylate bone cement spacer is critical to supporting the morselized bone graft implanted in the second stage. However, the biological and/or physical mechanisms by which the membrane supports graft to bone union are unclear. This lack of knowledge makes refining MIMT and improving the success rates through technique improvements and patient selection a significant challenge and hinders wider adoption. In this review, current knowledge from basic, translational, and clinical studies is summarized. The dynamics of both stages under normal conditions as well as with drug or material perturbations is discussed along with perspectives on high-priority future research directions.
Collapse
Affiliation(s)
- Andrea I. Alford
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI
| | - Daemeon Nicolaou
- Department of Orthopaedic Surgery, Saint Louis University, St. Louis, MO
| | - Mark Hake
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI
| | | |
Collapse
|
19
|
Pan FF, Shao J, Shi CJ, Li ZP, Fu WM, Zhang JF. Apigenin promotes osteogenic differentiation of mesenchymal stem cells and accelerates bone fracture healing via activating Wnt/β-catenin signaling. Am J Physiol Endocrinol Metab 2021; 320:E760-E771. [PMID: 33645251 DOI: 10.1152/ajpendo.00543.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apigenin (API), a natural plant flavone, is abundantly found in common fruits and vegetables. As a bioactive flavonoid, API exhibits several activities including antiproliferation and anti-inflammation. A recent study showed that API could retard osteoporosis progress, indicating its role in the skeletal system. However, the detailed function and mechanism remain obscure. In the present study, API was found to promote osteogenic differentiation of mesenchymal stem cells (MSCs). And further investigation showed that API could enhance the expression of the critical transcription factor β-catenin and several downstream target genes of Wnt signaling, thus activated Wnt/β-catenin signaling. Using a rat femoral fracture model, API was found to improve new bone formation and accelerate fracture healing in vivo. In conclusion, our data demonstrated that API could promote osteogenesis in vitro and facilitate the fracture healing in vivo via activating Wnt/β-catenin signaling, indicating that API may be a promising therapeutic candidate for bone fracture repair.NEW & NOTEWORTHY1) API promoted osteogenic differentiation of human MSCs in vitro; 2) API facilitated bone formation and accelerated fracture healing in vivo; 3) API stimulated Wnt/β-catenin signaling during osteogenesis of human MSCs.
Collapse
Affiliation(s)
- Fei-Fei Pan
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Jiang Shao
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Chuan-Jian Shi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Zhi-Peng Li
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Wei-Ming Fu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Jin-Fang Zhang
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
20
|
Chu W, Liu Z, Gan Y, Chang Y, Jiao X, Jiang W, Dai K. Use of a novel Screen-Enrich-Combine(-biomaterials) Circulating System to fill a 3D-printed open Ti6Al4V frame with mesenchymal stem cells/β-tricalcium phosphate to repair complex anatomical bone defects in load-bearing areas. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:454. [PMID: 33850851 PMCID: PMC8039683 DOI: 10.21037/atm-20-6689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background Repairing complex anatomical load-bearing bone defects is difficult because it requires the restoration of the load-bearing function, reconstructing the anatomical shape, and repair by regenerated bone. We previously developed a Screen–Enrich–Combine(-biomaterials) Circulating System (SECCS) for rapid intraoperative enrichment of autologous bone marrow mesenchymal stem cells (MSCs) to enhance the osteogenic ability of porous bone substitutes. In this study, we prepared a 3D-printed Ti6A14V macroporous frame matching the defect shape to provide early load-bearing support and evaluated the efficacy of filling the frame with SECCS-processed MSCs/beta tricalcium phosphate (β-TCP) for long-term bone growth. Methods Fifteen 2-year-old goats were involved in this study, and the lateral part of their distal femur was removed by an electric saw and was fitted by a matching electron beam melting technology-prepared (EBM) Ti6Al4V frame. Three types of frames, filled with nothing, pure porous β-TCP, or SECCS-processed MSCs/β-TCP, were fixed onto the defect site. Repair efficacy was evaluated by X-ray radiography, computed tomography (CT), histology, and histomorphometry. Results In the basic regular hexagon printing unit, the combined side width (w) and the inscribed circle diameter (d) determines the printing frame’s mechanical strength. The compressive load was significantly higher for w=1.9 mm, d=4.4 mm than for w=1.7 mm, d=4.0 mm or w=2.0 mm, d=5.0 mm (P<0.05). The EBM-prepared Ti6Al4V defect-matched frame was well maintained 9 months after implantation. The MSCs successfully adhered to the wall of the porous β-TCP in the SECCS-processed group and had spread fully in the test samples. Each goat in the MSCs/β-TCP–the filled group, had approximately 31,321.7±22,554.7 of MSCs and a larger area of new bone growth inside the frame than the control and blank areas groups. Conclusions Filling the 3D-printed Ti6Al4V large-aperture frame with osteogenic materials achieved biological reconstruction over a larger area of regenerated bone to repair complex anatomical weight-bearing bone defects under the condition of early frame-supported load bearing. MSCs/β-TCP prepared by SECCS can be used as a filling material for this type of bone defect to obtain more efficacious bone repair.
Collapse
Affiliation(s)
- Wenxiang Chu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhiqing Liu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaokai Gan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongyun Chang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Jiao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbo Jiang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Perier-Metz C, Duda GN, Checa S. Mechano-Biological Computer Model of Scaffold-Supported Bone Regeneration: Effect of Bone Graft and Scaffold Structure on Large Bone Defect Tissue Patterning. Front Bioeng Biotechnol 2020; 8:585799. [PMID: 33262976 PMCID: PMC7686036 DOI: 10.3389/fbioe.2020.585799] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/05/2020] [Indexed: 12/04/2022] Open
Abstract
Large segmental bone defects represent a clinical challenge for which current treatment procedures have many drawbacks. 3D-printed scaffolds may help to support healing, but their design process relies mainly on trial and error due to a lack of understanding of which scaffold features support bone regeneration. The aim of this study was to investigate whether existing mechano-biological rules of bone regeneration can also explain scaffold-supported bone defect healing. In addition, we examined the distinct roles of bone grafting and scaffold structure on the regeneration process. To that end, scaffold-surface guided migration and tissue deposition as well as bone graft stimulatory effects were included in an in silico model and predictions were compared to in vivo data. We found graft osteoconductive properties and scaffold-surface guided extracellular matrix deposition to be essential features driving bone defect filling in a 3D-printed honeycomb titanium structure. This knowledge paves the way for the design of more effective 3D scaffold structures and their pre-clinical optimization, prior to their application in scaffold-based bone defect regeneration.
Collapse
Affiliation(s)
- Camille Perier-Metz
- Julius Wolff Institute, Charité-Universitätsmedizin, Berlin, Germany.,MINES ParisTech - PSL Research University (Paris Sciences & Lettres), Paris, France
| | - Georg N Duda
- Julius Wolff Institute, Charité-Universitätsmedizin, Berlin, Germany.,Berlin Institute of Health (BIH) Center for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
22
|
Abstract
Multifactorial aetiology defines non-unions, with a biological and a mechanical distortion of the timeline of bone healing. Research on new advances to increase osteogenesis and promote non-union healing is strongly directed towards new forms of cell products. Basic science and research on non-union treatments is needed to compile preclinical data on new treatments. Bone marrow concentration and expanded mesenchymal stromal cells still require extensive clinical research to confirm efficacy in non-union treatment. Solid preclinical studies, precise cell product definition and preparation, and appropriate ethical and regulatory approvals are needed to assess new advanced therapy medicinal products.
Cite this article: EFORT Open Rev 2020;5:574-583. DOI: 10.1302/2058-5241.5.190062
Collapse
Affiliation(s)
- Enrique Gómez-Barrena
- Servicio de Cirugía Ortopédica y Traumatología, Hospital La Paz-IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
| | - Norma G Padilla-Eguiluz
- Servicio de Cirugía Ortopédica y Traumatología, Hospital La Paz-IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
| | - Philippe Rosset
- Service de Chirurgie Orthopédique et Traumatologie, CHU Tours, Université de Tours, Tours, France
| |
Collapse
|
23
|
Identification of ultrasound imaging markers to quantify long bone regeneration in a segmental tibial defect sheep model in vivo. Sci Rep 2020; 10:13646. [PMID: 32788593 PMCID: PMC7423946 DOI: 10.1038/s41598-020-70426-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
The healing of large bone defects has been investigated for decades due to its complexity and clinical relevance. Ultrasound (US) methods have shown promise in monitoring bone healing, but no quantitative method to assess regenerated bone morphology in US images has been presented yet. In this study, we investigate new US morphometric parameters to quantify bone regeneration in vivo. A segmental tibial defect was surgically created and stabilized in a sheep animal model. US and computed tomography (CT) imaging data were collected two months post-surgery. New bone was assessed, reconstructed and quantified from the US and CT data using 3 morphometric parameters: the new-bone bulk (NBB), new-bone surface (NBS) and new-bone contact (NBC). The distance (mm) between surface reconstructions from repeated US was \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.49\pm 0.30$$\end{document}0.49±0.30 and from US and CT was \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.89\pm 0.49$$\end{document}0.89±0.49. In the mid-shaft of the defected tibia, US measurements of NBB, NBS and NBC were significantly higher than the corresponding CT measurements (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p < 0.001$$\end{document}p<0.001). Based on our results, we conclude that US may complement CT to reconstruct and quantify bone regrowth, especially in its early stages.
Collapse
|
24
|
Klein C, Monet M, Barbier V, Vanlaeys A, Masquelet AC, Gouron R, Mentaverri R. The Masquelet technique: Current concepts, animal models, and perspectives. J Tissue Eng Regen Med 2020; 14:1349-1359. [PMID: 32621637 DOI: 10.1002/term.3097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
Bone reconstruction within a critical-sized defect remains a real challenge in orthopedic surgery. The Masquelet technique is an innovative, two-step therapeutic approach for bone reconstruction in which the placement of a poly (methylmethacrylate) spacer into the bone defect induces the neo-formation of a tissue called "induced membrane." This surgical technique has many advantages and is often preferred to a vascularized bone flap or Ilizarov's technique. Although the Masquelet technique has achieved high clinical success rates since its development by Alain-Charles Masquelet in the early 2000s, very little is known about how the process works, and few animal models of membrane induction have been developed. Our successful use of this technique in the clinic and our interest in the mechanisms of tissue regeneration (notably bone regeneration) prompted us to develop a surgical model of the Masquelet technique in rats. Here, we provide a comprehensive review of the literature on animal models of membrane induction, encompassing the defect site, the surgical procedure, and the histologic and osteogenic properties of the induced membrane. We also discuss the advantages and disadvantages of those models to facilitate efforts in characterizing the complex biological mechanisms that underlie membrane induction.
Collapse
Affiliation(s)
- Céline Klein
- Department of Pediatric Orthopedic Surgery, Amiens University Medical Center, Jules Verne University of Picardie, Amiens, France.,MP3CV-EA7517, CURS, miens University Medical Center, Jules Verne University of Picardie, Amiens, France
| | - Michael Monet
- MP3CV-EA7517, CURS, miens University Medical Center, Jules Verne University of Picardie, Amiens, France
| | - Vincent Barbier
- Department of Pediatric Orthopedic Surgery, Amiens University Medical Center, Jules Verne University of Picardie, Amiens, France.,MP3CV-EA7517, CURS, miens University Medical Center, Jules Verne University of Picardie, Amiens, France
| | - Alison Vanlaeys
- MP3CV-EA7517, CURS, miens University Medical Center, Jules Verne University of Picardie, Amiens, France
| | - Alain-Charles Masquelet
- Service de Chirurgie Orthopédique, Traumatologie et Chirurgie de la Main, Saint-Antoine Hospital, Paris, France
| | - Richard Gouron
- Department of Pediatric Orthopedic Surgery, Amiens University Medical Center, Jules Verne University of Picardie, Amiens, France.,MP3CV-EA7517, CURS, miens University Medical Center, Jules Verne University of Picardie, Amiens, France
| | - Romuald Mentaverri
- MP3CV-EA7517, CURS, miens University Medical Center, Jules Verne University of Picardie, Amiens, France.,Department of Biochemistry and Endocrine Biology, Amiens University Medical Center, Jules Verne University of Picardie, Amiens, France
| |
Collapse
|
25
|
Huang Q, Liu Y, Ouyang Z, Feng Q. Comparing the regeneration potential between PLLA/Aragonite and PLLA/Vaterite pearl composite scaffolds in rabbit radius segmental bone defects. Bioact Mater 2020; 5:980-989. [PMID: 32671292 PMCID: PMC7334395 DOI: 10.1016/j.bioactmat.2020.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/09/2020] [Accepted: 06/27/2020] [Indexed: 01/27/2023] Open
Abstract
Mussel-derived nacre and pearl, which are natural composites composed CaCO3 platelets and interplatelet organic matrix, have recently gained interest due to their osteogenic potential. The crystal form of CaCO3 could be either aragonite or vaterite depending on the characteristics of mineralization template within pearls. So far, little attention has been paid on the different osteogenic capacities between aragonite and vaterite pearl. In the current work, aragonite or vaterite pearl powders were incorporated into poly-l-lactic acid (PLLA) scaffold as bio-functional fillers for enhanced osteogenesis. In intro results revealed that PLLA/aragonite scaffold possessed stronger stimulatory effect on SaOS-2 cell proliferation and differentiation, evidenced by the enhanced cell viability, alkaline phosphatase activity, collagen synthesis and gene expressions of osteogenic markers including osteocalcin, osteopotin and bone sialoprotein. The bone regeneration potential of various scaffolds was evaluated in vivo employing a rabbit critical-sized radial bone defect model. The X-ray and micro-CT results showed that significant bone regeneration and bridging were achieved in defects implanted with composite scaffolds, while less bone formation and non-bridging were found for pure PLLA group. Histological evaluation using Masson's trichrome and hematoxylin/eosin (H&E) staining indicated a typical endochondral bone formation process conducted at defect sites treated with composite scaffolds. Through three-point bending test, the limbs implanted with PLLA/aragonite scaffold were found to bear significantly higher bending load compared to other two groups. Together, it is suggested that aragonite pearl has superior osteogenic capacity over vaterite pearl and PLLA/aragonite scaffold can be employed as a potential bone graft for bone regeneration. PLLA/pearl powder composite scaffolds with interconnected pores were fabricated. PLLA/aragonite scaffold stimulated SaOS-2 cell proliferation and differentiation. PLLA/aragonite scaffold promoted bone regeneration in vivo.
Collapse
Affiliation(s)
- Qianli Huang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China
- Corresponding author.
| | - Yuansheng Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China
- Public Security College, Northwest University of Political Science and Law, Xi'an, 710122, PR China
| | - Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410083, PR China
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China
- Corresponding author.
| |
Collapse
|
26
|
Veronesi F, Martini L, Giavaresi G, Fini M. Bone regenerative medicine: metatarsus defects in sheep to evaluate new therapeutic strategies for human long bone defect. A systematic review. Injury 2020; 51:1457-1467. [PMID: 32430197 DOI: 10.1016/j.injury.2020.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Large bone defects in long bone are not able to repair themselves and require grafts. Although autograft is the gold standard, it is associated with some disadvantages. Consequently, the application of tissue engineering (TE) techniques help with the use of allogenic biological and artificial scaffolds, cells and growth factors (GFs). Following 3Rs and in vitro testing strategies, animal models are required in preclinical in vivo studies to evaluate the therapeutic effects of the most promising TE techniques. MATERIALS AND METHODS A systematic review was performed from 2000 to 2019 to evaluate bone regeneration sheep metatarsus defects. RESULTS Eleven in vivo studies on sheep metatarsus defect were retrieved. The mid-diaphysis of metatarsus was the region most employed to perform critical size defects. Natural, synthetic and hybrid scaffolds were implanted, combined with bone marrow mesenchymal stem cells (BMSCs), GFs such as osteogenic protein 1 (OP1) and platelet rich plasma (PRP). The maximum follow-up period was 4 and 6 months in which radiography, histology, histomorphometry, computed tomography (CT) and biomechanics were performed to evaluate the healing status. CONCLUSIONS the sheep metatarsus defect model seems to be a suitable environment with a good marriage of biological and biomechanical properties. Defects of 3 cm are treated with natural scaffolds (homologous graft or allografts), those of 2.5 cm with natural, synthetic or composite scaffolds, while little defects (0.5 × 0.5 cm) with composite scaffolds. No difference in results is found regardless of the defect size.
Collapse
Affiliation(s)
- Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Lucia Martini
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Gianluca Giavaresi
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|
27
|
Shi L, Tee BC, Emam H, Prokes R, Larsen P, Sun Z. Enhancement of bone marrow aspirate concentrate with local self-healing corticotomies. Tissue Cell 2020; 66:101383. [PMID: 32933706 DOI: 10.1016/j.tice.2020.101383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023]
Abstract
Bone marrow aspirate concentrate (BMAC) is a potentially useful biological product for bone regeneration. This study investigated whether BMAC can be enriched by local minor corticotomies. Five 4-month-old domestic pigs were used with each pig undergoing two minor corticotomies at one randomly-selected tibia. Two weeks after the operation, bone marrow was aspirated from both tibiae and processed into BMAC samples. The amount of mesenchymal stem cells (MSCs) and the concentration of several regenerative growth factors contained in BMAC, as well as the proliferative and osteogenic differentiation capacity of MSCs, were compared between the corticotomy and the control sides. Another four weeks later, healing of the corticotomies was evaluated by radiographic and histological methods. The results demonstrated that BMAC from the corticotomy side contained significantly more MSCs than the control side. MSCs from the corticotomy side also proliferated significantly faster and tended to have stronger osteogenic differentiation than those from the control side. In contrast, the protein concentration of TGF-β, BMP-2 and PDGF contained in BMAC was only minimally changed by the corticotomies. The corticotomies in all pigs healed uneventfully, showing complete obliteration of the corticotomy gaps on CT images. Comparison between the two sides showed that the corticotomy side had thicker and denser cortical bone and more abundant osteogenic cell differentiation than the control side. These findings suggest that the quantity and proliferative/osteogenic differentiation capacity of MSCs contained in local BMAC can be enhanced by minor corticotomies, and spontaneous healing of the corticotomy can be completed within 6 weeks of the operation.
Collapse
Affiliation(s)
- Lei Shi
- Department of Pediatric Dentistry, Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200011, China; Division of Orthodontics, College of Dentistry, The Ohio State University, Rm 4088 Postle Hall, 305 W 12th Ave, 43210 Columbus, OH, USA
| | - Boon Ching Tee
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Hany Emam
- Division of Oral and Maxillofacial Surgery, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Rachael Prokes
- Division of Oral and Maxillofacial Surgery, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Peter Larsen
- Division of Oral and Maxillofacial Surgery, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Zongyang Sun
- Division of Orthodontics, College of Dentistry, The Ohio State University, Rm 4088 Postle Hall, 305 W 12th Ave, 43210 Columbus, OH, USA.
| |
Collapse
|
28
|
Characterization and Comparison of Human and Ovine Mesenchymal Stromal Cells from Three Corresponding Sources. Int J Mol Sci 2020; 21:ijms21072310. [PMID: 32230731 PMCID: PMC7177787 DOI: 10.3390/ijms21072310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Currently, there is an increasing focus on mesenchymal stromal cells (MSC) as therapeutic option in bone pathologies as well as in general regenerative medicine. Although human MSCs have been extensively characterized and standardized, ovine MSCs are poorly understood. This limitation hampers clinical progress, as sheep are an excellent large animal model for orthopedic studies. Our report describes a direct comparison of human and ovine MSCs from three corresponding sources under the same conditions. All MSCs presented solid growth behavior and potent immunomodulatory capacities. Additionally, we were able to identify common positive (CD29, CD44, CD73, CD90, CD105, CD166) and negative (CD14, CD34, CD45, HLA-DR) surface markers. Although both human and ovine MSCs showed strong osteogenic potential, direct comparison revealed a slower mineralization process in ovine MSCs. Regarding gene expression level, both human and ovine MSCs presented a comparable up-regulation of Runx2 and a trend toward down-regulation of Col1A during osteogenic differentiation. In summary, this side by side comparison defined phenotypic similarities and differences of human and ovine MSCs from three different sources, thereby contributing to a better characterization and standardization of ovine MSCs. The key findings shown in this report demonstrate the utility of ovine MSCs in preclinical studies for MSC-based therapies.
Collapse
|
29
|
Verboket RD, Leiblein M, Janko M, Schaible A, Brune JC, Schröder K, Heilani M, Fremdling C, Busche Y, Irrle T, Marzi I, Nau C, Henrich D. From two stages to one: acceleration of the induced membrane (Masquelet) technique using human acellular dermis for the treatment of non-infectious large bone defects. Eur J Trauma Emerg Surg 2020; 46:317-327. [PMID: 31932852 PMCID: PMC7113234 DOI: 10.1007/s00068-019-01296-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/23/2019] [Indexed: 11/24/2022]
Abstract
Introduction The induced membrane technique for the treatment of large bone defects is a two-step procedure. In the first operation, a foreign body membrane is induced around a spacer, then, in the second step, several weeks or months later, the spacer is removed and the Membrane pocket is filled with autologous bone material. Induction of a functional biological membrane might be avoided by initially using a biological membrane. In this study, the effect of a human acellular dermis (hADM, Epiflex, DIZG gGmbH) was evaluated for the treatment of a large (5 mm), plate-stabilised femoral bone defect. Material and Methods In an established rat model, hADM was compared to the two-stage induced membrane technique and a bone defect without membrane cover. Syngeneous spongiosa from donor animals was used for defect filling in all groups. The group size in each case was n = 5, the induction time of the membrane was 3–4 weeks and the healing time after filling of the defect was 8 weeks. Results The ultimate loads were increased to levels comparable with native bone in both membrane groups (hADM: 63.2% ± 29.6% of the reference bone, p < 0.05 vs. no membrane, induced membrane: 52.1% ± 25.8% of the reference bone, p < 0.05 vs. no membrane) and were significantly higher than the control group without membrane (21.5%). The membrane groups were radiologically and histologically almost completely bridged by new bone formation, in contrast to the control Group where no closed osseous bridging could be observed. Conclusion The use of the human acellular dermis leads to equivalent healing results in comparison to the two-stage induced membrane technique. This could lead to a shortened therapy duration of large bone defects.
Collapse
Affiliation(s)
- René Danilo Verboket
- Department of Trauma-, Hand and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany.
| | - Maximilian Leiblein
- Department of Trauma-, Hand and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Maren Janko
- Department of Trauma-, Hand and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Alexander Schaible
- Department of Trauma-, Hand and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Jan Claas Brune
- German Institute for Cell and Tissue Replacement (DIZG gemeinnützige GmbH), Berlin, Germany
| | - Katrin Schröder
- Center of Physiology, Cardiovascular Physiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Myriam Heilani
- Department of Trauma-, Hand and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Charlotte Fremdling
- Department of Trauma-, Hand and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Yannic Busche
- Department of Trauma-, Hand and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Tanja Irrle
- Department of Trauma-, Hand and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Ingo Marzi
- Department of Trauma-, Hand and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Christoph Nau
- Department of Trauma-, Hand and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Dirk Henrich
- Department of Trauma-, Hand and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
30
|
Bartold M, Gronthos S, Haynes D, Ivanovski S. Mesenchymal stem cells and biologic factors leading to bone formation. J Clin Periodontol 2019; 46 Suppl 21:12-32. [PMID: 30624807 DOI: 10.1111/jcpe.13053] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/23/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Physiological bone formation and bone regeneration occurring during bone repair can be considered distinct but similar processes. Mesenchymal stem cells (MSC) and associated biologic factors are crucial to both bone formation and bone regeneration. AIM To perform a narrative review of the current literature regarding the role of MSC and biologic factors in bone formation with the aim of discussing the clinical relevance of in vitro and in vivo animal studies. METHODS The literature was searched for studies on MSC and biologic factors associated with the formation of bone in the mandible and maxilla. The search specifically targeted studies on key aspects of how stem cells and biologic factors are important in bone formation and how this might be relevant to bone regeneration. The results are summarized in a narrative review format. RESULTS Different types of MSC and many biologic factors are associated with bone formation in the maxilla and mandible. CONCLUSION Bone formation and regeneration involve very complex and highly regulated cellular and molecular processes. By studying these processes, new clinical opportunities will arise for therapeutic bone regenerative treatments.
Collapse
Affiliation(s)
- Mark Bartold
- School of Dentistry, University of Adelaide, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - David Haynes
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Saso Ivanovski
- School of Dentistry, University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
31
|
Conrad B, Hayashi C, Yang F. Gelatin-Based Microribbon Hydrogels Guided Mesenchymal Stem Cells to Undergo Endochondral Ossification In Vivo with Bone-Mimicking Mechanical Strength. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00138-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Meng ZL, Wu ZQ, Shen BX, Li HB, Bian YY, Zeng DL, Fu J, Peng L. Reconstruction of large segmental bone defects in rabbit using the Masquelet technique with α-calcium sulfate hemihydrate. J Orthop Surg Res 2019; 14:192. [PMID: 31242906 PMCID: PMC6595676 DOI: 10.1186/s13018-019-1235-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
Background Large segmental bone defects can be repaired using the Masquelet technique in conjunction with autologous cancellous bone (ACB). However, ACB harvesting is severely restricted. α-calcium sulfate hemihydrate (α-CSH) is an outstanding bone substitute due to its easy availability, excellent biocompatibility, biodegradability, and osteoconductivity. However, the resorption rate of α-CSH is too fast to match the rate of new bone formation. The objective of this study was to investigate the bone repair capacity of the Masquelet technique in conjunction with isolated α-CSH or an α-CSH/ACB mix in a rabbit critical-sized defect model. Methods The rabbits (n = 28) were randomized into four groups: sham, isolated α-CSH, α-CSH/ACB mix, and isolated ACB group. A 15-mm critical-sized defect was established in the left radius, followed by filling with polymethyl methacrylate spacer. Six weeks after the first operation, the spacers were removed and the membranous tubes were grafted with isolated α-CSH, isolated ACB, α-CSH/ACB mix, or none. Twelve weeks later, the outcomes were evaluated by manual assessment, radiography, and spiral-CT. The histopathological and morphological changes were examined by H&E staining. The levels of alkaline phosphatase and osteocalcin were analyzed by immunohistochemistry and immunofluorescence staining. Results Our results suggest that the bone repair capacity of the α-CSH/ACB mix group was similar to the isolated ACB group, while the isolated α-CSH group was significantly decreased compared to the isolated ACB group. Conclusion These results highlighted a promising strategy in the healing of large segmental bone defect with the Masquelet technique in conjunction with an α-CSH/ACB mix (1:1, w/w) as they possessed the combined effects of sufficient supply and low resorption.
Collapse
Affiliation(s)
- Zhu Long Meng
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, China.,Department of Trauma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zi Quan Wu
- Department of Trauma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Bi Xin Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hong Bo Li
- Department of Trauma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yang Yang Bian
- Department of Trauma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - De Lu Zeng
- Department of Trauma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jian Fu
- Department of Trauma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Lei Peng
- Department of Trauma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
33
|
Masquelet A, Kanakaris NK, Obert L, Stafford P, Giannoudis PV. Bone Repair Using the Masquelet Technique. J Bone Joint Surg Am 2019; 101:1024-1036. [PMID: 31169581 DOI: 10.2106/jbjs.18.00842] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Alain Masquelet
- Department of Orthopaedic Surgery, Avicenne Hospital, Bobiny, France
| | - Nikolaos K Kanakaris
- Major Trauma Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,NIHR Leeds Biomedical Research Center, Chapel Allerton Hospital, Leeds, United Kingdom
| | - Laurent Obert
- Traumatology, Reconstructive, and Plastic Surgery Unit, CHU Jean Minjoz, Besançon, France
| | - Paul Stafford
- Orthopedic Trauma Surgery of Oklahoma, Tulsa, Oklahoma
| | - Peter V Giannoudis
- Major Trauma Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,NIHR Leeds Biomedical Research Center, Chapel Allerton Hospital, Leeds, United Kingdom.,Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
34
|
Sha J, Kanno T, Miyamoto K, Bai Y, Hideshima K, Matsuzaki Y. Application of a Bioactive/Bioresorbable Three-Dimensional Porous Uncalcined and Unsintered Hydroxyapatite/Poly-D/L-lactide Composite with Human Mesenchymal Stem Cells for Bone Regeneration in Maxillofacial Surgery: A Pilot Animal Study. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E705. [PMID: 30818862 PMCID: PMC6427595 DOI: 10.3390/ma12050705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022]
Abstract
A novel three-dimensional (3D) porous uncalcined and unsintered hydroxyapatite/poly-d/l-lactide (3D-HA/PDLLA) composite demonstrated superior biocompatibility, osteoconductivity, biodegradability, and plasticity, thereby enabling complex maxillofacial defect reconstruction. Mesenchymal stem cells (MSCs)-a type of adult stem cell-have a multipotent ability to differentiate into chondrocytes, adipocytes, and osteocytes. In a previous study, we found that CD90 (Thy-1, cluster of differentiation 90) and CD271 (low-affinity nerve growth factor receptor) double-positive cell populations from human bone marrow had high proliferative ability and differentiation capacity in vitro. In the present study, we investigated the utility of bone regeneration therapy using implantation of 3D-HA/PDLLA loaded with human MSCs (hMSCs) in mandibular critical defect rats. Microcomputed tomography (Micro-CT) indicated that implantation of a 3D-HA/PDLLA-hMSC composite scaffold improved the ability to achieve bone regeneration compared with 3D-HA/PDLLA alone. Compared to the sufficient blood supply in the mandibular defection superior side, a lack of blood supply in the inferior side caused delayed healing. The use of Villanueva Goldner staining (VG staining) revealed the gradual progression of the nucleated cells and new bone from the scaffold border into the central pores, indicating that 3D-HA/PDLLA loaded with hMSCs had good osteoconductivity and an adequate blood supply. These results further demonstrated that the 3D-HA/PDLLA-hMSC composite scaffold was an effective bone regenerative method for maxillofacial boney defect reconstruction.
Collapse
Affiliation(s)
- Jingjing Sha
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, 89-1 Enya-Cho, Izumo, Shimane 693-8501, Japan.
| | - Takahiro Kanno
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, 89-1 Enya-Cho, Izumo, Shimane 693-8501, Japan.
| | - Kenichi Miyamoto
- Department of Cancer Biology, Shimane University Faculty of Medicine, 89-1 Enya-Cho, Izumo, Shimane 693-8501, Japan.
| | - Yunpeng Bai
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, 89-1 Enya-Cho, Izumo, Shimane 693-8501, Japan.
| | - Katsumi Hideshima
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, 89-1 Enya-Cho, Izumo, Shimane 693-8501, Japan.
| | - Yumi Matsuzaki
- Department of Cancer Biology, Shimane University Faculty of Medicine, 89-1 Enya-Cho, Izumo, Shimane 693-8501, Japan.
| |
Collapse
|
35
|
Gugjoo MB, Amarpal. Mesenchymal stem cell research in sheep: Current status and future prospects. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
The paracrine effects of human induced pluripotent stem cells promote bone-like structures via the upregulation of BMP expression in a mouse ectopic model. Sci Rep 2018; 8:17106. [PMID: 30459360 PMCID: PMC6244408 DOI: 10.1038/s41598-018-35546-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/26/2018] [Indexed: 01/20/2023] Open
Abstract
Use of human induced pluripotent stem cells (h-iPSCs) for bone tissue engineering is most appealing, because h-iPSCs are an inexhaustible source of osteocompetent cells. The present study investigated the contribution of undifferentiated h-iPSCs and elucidated aspects of the underlying mechanism(s) of the involvement of these cells to new bone formation. Implantation of undifferentiated h-iPSCs seeded on coral particles in ectopic sites of mice resulted in expression of osteocalcin and DMP-1, and in mineral content similar to that of the murine bone. The number of the implanted h-iPSCs decreased with time and disappeared by 30 days post-implantation. In contrast, expression of the murine osteogenic genes at day 15 and 30 post-implantation provided, for the first time, evidence that the implanted h-iPSCs affected the observed outcomes via paracrine mechanisms. Supporting evidence was provided because supernatant conditioned media from h-iPSCs (h-iPSC CM), promoted the osteogenic differentiation of human mesenchymal stem cells (h-MSCs) in vitro. Specifically, h-iPSC CM induced upregulation of the BMP-2, BMP-4 and BMP-6 genes, and promoted mineralization of the extracellular matrix. Given the current interest in the use of h-iPSCs for regenerative medicine applications, our study contributes new insights into aspects of the mechanism underlying the bone promoting capability of h-iPSCs.
Collapse
|
37
|
Mousaei Ghasroldasht M, Matin MM, Kazemi Mehrjerdi H, Naderi-Meshkin H, Moradi A, Rajabioun M, Alipour F, Ghasemi S, Zare M, Mirahmadi M, Bidkhori HR, Bahrami AR. Application of mesenchymal stem cells to enhance non-union bone fracture healing. J Biomed Mater Res A 2018; 107:301-311. [PMID: 29673055 DOI: 10.1002/jbm.a.36441] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/27/2018] [Accepted: 04/12/2018] [Indexed: 01/07/2023]
Abstract
ECM components include a number of osteoinductive and osteoconductive factors, which are involved in bone fracture healing. In this study, a combination of adipose derived mesenchymal stem cells (Ad-MSCs), cancellous bone graft (CBG), and chitosan hydrogel (CHI) was applied to the non-union bone fracture and healing effects were evaluated for the first time. After creation of animal models with non-union fracture in rats, they were randomly classified into seven groups. Radiography at 0, 2, 4, and 8 weeks after surgery, indicated the positive effects of Ad-MSCs + CBG + CHI and Ad-MSCs + CBG in treatment of bone fractures as early as 2 weeks after the surgery. These data were confirmed with both biomechanical and histological studies. Gene expression analyses of Vegf and Bmp2 showed a positive effect of Ad-MSCs on vascularization and osteogenic differentiation in all groups receiving Ad-MSCs, as shown by real-time PCR. Immunofluorescence analysis and RT-PCR results indicated existence of human Ad-MSCs in the fractured region 8 weeks post-surgery. In conclusion, we suggest that application of Ad-MSCs, CBG, and CHI, could be a suitable combination for osteoinduction and osteoconduction to improve non-union bone fracture healing. Further investigations are required to determine the exact mechanisms involved in this process before moving to clinical studies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 301-311, 2019.
Collapse
Affiliation(s)
- Mohammad Mousaei Ghasroldasht
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Kazemi Mehrjerdi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hojjat Naderi-Meshkin
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Ali Moradi
- Department of Orthopedic Surgery, Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Rajabioun
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Faeze Alipour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Samaneh Ghasemi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Zare
- Clinical Pathology, Social Security Organization, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
38
|
Decambron A, Devriendt N, Larochette N, Manassero M, Bourguignon M, El-Hafci H, Petite H, Viateau V, Logeart-Avramoglou D. Effect of the Bone Morphogenetic Protein-2 Doses on the Osteogenic Potential of Human Multipotent Stromal Cells- Containing Tissue Engineered Constructs. Tissue Eng Part A 2018; 25:642-651. [PMID: 30311857 DOI: 10.1089/ten.tea.2018.0146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
IMPACT STATEMENT A strategy for improving the efficacy of stem cell-based bone tissue engineering (TE) constructs is to combine bone morphogenetic protein-2 (BMP-2) with multipotent stromal cells (MSC). Previous studies on the potential cooperative effect of BMP-2 with human multipotent stromal cells (hMSCs) on bone formation in vivo have, however, shown contradictory results likely due to the various and/or inappropriate BMP-2 doses. Our results provided evidence that the addition of BMP-2 at low dose only was beneficial to improve the osteogenic potential of hMSCs-containing TE constructs, whereas BMP-2 delivered at high dose overcame the advantage of combining this growth factor with hMSCs. This new knowledge will help in designing improved combination strategies for tissue regeneration with better clinical outcomes.
Collapse
Affiliation(s)
- Adeline Decambron
- 1 B2OA UMR 7052, Univ Paris Diderot , Sorbonne Paris Cité, CNRS, Paris, France .,2 B2OA UMR 7052, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est , Maisons-Alfort, France
| | | | - Nathanael Larochette
- 1 B2OA UMR 7052, Univ Paris Diderot , Sorbonne Paris Cité, CNRS, Paris, France .,2 B2OA UMR 7052, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est , Maisons-Alfort, France
| | - Mathieu Manassero
- 1 B2OA UMR 7052, Univ Paris Diderot , Sorbonne Paris Cité, CNRS, Paris, France .,2 B2OA UMR 7052, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est , Maisons-Alfort, France
| | - Marianne Bourguignon
- 1 B2OA UMR 7052, Univ Paris Diderot , Sorbonne Paris Cité, CNRS, Paris, France .,2 B2OA UMR 7052, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est , Maisons-Alfort, France
| | - Hanane El-Hafci
- 1 B2OA UMR 7052, Univ Paris Diderot , Sorbonne Paris Cité, CNRS, Paris, France .,2 B2OA UMR 7052, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est , Maisons-Alfort, France
| | - Hervé Petite
- 1 B2OA UMR 7052, Univ Paris Diderot , Sorbonne Paris Cité, CNRS, Paris, France .,4 B2OA UMR 7052, Univ Paris Diderot, Sorbonne Paris Cité , CNRS, INSERM, Paris, France
| | - Véronique Viateau
- 1 B2OA UMR 7052, Univ Paris Diderot , Sorbonne Paris Cité, CNRS, Paris, France .,2 B2OA UMR 7052, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est , Maisons-Alfort, France
| | - Delphine Logeart-Avramoglou
- 1 B2OA UMR 7052, Univ Paris Diderot , Sorbonne Paris Cité, CNRS, Paris, France .,2 B2OA UMR 7052, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est , Maisons-Alfort, France
| |
Collapse
|
39
|
Perez JR, Kouroupis D, Li DJ, Best TM, Kaplan L, Correa D. Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects. Front Bioeng Biotechnol 2018; 6:105. [PMID: 30109228 PMCID: PMC6079270 DOI: 10.3389/fbioe.2018.00105] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/09/2018] [Indexed: 12/25/2022] Open
Abstract
Bone fractures and segmental bone defects are a significant source of patient morbidity and place a staggering economic burden on the healthcare system. The annual cost of treating bone defects in the US has been estimated to be $5 billion, while enormous costs are spent on bone grafts for bone injuries, tumors, and other pathologies associated with defective fracture healing. Autologous bone grafts represent the gold standard for the treatment of bone defects. However, they are associated with variable clinical outcomes, postsurgical morbidity, especially at the donor site, and increased surgical costs. In an effort to circumvent these limitations, tissue engineering and cell-based therapies have been proposed as alternatives to induce and promote bone repair. This review focuses on the recent advances in bone tissue engineering (BTE), specifically looking at its role in treating delayed fracture healing (non-unions) and the resulting segmental bone defects. Herein we discuss: (1) the processes of endochondral and intramembranous bone formation; (2) the role of stem cells, looking specifically at mesenchymal (MSC), embryonic (ESC), and induced pluripotent (iPSC) stem cells as viable building blocks to engineer bone implants; (3) the biomaterials used to direct tissue growth, with a focus on ceramic, biodegradable polymers, and composite materials; (4) the growth factors and molecular signals used to induce differentiation of stem cells into the osteoblastic lineage, which ultimately leads to active bone formation; and (5) the mechanical stimulation protocols used to maintain the integrity of the bone repair and their role in successful cell engraftment. Finally, a couple clinical scenarios are presented (non-unions and avascular necrosis—AVN), to illustrate how novel cell-based therapy approaches can be used. A thorough understanding of tissue engineering and cell-based therapies may allow for better incorporation of these potential therapeutic approaches in bone defects allowing for proper bone repair and regeneration.
Collapse
Affiliation(s)
- Jose R Perez
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States.,Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Deborah J Li
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Lee Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States.,Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
40
|
Sladkova M, Alawadhi R, Jaragh Alhaddad R, Esmael A, Alansari S, Saad M, Mulla Yousef J, Alqaoud L, de Peppo GM. Segmental Additive Tissue Engineering. Sci Rep 2018; 8:10895. [PMID: 30022102 PMCID: PMC6052158 DOI: 10.1038/s41598-018-29270-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/09/2018] [Indexed: 01/04/2023] Open
Abstract
Segmental bone defects caused by trauma and disease represent a major clinical problem worldwide. Current treatment options are limited and often associated with poor outcomes and severe complications. Bone engineering is a promising alternative solution, but a number of technical challenges must be addressed to allow for effective and reproducible construction of segmental grafts that meet the size and geometrical requirements needed for individual patients and routine clinical applications. It is important to devise engineering strategies and standard operating procedures that make it possible to scale up the size of bone-engineered grafts, minimize process and product variability, and facilitate technology transfer and implementation. To address these issues, we have combined traditional and modular tissue engineering approaches in a strategy referred to as Segmental Additive Tissue Engineering (SATE). To demonstrate this approach, a digital reconstruction of a rabbit femoral defect was partitioned transversally to the longitudinal axis into segments (modules) with discoidal geometry and defined thickness to enable protocol standardization and effective tissue formation in vitro. Bone grafts corresponding to each segment were then engineered using biomimetic scaffolds seeded with human induced pluripotent stem cell-derived mesodermal progenitors (iPSC-MPs) and a novel perfusion bioreactor with universal design. The SATE strategy enables the effective and reproducible engineering of segmental bone grafts for personalized skeletal reconstruction, and will facilitate technology transfer and implementation of a tissue engineering approach to segmental bone defect therapy.
Collapse
Affiliation(s)
- Martina Sladkova
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Rawan Alawadhi
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | | | - Asmaa Esmael
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Shoug Alansari
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Munerah Saad
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | | | - Lulwa Alqaoud
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | | |
Collapse
|
41
|
Mesenchymal stem cells and porous β-tricalcium phosphate composites prepared through stem cell screen-enrich-combine(-biomaterials) circulating system for the repair of critical size bone defects in goat tibia. Stem Cell Res Ther 2018; 9:157. [PMID: 29895312 PMCID: PMC5998551 DOI: 10.1186/s13287-018-0906-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Efficacious bone substitute is essential for the treatment of a critical size bone defect. Currently, the bone substitutes commonly used in clinical practice lack osteogenic capacity and the therapeutic efficacy is not ideal. Herein, a novel stem cell screen-enrich-combine(-biomaterials) circulating system (SECCS) was introduced to provide the substitutes with osteogenic ability. The stem cell screening, enrichment, and recombination with substitutes could be integrated during the surgical operation. Using SECCS, the bioactive mesenchymal stem cells (MSCs) and porous β-tricalcium phosphate (β-TCP) composites (MSCs/β-TCP) were rapidly prepared for critical size bone defect repair and validated in goat models of critical size tibia defects. METHODS Twelve goats with right hind limb tibia defects of 30 mm were randomly divided into two groups: six (the experimental group) were treated with MSCs/β-TCP prepared by SECCS and the other six goats (the control group) were treated with pure porous β-TCP. The repair effect was assessed by x-ray, computed tomography (CT), micro-CT, histology and histomorphology 6 months after the operation. In addition, the enrichment efficacy of MSCs and the characteristics of the MSCs/β-TCP prepared by SECCS were evaluated. RESULTS The SECCS could compound about 81.3 ± 3.0% of the MSCs in bone marrow to the porous β-TCP without affecting the cell viability. The average number of MSCs for retransplantation was 27,655.0 ± 5011.6 for each goat from the experimental group. In vitro, satisfactory biocompatibility of the MSCs/β-TCP was performed, with the MSCs spreading adequately, proliferating actively, and retaining the osteogenic potential. In vivo, the defect repair by MSCs/β-TCP with good medullary cavity recanalization and cortical remodeling was significantly superior to that of pure porous β-TCP. CONCLUSIONS The MSCs/β-TCP prepared through SECCS demonstrated significant therapeutic efficacy in goat models of critical size bone defect. This provides a novel therapeutic strategy for critical size bone defects caused by severe injury, infection, and bone tumor resection with a high profile of safety, effectiveness, simplicity, and ease.
Collapse
|
42
|
Hassanzadeh P, Atyabi F, Dinarvand R. Tissue engineering: Still facing a long way ahead. J Control Release 2018; 279:181-197. [DOI: 10.1016/j.jconrel.2018.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 02/07/2023]
|
43
|
Liu F, Huang RK, Xie M, Pan H, Zhao JJ, Lei B. Use of Masquelet's technique for treating the first metatarsophalangeal joint in cases of gout combined with a massive bone defect. Foot Ankle Surg 2018; 24:159-163. [PMID: 29409218 DOI: 10.1016/j.fas.2017.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/09/2017] [Accepted: 01/30/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND To examine the safety and efficacy of Masquelet's technique as a surgical method for treating the first metatarsophalangeal joint in cases of gout accompanied by a massive bone defect. METHODS From January 2010 to January 2016, eleven patients (7 males and 4 females; mean age 33.1 years; range, 23-43 years) received surgical treatment for a first metatarsophalangeal joint tophus which caused a serious bone defect. The first metatarsophalangeal bone defects ranged from 3-6cm, or nearly 50% of the length of normal bone. During the first stage of Masquelet's technique, we removed the tophus and infused that area with bone cement that contained antibiotics. Two months later, we performed the second stage, in which the prosthesis was replaced with iliac cancellous bone, and the operated area was stabilized via locking plate fixation. RESULTS All of the surgeries were successful, and the 11 patients were followed up for an average of 10.9 months. Postoperative evaluations showed that 10 of the 11 patients healed between 9 and 14 days after the initial surgery. Bone fusion occurred between 2.3 and 3.6 months after the operation, and the average healing time was 3.0 months. One foot wound became infected, but healed after vacuum aspiration. When the American Association of Foot and Ankle Surgery Maryland Foot scoring system was used to evaluate the foot function of the 11 patients prior to surgery, all 11 patients were graded as "failures." Following surgery, 2 patients were graded excellent, 5 were good, 3 were fair, and only 1 patient failed. The total combined excellent and good rate was 63.6%. The total mean Maryland scores pre- and post-surgery were 27.8 points and 74.1 points, respectively; thus the average patient score increased by 46.3 points. CONCLUSIONS Joints with advanced tophus nodules develop segmental bone defects. Masquelet's technique is an effective method for treating such nodules and their associated bone defects.
Collapse
Affiliation(s)
- Feng Liu
- Department of Orthopedics, Wuhan Pu'Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruo-Kun Huang
- Department of Orthopedics, Wuhan Pu'Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ming Xie
- Department of Orthopedics, Wuhan Pu'Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Pan
- Department of Orthopedics, Wuhan Pu'Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Zhao
- Department of Orthopedics, Wuhan Pu'Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Lei
- Department of Orthopedics, Wuhan Pu'Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Jiang H, Cheng P, Li D, Li J, Wang J, Gao Y, Zhang S, Cao T, Wang C, Yang L, Pei G. Novel standardized massive bone defect model in rats employing an internal eight-hole stainless steel plate for bone tissue engineering. J Tissue Eng Regen Med 2018; 12:e2162-e2171. [PMID: 29427540 DOI: 10.1002/term.2650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/30/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022]
Abstract
Massive bone defects are a challenge in orthopaedic research. Defective regeneration leads to bone atrophy, non-union of bone, and physical morbidity. Large animals are important models, however, production costs are high, nursing is complex, and evaluation methods are limited. A suitable laboratory animal model is required to explore the underlying molecular mechanism and cellular process of bone tissue engineering. We designed a stainless steel plate with 8 holes; the middle 2 holes were used as a guide to create a standardized critical size defect in the femur of anaesthetized rats. The plate was fixed to the bone using 6 screws, serving as an inner fixed bracket to secure a tricalcium phosphate implant seeded with green fluorescent protein-positive rat bone marrow mesenchymal stem cells within the defect. In some animals, we also grafted a vessel bundle into the lateral side of the implant, to promote vascularized bone tissue engineering. X-ray, microcomputed tomography, and histological analyses demonstrated the stainless steel plate resulted in a stable large segmental defect model in the rat femur. Vascularization significantly increased bone formation and implant degradation. Moreover, survival and expansion of green fluorescent protein-positive seeded cells could be clearly monitored in vivo at 1, 4, and 8 weeks postoperation via fluorescent microscopy. This standardized large segmental defect model in a small animal may help to advance the study of bone tissue engineering. Furthermore, availability of antibodies and genetically modified rats could help to dissect the precise cellular and molecular mechanisms of bone repair.
Collapse
Affiliation(s)
- Huijie Jiang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Pengzhen Cheng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Donglin Li
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Junqin Li
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jimeng Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yi Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Shuaishuai Zhang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Tianqing Cao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Chunmei Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Guoxian Pei
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
45
|
Repair of maxillary cystic bone defects with mesenchymal stem cells seeded on a cross-linked serum scaffold. J Craniomaxillofac Surg 2018; 46:222-229. [DOI: 10.1016/j.jcms.2017.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/20/2017] [Accepted: 11/02/2017] [Indexed: 12/22/2022] Open
|
46
|
BMP-2 delivered from a self-cross-linkable CaP/hydrogel construct promotes bone regeneration in a critical-size segmental defect model of non-union in dogs. Vet Comp Orthop Traumatol 2017; 27:411-21. [DOI: 10.3415/vcot-14-03-0036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/31/2014] [Indexed: 11/17/2022]
Abstract
SummaryObjectives: To determine whether the addition of recombinant human bone morphogenetic protein (rhBMP-2) to a self-crosslinkable cellulosic hydrogel/biphasic calcium phosphate (BCP) granules construct promotes bone healing in critical-size ulnar defects in dogs.Methods: A standardized 2 cm long ulnar ostectomy was performed bilaterally in five dogs to compare bone healing with hydrogel/BCP constructs associated with or without rhBMP-2. Cancellous-bone autografts were used as positive controls in unilateral ulnar defects in five additional dogs. Radiographically, bone healing was evaluated at four, eight, 12, 16 and 20 weeks postoperatively. Histological qualitative analysis with microCT imaging and light and scanning electron microscopy were performed 20 weeks after implantation.Results: All rhBMP-2-loaded constructs induced the formation of well-differentiated mineralized lamellar bone surrounding the BCP granules and bridging bone/implant interfaces as early as eight weeks after surgery. Bone regeneration appeared to develop earlier with the rhBMP-2 constructs than with the cancellous-bone autografts while similar results were obtained at 20 weeks. Constructs without any rhBMP-2 showed osteoconductive properties limited to the bone junctions and a lack of osteoinduction without bone ingrowth within the implantation site. In one dog, the leakage of the hydrogel loaded with rhBMP-2 induced an extensive heterotopic bone formation.Clinical significance: The addition of rhBMP-2 to a self-crosslinkable hydrogel/BCP construct could promote bone regeneration in a critical-size-defect model with similar performance to autologous bone grafts.
Collapse
|
47
|
Decambron A, Fournet A, Bensidhoum M, Manassero M, Sailhan F, Petite H, Logeart-Avramoglou D, Viateau V. Low-dose BMP-2 and MSC dual delivery onto coral scaffold for critical-size bone defect regeneration in sheep. J Orthop Res 2017; 35:2637-2645. [PMID: 28401593 DOI: 10.1002/jor.23577] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/06/2017] [Indexed: 02/04/2023]
Abstract
Tissue-engineered constructs (TECs) combining resorbable calcium-based scaffolds and mesenchymal stem cells (MSCs) have the capability to regenerate large bone defects. Inconsistent results have, however, been observed, with a lack of osteoinductivity as a possible cause of failure. This study aimed to evaluate the impact of the addition of low-dose bone morphogenetic protein-2 (BMP-2) to MSC-coral-TECs on the healing of clinically relevant segmental bone defects in sheep. Coral granules were either seeded with autologous MSCs (bone marrow-derived) or loaded with BMP-2. A 25-mm-long metatarsal bone defect was created and stabilized with a plate in 18 sheep. Defects were filled with one of the following TECs: (i) BMP (n = 5); (ii) MSC (n = 7); or (iii) MSC-BMP (n = 6). Radiographic follow-up was performed until animal sacrifice at 4 months. Bone formation and scaffold resorption were assessed by micro-CT and histological analysis. Bone union with nearly complete scaffold resorption was observed in 1/5, 2/7, and 3/6 animals, when BMP-, MSC-, and MSC-BMP-TECs were implanted, respectively. The amount of newly formed bone was not statistically different between groups: 1074 mm3 [970-2478 mm3 ], 1155 mm3 [970-2595 mm3 ], and 2343 mm3 [931-3276 mm3 ] for BMP-, MSC-, and MSC-BMP-TECs, respectively. Increased scaffold resorption rate using BMP-TECs was the only potential side effect observed. In conclusion, although the dual delivery of MSCs and BMP-2 onto a coral scaffold further increased bone formation and bone union when compared to single treatment, results were non-significant. Only 50% of the defects healed, demonstrating the need for further refinement of this strategy before clinical use. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2637-2645, 2017.
Collapse
Affiliation(s)
- Adeline Decambron
- Laboratoire de Bioingénierie et Bioimagerie Ostéo-Articulaire (B2OA-UMR CNRS 7052) Université Paris Diderot, 10 Avenue de Verdun, 75010, Paris, France.,Ecole Nationale Vétérinaire d'Alfort (Université Paris-Est), 7 avenue du général de Gaulle, 94704, Maisons-Alfort Cedex, France
| | - Alexandre Fournet
- Laboratoire de Bioingénierie et Bioimagerie Ostéo-Articulaire (B2OA-UMR CNRS 7052) Université Paris Diderot, 10 Avenue de Verdun, 75010, Paris, France.,Ecole Nationale Vétérinaire d'Alfort (Université Paris-Est), 7 avenue du général de Gaulle, 94704, Maisons-Alfort Cedex, France
| | - Morad Bensidhoum
- Laboratoire de Bioingénierie et Bioimagerie Ostéo-Articulaire (B2OA-UMR CNRS 7052) Université Paris Diderot, 10 Avenue de Verdun, 75010, Paris, France
| | - Mathieu Manassero
- Laboratoire de Bioingénierie et Bioimagerie Ostéo-Articulaire (B2OA-UMR CNRS 7052) Université Paris Diderot, 10 Avenue de Verdun, 75010, Paris, France.,Ecole Nationale Vétérinaire d'Alfort (Université Paris-Est), 7 avenue du général de Gaulle, 94704, Maisons-Alfort Cedex, France
| | - Frédéric Sailhan
- Hopital Cochin, Service d'orthopédie et chirurgie du rachis, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France.,Clinique Arago, 187 Rue Raymond Losserand, 75014, Paris, France
| | - Hervé Petite
- Laboratoire de Bioingénierie et Bioimagerie Ostéo-Articulaire (B2OA-UMR CNRS 7052) Université Paris Diderot, 10 Avenue de Verdun, 75010, Paris, France
| | - Delphine Logeart-Avramoglou
- Laboratoire de Bioingénierie et Bioimagerie Ostéo-Articulaire (B2OA-UMR CNRS 7052) Université Paris Diderot, 10 Avenue de Verdun, 75010, Paris, France
| | - Véronique Viateau
- Laboratoire de Bioingénierie et Bioimagerie Ostéo-Articulaire (B2OA-UMR CNRS 7052) Université Paris Diderot, 10 Avenue de Verdun, 75010, Paris, France.,Ecole Nationale Vétérinaire d'Alfort (Université Paris-Est), 7 avenue du général de Gaulle, 94704, Maisons-Alfort Cedex, France
| |
Collapse
|
48
|
Bunpetch V, Zhang ZY, Zhang X, Han S, Zongyou P, Wu H, Hong-Wei O. Strategies for MSC expansion and MSC-based microtissue for bone regeneration. Biomaterials 2017; 196:67-79. [PMID: 29602560 DOI: 10.1016/j.biomaterials.2017.11.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) have gained increasing attention as a potential approach for the treatment of bone injuries due to their multi-lineage differentiation potential and also their ability to recognize and home to damaged tissue sites, secreting bioactive factors that can modulate the immune system and enhance tissue repair. However, a wide gap between the number of MSCs obtainable from the donor site and the number required for implantation, as well as the lack of understanding of MSC functions under different in vitro and in vivo microenvironment, hinders the progression of MSCs toward clinical settings. The clinical translation of MSCs pre-requisites a scalable expansion process for the biomanufacturing of therapeutically qualified cells. This review briefly introduces the features of implanted MSCs to determine the best strategies to optimize their regenerative capacity, as well as the current MSC implantation for bone diseases. Current achievements for expansion of MSCs using various culturing methods, bioreactor technologies, biomaterial platforms, as well as microtissue-based expansion strategies are also discussed, providing new insights into future large-scale MSC expansion and clinical applications.
Collapse
Affiliation(s)
- Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, China.
| | - Xiaoan Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shan Han
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pan Zongyou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haoyu Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ouyang Hong-Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China; Department of Sports Medicine, School of Medicine, Zhejiang University, China; Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, China.
| |
Collapse
|
49
|
Scientific Understanding of the Induced Membrane Technique: Current Status and Future Directions. J Orthop Trauma 2017; 31 Suppl 5:S3-S8. [PMID: 28938383 DOI: 10.1097/bot.0000000000000981] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To review the most recent basic science advances made in relation to the induced membrane technique and how those relate to clinical practice, applications, and future research directions. DESIGN Review of the literature. SETTING Any trauma center which might encounter large segmental bone defects. ARTICLES REVIEWED Basic science articles that looked at characteristics of the induced membrane published in the past 30 years. INTERVENTION None.
Collapse
|
50
|
Qiu X, Chen Y, Qi X, Yin Z, Zhang Y, Wang Z. [Effectiveness analysis of induced membrane technique in the treatment of infectious bone defect]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:1064-1068. [PMID: 29798563 DOI: 10.7507/1002-1892.201704002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To evaluate the effectiveness of induced membrane technique in the treatment of infectious bone defect. Methods Thirty-six patients (37 bone lesions) with infectious bone defects were treated with induced membrane technique between January 2011 and June 2014. There were 28 males and 8 females with an average age of 36 years (range, 20-68 years). All bone defects were post-traumatic infectious bone defect. The bone defect was located at the tibia and fibula in 24 cases (25 bone lesions), at femurs in 6 cases (6 bone lesions), at ulnas and radii in 2 cases (2 bone lesions), at calcanei in 3 cases (3 bone lesions), and at clavicle in 1 case (1 bone lesion). The average time between onset and the treatment of induced membrane technique was 6.2 months (range, 0.5-36.0 months); 15 patients were acute infections (disease duration was less than 3 months). At the first stage, after the removal of internal fixator (applicable for the patients who had internal fixation), complete debridement of infection necrotic bone tissue and surrounding soft tissue was performed and the bone defects were filled with antibiotic-impregnated cement spacers. If the bone was unstable after debridement, external fixator or plaster could be used for stabilization. Patients received sensitive antibiotics postoperatively. At the second stage (usually 6-8 weeks later), the cement spacer were removed, with preservation of the induced membrane formed by the spacer, and filled the bone defect with autologous iliac bone graft within the membrane. Results The hospitalization time after debridement was 17-30 days (mean, 22.2 days), and the hospitalization time after the second stage was 7-14 days (mean, 10 days). All the flaps healed uneventfully in 16 cases treated with local flap transposition or free flap grafting after debridement. One patient of femur fracture received Ilizarov treatment after recurrence of infection at 11 months after operation; 1 patient of distal femoral fracture received amputation after recurrence of infection at 1 month after operation; 1 patient of distal end of tibia and fibula fractures received ankle arthrodesis after repeated debridements due to the recurrence of infection; 1 patient of tibia and fibula fractures lost to follow-up. The other 32 patients (33 bone lesions) were followed up 1-5 years (mean, 2 years) without infection recurrence, and the infection control rate was 91.7% (33/36). All the patients had bony union, and the healing time was 4-12 months (mean, 7.5 months); no refracture occurred. One patient of femur bone defect had a lateral angulation of 15° and leg discrepancy of 1.5 cm. Superficial pin infection was observed in 7 cases and healed after intensive wound care and oral antibiotics. Adjacent joint function restriction were observed in 6 cases at last follow-up. Conclusion Induced membrane technique is a simple and reliable technique for the treatment of infectious bone defect. The technique is not limited to the size of the bone defect and the effectiveness is satisfactory.
Collapse
Affiliation(s)
- Xusheng Qiu
- Department of Orthopaedics, Drum Tower Hospital of Nanjing University Medical School, Nanjing Jiangsu, 210008, P.R.China
| | - Yixin Chen
- Department of Orthopaedics, Drum Tower Hospital of Nanjing University Medical School, Nanjing Jiangsu, 210008,
| | - Xiaoyang Qi
- Department of Orthopaedics, Drum Tower Hospital of Nanjing University Medical School, Nanjing Jiangsu, 210008, P.R.China
| | - Zhipeng Yin
- Department of Orthopaedics, Drum Tower Hospital of Nanjing University Medical School, Nanjing Jiangsu, 210008, P.R.China
| | - Yan Zhang
- Department of Orthopaedics, Drum Tower Hospital of Nanjing University Medical School, Nanjing Jiangsu, 210008, P.R.China
| | - Zhen Wang
- Department of Orthopaedics, Drum Tower Hospital of Nanjing University Medical School, Nanjing Jiangsu, 210008, P.R.China
| |
Collapse
|