1
|
Cheng CT, Vyas PS, McClain EJ, Hoelen TCA, Arts JJC, McLaughlin C, Altman DT, Yu AK, Cheng BC. The Osteogenic Peptide P-15 for Bone Regeneration: A Narrative Review of the Evidence for a Mechanism of Action. Bioengineering (Basel) 2024; 11:599. [PMID: 38927835 PMCID: PMC11200470 DOI: 10.3390/bioengineering11060599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration is a complex multicellular process involving the recruitment and attachment of osteoprogenitors and their subsequent differentiation into osteoblasts that deposit extracellular matrixes. There is a growing demand for synthetic bone graft materials that can be used to augment these processes to enhance the healing of bone defects resulting from trauma, disease or surgery. P-15 is a small synthetic peptide that is identical in sequence to the cell-binding domain of type I collagen and has been extensively demonstrated in vitro and in vivo to enhance the adhesion, differentiation and proliferation of stem cells involved in bone formation. These events can be categorized into three phases: attachment, activation and amplification. This narrative review summarizes the large body of preclinical research on P-15 in terms of these phases to describe the mechanism of action by which P-15 improves bone formation. Knowledge of this mechanism of action will help to inform the use of P-15 in clinical practice as well as the development of methods of delivering P-15 that optimize clinical outcomes.
Collapse
Affiliation(s)
- Cooper T. Cheng
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| | - Praveer S. Vyas
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| | - Edward James McClain
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| | - Thomáy-Claire Ayala Hoelen
- Department of Orthopedic Surgery and CAPHRI Research School, Maastricht University Medical Center (MUMC+), P.O. Box 616 Maastricht, The Netherlands; (T.-C.A.H.); (J.J.C.A.)
| | - Jacobus Johannes Chris Arts
- Department of Orthopedic Surgery and CAPHRI Research School, Maastricht University Medical Center (MUMC+), P.O. Box 616 Maastricht, The Netherlands; (T.-C.A.H.); (J.J.C.A.)
| | - Colin McLaughlin
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| | - Daniel T. Altman
- Department of Orthopaedic Surgery, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA;
| | - Alexander K. Yu
- Department of Neurosurgery, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA;
| | - Boyle C. Cheng
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| |
Collapse
|
2
|
Rizzo MG, Palermo N, D’Amora U, Oddo S, Guglielmino SPP, Conoci S, Szychlinska MA, Calabrese G. Multipotential Role of Growth Factor Mimetic Peptides for Osteochondral Tissue Engineering. Int J Mol Sci 2022; 23:ijms23137388. [PMID: 35806393 PMCID: PMC9266819 DOI: 10.3390/ijms23137388] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/25/2022] Open
Abstract
Articular cartilage is characterized by a poor self-healing capacity due to its aneural and avascular nature. Once injured, it undergoes a series of catabolic processes which lead to its progressive degeneration and the onset of a severe chronic disease called osteoarthritis (OA). In OA, important alterations of the morpho-functional organization occur in the cartilage extracellular matrix, involving all the nearby tissues, including the subchondral bone. Osteochondral engineering, based on a perfect combination of cells, biomaterials and biomolecules, is becoming increasingly successful for the regeneration of injured cartilage and underlying subchondral bone tissue. To this end, recently, several peptides have been explored as active molecules and enrichment motifs for the functionalization of biomaterials due to their ability to be easily chemically synthesized, as well as their tunable physico-chemical features, low immunogenicity issues and functional group modeling properties. In addition, they have shown a good aptitude to penetrate into the tissue due to their small size and stability at room temperature. In particular, growth-factor-derived peptides can play multiple functions in bone and cartilage repair, exhibiting chondrogenic/osteogenic differentiation properties. Among the most studied peptides, great attention has been paid to transforming growth factor-β and bone morphogenetic protein mimetic peptides, cell-penetrating peptides, cell-binding peptides, self-assembling peptides and extracellular matrix-derived peptides. Moreover, recently, phage display technology is emerging as a powerful selection technique for obtaining functional peptides on a large scale and at a low cost. In particular, these peptides have demonstrated advantages such as high biocompatibility; the ability to be immobilized directly on chondro- and osteoinductive nanomaterials; and improving the cell attachment, differentiation, development and regeneration of osteochondral tissue. In this context, the aim of the present review was to go through the recent literature underlining the importance of studying novel functional motifs related to growth factor mimetic peptides that could be a useful tool in osteochondral repair strategies. Moreover, the review summarizes the current knowledge of the use of phage display peptides in osteochondral tissue regeneration.
Collapse
Affiliation(s)
- Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
| | - Nicoletta Palermo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials—National Research Council, Viale J. F. Kennedy 54, Mostra d’Oltremare, Pad. 20, 80125 Naples, Italy;
| | - Salvatore Oddo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
| | - Salvatore Pietro Paolo Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Correspondence: (S.C.); (G.C.)
| | - Marta Anna Szychlinska
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy;
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
- Correspondence: (S.C.); (G.C.)
| |
Collapse
|
3
|
Fuchs A, Kreczy D, Brückner T, Gbureck U, Stahlhut P, Bengel M, Hoess A, Nies B, Bator J, Klammert U, Linz C, Ewald A. Bone regeneration capacity of newly developed spherical magnesium phosphate cement granules. Clin Oral Investig 2022; 26:2619-2633. [PMID: 34686919 PMCID: PMC8898248 DOI: 10.1007/s00784-021-04231-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/13/2021] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Magnesium phosphate-based cements begin to catch more attention as bone substitute materials and especially as alternatives for the more commonly used calcium phosphates. In bone substitutes for augmentation purposes, atraumatic materials with good biocompatibility and resorbability are favorable. In the current study, we describe the in vivo testing of novel bone augmentation materials in form of spherical granules based on a calcium-doped magnesium phosphate (CaMgP) cement. MATERIALS AND METHODS Granules with diameters between 500 and 710 μm were fabricated via the emulsification of CaMgP cement pastes in a lipophilic liquid. As basic material, two different CaMgP formulations were used. The obtained granules were implanted into drill hole defects at the distal femoral condyle of 27 New Zealand white rabbits for 6 and 12 weeks. After explantation, the femora were examined via X-ray diffraction analysis, histological staining, radiological examination, and EDX measurement. RESULTS Both granule types display excellent biocompatibility without any signs of inflammation and allow for proper bone healing without the interposition of connective tissue. CaMgP granules show a fast and continuous degradation and enable fully adequate bone regeneration. CONCLUSIONS Due to their biocompatibility, their degradation behavior, and their completely spherical morphology, these CaMgP granules present a promising bone substitute material for bone augmentation procedures, especially in sensitive areas. CLINICAL RELEVANCE The mostly insufficient local bone supply after tooth extractions complicates prosthetic dental restoration or makes it even impossible. Therefore, bone augmentation procedures are oftentimes inevitable. Spherical CaMgP granules may represent a valuable bone replacement material in many situations.
Collapse
Affiliation(s)
- Andreas Fuchs
- Department of Oral & Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany.
| | - Dorothea Kreczy
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Theresa Brückner
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Philipp Stahlhut
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Melanie Bengel
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Andreas Hoess
- INNOTERE GmbH, Meissner Strasse 191, 01445, Radebeul, Germany
| | - Berthold Nies
- INNOTERE GmbH, Meissner Strasse 191, 01445, Radebeul, Germany
| | - Julia Bator
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Uwe Klammert
- Department of Oral & Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Christian Linz
- Department of Oral & Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Andrea Ewald
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| |
Collapse
|
4
|
The influence of M-CSF on fracture healing in a mouse model. Sci Rep 2021; 11:22326. [PMID: 34785696 PMCID: PMC8595369 DOI: 10.1038/s41598-021-01673-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Macrophage colony-stimulating factor 1 (M-CSF) is known to play a critical role during fracture repair e.g. by recruiting stem cells to the fracture site and impacting hard callus formation by stimulating osteoclastogenesis. The aim of this experiment was to study the impact of systemic M-CSF application and its effect on bony healing in a mouse model of femoral osteotomy. Doing so, we studied 61 wild type (wt) mice (18-week-old female C57BL/6) which were divided into three groups: (1) femoral osteotomy, (2) femoral osteotomy + stabilization with external fixator and (3) femoral osteotomy + stabilization with external fixator + systemic M-CSF application. Further, 12 op/op mice underwent femoral osteotomy and served as proof of concept. After being sacrificed at 28 days bony bridging was evaluated ex vivo with µCT, histological and biomechanical testing. Systemic M-CSF application impacted osteoclasts numbers, which were almost as low as found in op/op mice. Regarding callus size, the application of M-CSF in wt mice resulted in significantly larger calluses compared to wt mice without systemic M-CSF treatment. We further observed an anabolic effect of M-CSF application resulting in increased trabecular thickness compared to wt animals without additional M-CSF application. Systemic M-CSF application did not alter biomechanical properties in WT mice. The impact of M-CSF application in a mouse model of femoral osteotomy was oppositional to what we were expecting. While M-CSF application had a distinct anabolic effect on callus size as well as trabecular thickness, this on bottom line did not improve biomechanical properties. We hypothesize that in addition to the well-recognized negative effects of M-CSF on osteoclast numbers this seems to further downstream cause a lack of feedback on osteoblasts. Ultimately, continuous M-CSF application in the absence of co-stimulatory signals (e.g. RANKL) might overstimulate the hematopoietic linage in favor of tissue macrophages instead of osteoclasts.
Collapse
|
5
|
Mohanram Y, Zhang J, Tsiridis E, Yang XB. Comparing bone tissue engineering efficacy of HDPSCs, HBMSCs on 3D biomimetic ABM-P-15 scaffolds in vitro and in vivo. Cytotechnology 2020; 72:715-730. [PMID: 32820463 PMCID: PMC7548016 DOI: 10.1007/s10616-020-00414-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Human bone marrow mesenchymal stem cells (HBMSCs) has been the gold standard for bone regeneration. However, the low proliferation rate and long doubling time limited its clinical applications. This study aims to compare the bone tissue engineering efficacy of human dental pulp stem cells (HDPSCs) with HBMSCs in 2D, and 3D anorganic bone mineral (ABM) coated with a biomimetic collagen peptide (ABM-P-15) for improving bone-forming speed and efficacy in vitro and in vivo. The multipotential of both HDPSCs and HBMSCs have been compared in vitro. The bone formation of HDPSCs on ABM-P-15 was tested using in vivo model. The osteogenic potential of the cells was confirmed by alkaline phosphatase (ALP) and immunohistological staining for osteogenic markers. Enhanced ALP, collagen, lipid droplet, or glycosaminoglycans production were visible in HDPSCs and HBMSCs after osteogenic, adipogenic and chondrogenic induction. HDPSC showed stronger ALP staining compared to HBMSCs. Confocal images showed more viable HDPSCs on both ABM-P-15 and ABM scaffolds compared to HBMSCs on similar scaffolds. ABM-P-15 enhanced cell attachment/spreading/bridging formation on ABM-P-15 scaffolds and significantly increased quantitative ALP specific activities of the HDPSCs and HBMSCs. After 8 weeks in vivo implantation in diffusion chamber model, the HDPSCs on ABM-P-15 scaffolds showed extensive high organised collagenous matrix formation that was positive for COL-I and OCN compared to ABM alone. In conclusion, the HDPSCs have a higher proliferation rate and better osteogenic capacity, which indicated the potential of combining HDPSCs with ABM-P-15 scaffolds for improving bone regeneration speed and efficacy.
Collapse
Affiliation(s)
- Yamuna Mohanram
- Biomaterials & Tissue Engineering Group, Department of Oral Biology, School of Dentistry, University of Leeds, Level 7, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Jingying Zhang
- Biomaterials & Tissue Engineering Group, Department of Oral Biology, School of Dentistry, University of Leeds, Level 7, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.,The Second Clinical Medical College, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Eleftherios Tsiridis
- Academic Orthopaedic Department, Aristotle University Medical School, 54124, Thessaloniki, Greece
| | - Xuebin B Yang
- Biomaterials & Tissue Engineering Group, Department of Oral Biology, School of Dentistry, University of Leeds, Level 7, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.
| |
Collapse
|
6
|
Li Y, Su J, Sun W, Cai L, Deng Z. AMP-activated protein kinase stimulates osteoblast differentiation and mineralization through autophagy induction. Int J Mol Med 2018; 41:2535-2544. [PMID: 29484369 PMCID: PMC5846672 DOI: 10.3892/ijmm.2018.3498] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/18/2018] [Indexed: 12/25/2022] Open
Abstract
Previous studies have reported that adenosine monophosphate‑activated protein kinase (AMPK) activation can enhance osteoblast differentiation and mineralization; however, the underlying mechanism is not fully understood. Autophagy also serves an important role in osteoblast mineralization and bone homeostasis. The present study aimed to explore whether activation of AMPK could enhance osteoblast differentiation and mineralization via the induction of autophagy. The fracture healing and nonunion animal models were established and verified by X-ray imaging. Bone maturation was measured by Masson staining and the expression of AMPK, p-AMPK, microtubule-associated proteins 1A/1B light chain 3B II, and p62 in the fracture ends were detected by immunohistochemical staining. The mRNA expression levels of alkaline phosphatase (ALP), osteocalcin ,runt-related transcription factor 2 and BCN1 were determined by reverse transcription-quantitative polymerase chain reaction. 5-Bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium staining was used to determine ALP activity and alizarin red staining was adopted to examine mineralization. Western blot analysis was performed to detect protein expression. Autophagosome was observed by Transmission electron microscopy. Small interfering (si)RNA was used to knock down the expression of target gene. In vivo experiments demonstrated that new bone mineralization and maturation was markedly restrained in the nonunion group, alongside decreased AMPK activation and autophagic activity, compared with in the fracture healing group. The results of an in vitro study indicated that AMPK activation stimulated the osteogenic differentiation of MC3T3‑E1 cells, with increases in ALP activity, mineralization, and the mRNA expression levels of ALP, osteocalcin and runt-related transcription factor 2. Furthermore, AMPK activation induced autophagy, as determined by upregulation of microtubule‑associated proteins 1A/1B light chain 3B, increased autophagosome density and downregulation of p62. In addition, inhibition of autophagy reversed the effects of AMPK activation on osteoblast differentiation. These results suggested that AMPK activation may stimulate osteoblast differentiation and mineralization via the induction of autophagy, and provides evidence to suggest that enhancing AMPK activation and autophagic activity may be a potential novel approach to promote fracture healing.
Collapse
Affiliation(s)
- Yi Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jiajia Su
- Department of Radiology, Hubei Cancer Hospital, Wuhan, Hubei 430000, P.R. China
| | - Wenchao Sun
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhouming Deng
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
7
|
Pan Z, Jiang P, Xue S, Wang T, Li H, Wang J. Repair of a critical-size segmental rabbit femur defect using bioglass-β-TCP monoblock, a vascularized periosteal flap and BMP-2. J Biomed Mater Res B Appl Biomater 2017; 106:2148-2156. [PMID: 29024418 DOI: 10.1002/jbm.b.34018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/12/2017] [Accepted: 09/24/2017] [Indexed: 01/13/2023]
Abstract
Various synthetic bone substitutes are not suitable for reconstructing critical-size bone defects. This study tested whether a bioglass-β-tricalcium phosphate (β-TCP) monoblock is effective for repairing critical-size segmental bone defects if combined with a vascularized periosteal flap and bone morphogenetic protein (BMP)-2. A femoral osteotomy with a gap size of 20 mm was created and stabilized using a plate in 40 rabbits.The defect was left untreated (group A) or repaired using a monoblock (group B), a monoblock with a vascularized periosteal flap (group C), or a monoblock with a vascularized periosteal flap and BMP-2 (group D). Bone regeneration, vascularization and monoblock degradation were analyzed after four and eight weeks using x-ray, hematoxylin-eosin, CD34 immunohistochemical and Masson's trichrome staining observation and histometric evaluation. The radiographic grading score showed a time-dependent increase from weeks 4 to 8. At 8-week postoperative, the total new regenerated bone in groups C and D was 20.0 ± 0.3 and 55.5 ± 8.0 mm2 , respectively, which was significantly greater than in group B. Conversely, group D showed less residual monoblock than did group C. An increase in microvessel density was also observed in groups C and D compared with group B at 4 and 8 weeks postoperative, respectively. This study suggests that bioglass-β-TCP monoblock alone exhibits poor potential to repair a 20-mm femoral defect. However, supplementation with a vascularized periosteal flap and BMP-2 led to effective vascularization and reliable bone regeneration throughout the monoblock, with concordant material degradation in a timely manner. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2148-2156, 2018.
Collapse
Affiliation(s)
- Zhaohui Pan
- Orthopedics Institute of Chinese PLA, 89th Hospital, 256 Beigongxijie, Weifang, Shandong Province, People's Republic of China
| | - Pingping Jiang
- Orthopedics Institute of Chinese PLA, 89th Hospital, 256 Beigongxijie, Weifang, Shandong Province, People's Republic of China
| | - Shan Xue
- Orthopedics Institute of Chinese PLA, 89th Hospital, 256 Beigongxijie, Weifang, Shandong Province, People's Republic of China
| | - Tao Wang
- Orthopedics Institute of Chinese PLA, 89th Hospital, 256 Beigongxijie, Weifang, Shandong Province, People's Republic of China
| | - Hongfei Li
- Orthopedics Institute of Chinese PLA, 89th Hospital, 256 Beigongxijie, Weifang, Shandong Province, People's Republic of China
| | - Jianli Wang
- Orthopedics Institute of Chinese PLA, 89th Hospital, 256 Beigongxijie, Weifang, Shandong Province, People's Republic of China
| |
Collapse
|
8
|
Wang C, Liu Y, Fan Y, Li X. The use of bioactive peptides to modify materials for bone tissue repair. Regen Biomater 2017; 4:191-206. [PMID: 28596916 PMCID: PMC5458541 DOI: 10.1093/rb/rbx011] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/08/2017] [Accepted: 03/11/2017] [Indexed: 01/05/2023] Open
Abstract
It has been well recognized that the modification of biomaterials with appropriate bioactive peptides could further enhance their functions. Especially, it has been shown that peptide-modified bone repair materials could promote new bone formation more efficiently compared with conventional ones. The purpose of this article is to give a general review of recent studies on bioactive peptide-modified materials for bone tissue repair. Firstly, the main peptides for inducing bone regeneration and commonly used methods to prepare peptide-modified bone repair materials are introduced. Then, current in vitro and in vivo research progress of peptide-modified composites used as potential bone repair materials are reviewed and discussed. Generally speaking, the recent related studies have fully suggested that the modification of bone repair materials with osteogenic-related peptides provide promising strategies for the development of bioactive materials and substrates for enhanced bone regeneration and the therapy of bone tissue diseases. Furthermore, we have proposed some research trends in the conclusion and perspectives part.
Collapse
Affiliation(s)
- Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yan Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Pountos I, Panteli M, Lampropoulos A, Jones E, Calori GM, Giannoudis PV. The role of peptides in bone healing and regeneration: a systematic review. BMC Med 2016; 14:103. [PMID: 27400961 PMCID: PMC4940902 DOI: 10.1186/s12916-016-0646-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Bone tissue engineering and the research surrounding peptides has expanded significantly over the last few decades. Several peptides have been shown to support and stimulate the bone healing response and have been proposed as therapeutic vehicles for clinical use. The aim of this comprehensive review is to present the clinical and experimental studies analysing the potential role of peptides for bone healing and bone regeneration. METHODS A systematic review according to PRISMA guidelines was conducted. Articles presenting peptides capable of exerting an upregulatory effect on osteoprogenitor cells and bone healing were included in the study. RESULTS Based on the available literature, a significant amount of experimental in vitro and in vivo evidence exists. Several peptides were found to upregulate the bone healing response in experimental models and could act as potential candidates for future clinical applications. However, from the available peptides that reached the level of clinical trials, the presented results are limited. CONCLUSION Further research is desirable to shed more light into the processes governing the osteoprogenitor cellular responses. With further advances in the field of biomimetic materials and scaffolds, new treatment modalities for bone repair will emerge.
Collapse
Affiliation(s)
- Ippokratis Pountos
- Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK
| | - Michalis Panteli
- Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK
| | | | - Elena Jones
- Unit of Musculoskeletal Disease, Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James University Hospital, University of Leeds, LS9 7TF, Leeds, UK
| | - Giorgio Maria Calori
- Department of Trauma & Orthopaedics, School of Medicine, ISTITUTO ORTOPEDICO GAETANO PINI, Milan, Italy
| | - Peter V Giannoudis
- Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK. .,NIHR Leeds Biomedical Research Unit, Chapel Allerton Hospital, LS7 4SA Leeds, West Yorkshire, Leeds, UK.
| |
Collapse
|
10
|
Effects of P-15 Peptide Coated Hydroxyapatite on Tibial Defect Repair In Vivo in Normal and Osteoporotic Rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:253858. [PMID: 26509146 PMCID: PMC4609767 DOI: 10.1155/2015/253858] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/29/2015] [Indexed: 11/30/2022]
Abstract
This study assessed the efficacy of anorganic bone mineral coated with P-15 peptide (ABM/P-15) on tibia defect repair longitudinally in both normal and osteoporotic rats in vivo. A paired design was used. 24 Norwegian brown rats were divided into normal and osteoporotic groups. 48 cylindrical defects were created in proximal tibias bilaterally. Defects were filled with ABM/P-15 or left empty. Osteoporotic status was assessed by microarchitectural analysis. Microarchitectural properties of proximal tibial defects were evaluated at 4 time points. 21 days after surgery, tibias were harvested for histology and histomorphometry. Significantly increased bone volume fraction, surface density, and connectivity were seen in all groups at days 14 and 21 compared with day 0. Moreover, the structure type of ABM/P-15 group was changed toward typical plate-like structure. Microarchitectural properties of ABM/P-15 treated newly formed bones at 21 days were similar in normal and osteoporotic rats. Histologically, significant bone formation was seen in all groups. Interestingly, significantly increased bone formation was seen in osteoporotic rats treated with ABM/P-15 indicating optimized healing potential. Empty defects showed lower healing potential in osteoporotic bone. In conclusion, ABM/P-15 accelerated bone regeneration in osteoporotic rats but did not enhance bone regeneration in normal rats.
Collapse
|
11
|
Engraftment of Prevascularized, Tissue Engineered Constructs in a Novel Rabbit Segmental Bone Defect Model. Int J Mol Sci 2015; 16:12616-30. [PMID: 26053395 PMCID: PMC4490464 DOI: 10.3390/ijms160612616] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 04/20/2015] [Accepted: 05/26/2015] [Indexed: 12/26/2022] Open
Abstract
The gold standard treatment of large segmental bone defects is autologous bone transfer, which suffers from low availability and additional morbidity. Tissue engineered bone able to engraft orthotopically and a suitable animal model for pre-clinical testing are direly needed. This study aimed to evaluate engraftment of tissue-engineered bone with different prevascularization strategies in a novel segmental defect model in the rabbit humerus. Decellularized bone matrix (Tutobone) seeded with bone marrow mesenchymal stromal cells was used directly orthotopically or combined with a vessel and inserted immediately (1-step) or only after six weeks of subcutaneous “incubation” (2-step). After 12 weeks, histological and radiological assessment was performed. Variable callus formation was observed. No bone formation or remodeling of the graft through TRAP positive osteoclasts could be detected. Instead, a variable amount of necrotic tissue formed. Although necrotic area correlated significantly with amount of vessels and the 2-step strategy had significantly more vessels than the 1-step strategy, no significant reduction of necrotic area was found. In conclusion, the animal model developed here represents a highly challenging situation, for which a suitable engineered bone graft with better prevascularization, better resorbability and higher osteogenicity has yet to be developed.
Collapse
|
12
|
Veronesi F, Giavaresi G, Guarino V, Raucci MG, Sandri M, Tampieri A, Ambrosio L, Fini M. Bioactivity and bone healing properties of biomimetic porous composite scaffold: in vitro and in vivo studies. J Biomed Mater Res A 2015; 103:2932-41. [PMID: 25689266 DOI: 10.1002/jbm.a.35433] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 11/11/2022]
Abstract
Tissue engineering (TE) represents a valid alternative to traditional surgical therapies for the management of bone defects that do not regenerate spontaneously. Scaffolds, one of the most important component of TE strategy, should be biocompatible, bioactive, osteoconductive, and osteoinductive. The aim of this study was to evaluate the biological properties and bone regeneration ability of a porous poly(ɛ-caprolactone) (PCL) scaffold, incorporating MgCO3 -doped hydroxyapatite particles, uncoated (PCL_MgCHA) or coated by apatite-like crystals via biomimetic treatment (PCL_MgCHAB). It was observed that both scaffolds are not cytotoxic and, even if cell viability was similar on both scaffolds, PCL_MgCHAB showed higher alkaline phosphatase and collagen I (COLL I) production at day 7. PCL_MgCHA induced more tumor necrosis factor-α release than PCL_MgCHAB, while osteocalcin was produced less by both scaffolds up to 7 days and no significant differences were observed for transforming growth factor-β synthesis. The percentage of new bone trabeculae growth in wide defects carried out in rabbit femoral distal epiphyses was significantly higher in PCL_MgCHAB in comparison with PCL_MgCHA at 4 weeks and even more at 12 weeks after implantation. This study highlighted the role of a biomimetic composite scaffold in bone regeneration and lays the foundations for its future employment in the clinical practice.
Collapse
Affiliation(s)
- Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, 40136, Italy
| | - Gianluca Giavaresi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, 40136, Italy.,Laboratory of Biocompatibility, Technological Innovations, and Advanced Therapies (BITTA), RIT Department, Rizzoli Orthopedic Institute, Bologna, 40136, Italy
| | - Vincenzo Guarino
- National Research Council of Italy, Institute of Polymers, Composite and Biomaterials, Naples, 801025, Italy
| | - Maria Grazia Raucci
- National Research Council of Italy, Institute of Polymers, Composite and Biomaterials, Naples, 801025, Italy
| | - Monica Sandri
- National Research Council of Italy, Institute of Science and Technology for Ceramics, Faenza (RA), Italy
| | - Anna Tampieri
- National Research Council of Italy, Institute of Science and Technology for Ceramics, Faenza (RA), Italy
| | - Luigi Ambrosio
- National Research Council of Italy, Institute of Polymers, Composite and Biomaterials, Naples, 801025, Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, 40136, Italy.,Laboratory of Biocompatibility, Technological Innovations, and Advanced Therapies (BITTA), RIT Department, Rizzoli Orthopedic Institute, Bologna, 40136, Italy
| |
Collapse
|
13
|
DurmuŞlar MC, Alpaslan C, Alpaslan G, Çakır M, Kahali R, Nematollahi Z. Clinical and radiographic evaluation of the efficacy of platelet-rich plasma combined with hydroxyapatite bone graft substitutes in the treatment of intra-bony defects in maxillofacial region. Acta Odontol Scand 2014; 72:948-53. [PMID: 25005628 DOI: 10.3109/00016357.2014.926023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study is to evaluate the efficacy of platelet-rich plasma (PRP) clinically and radiographically when combined with bovine derived hydroxyapatite (HA) bone grafting materials and resorbable collagen membranes for the treatment of intra-bony defects frequently seen at the distal aspect of mandibular second molars following the surgical extraction of fully impacted mandibular wisdom teeth. STUDY DESIGN Eighteen patients were scheduled for post-operative visits at 1, 3 and 6 months post-operatively, probing depths were measured and digital panoramic radiographs were taken. RESULTS There were no significant differences on probing depths among two groups. Radiographic assessment also showed no significant difference among groups at 1st and 6th month intervals, while 3 months post-operatively the amount of radiographic density at the PRP side was significantly higher. CONCLUSION Combined use of PRP and bovine-derived HA graft materials for the treatment of intra-bony defects might be an appropriate approach when the main goal is providing earlier bone regeneration.
Collapse
Affiliation(s)
| | | | | | | | - Roozbeh Kahali
- Department of Oral and Maxillofacial Surgery, Buali Hospital, Azad University of Medical Sciences, Tehran, IR Iran
| | - Zahra Nematollahi
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
14
|
Qin X, Raj RM, Liao XF, Shi W, Ma B, Gong SQ, Chen WM, Zhou B. Using rigidly fixed autogenous tooth graft to repair bone defect: an animal model. Dent Traumatol 2014; 30:380-384. [PMID: 24597718 DOI: 10.1111/edt.12101] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study describes a new approach to regenerate bone defect using autogenous tooth. MATERIALS AND METHODS Freshly extracted teeth were used as autogenous grafts. Teeth were sectioned, cut into desired shape, and disinfected. The grafts were rigidly fixed to the mandibular defects in eighteen rabbits using titanium screws to achieve good stability. Every six rabbits were stochastically sacrificed at 1, 3, and 6 months after implantation, respectively. For all specimens, clinical, radiographical, and histological measurements were performed. RESULTS The boundaries of the grafts were distinctly visible in the implanted area during the first and third month. However, the teeth grafts were fully covered by new bone by the sixth month. The radiograph demonstrated the progressive change in the bone and grafted tooth interface from radiolucency to radiopacity during different time periods. Histologically, vascularization led to a temporary fibrous integration in the graft-bone interface. The bone contact rate of 1 and 3 months was significantly lower than that of the 6 months. During this period, grafts were gradually resorbed and replaced by new bone. CONCLUSION Rigid fixation of autogenous tooth could serve as a novel approach for the repair of bone defect.
Collapse
Affiliation(s)
- Xu Qin
- Department of Stomatology, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Regmi M Raj
- Department of Stomatology, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Health, Kathmandu, Nepal
| | - Xiao-Fu Liao
- Department of Stomatology, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Department of Stomatology, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Ma
- Department of Stomatology, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Qiang Gong
- Department of Stomatology, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Min Chen
- Department of Stomatology, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhou
- Department of Stomatology, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Reifenrath J, Angrisani N, Lalk M, Besdo S. Replacement, refinement, and reduction: Necessity of standardization and computational models for long bone fracture repair in animals. J Biomed Mater Res A 2013; 102:2884-900. [DOI: 10.1002/jbm.a.34920] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Janin Reifenrath
- Small Animal Clinic; University of Veterinary Medicine Hannover; Bünteweg 9 30559 Hannover Germany
| | - Nina Angrisani
- Small Animal Clinic; University of Veterinary Medicine Hannover; Bünteweg 9 30559 Hannover Germany
| | - Mareike Lalk
- Small Animal Clinic; University of Veterinary Medicine Hannover; Bünteweg 9 30559 Hannover Germany
| | - Silke Besdo
- Institute of Continuum Mechanics; Leibniz Universität Hannover; Appelstr. 11 30167 Hannover Germany
| |
Collapse
|
16
|
Liu Q, Limthongkul W, Sidhu G, Zhang J, Vaccaro A, Shenck R, Hickok N, Shapiro I, Freeman T. Covalent attachment of P15 peptide to titanium surfaces enhances cell attachment, spreading, and osteogenic gene expression. J Orthop Res 2012; 30:1626-33. [PMID: 22504956 DOI: 10.1002/jor.22116] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 03/15/2012] [Indexed: 02/04/2023]
Abstract
P15, a synthetic 15 amino acid peptide, mimics the cell-binding domain within the alpha-1 chain of human collagen is being tested in clinical trials to determine if it enhances bone formation in spinal fusions. We hypothesize that covalent attachment of P15 to titanium implants may also serve to promote osseointegration. To test this hypothesis, we measured osteoblast and mesenchymal cell adhesion, proliferation, and maturation on P15 tethered to a titanium (Ti-P15) surface. P15 peptide was covalently bonded to titanium alloy surfaces and incubated with osteoblast like cells. Cell toxicity, adhesion, spreading, and differentiation was then evaluated. Real-time quantitative PCR, Western blot analysis, and fluorescent immunohistochemistry was performed to measure osteoblast gene expression and differentiation. There was no evidence of toxicity. Significant increases in early cell attachment, spreading, and proliferation were observed on the Ti-P15 surface. Increased filapodial attachments, α(2) integrin expression, and phosphorylated focal adhesion kinase immunostaining indicated activation of integrin signaling pathways. qRT-PCR analysis indicated there was significant increase in osteogenic differentiation markers in cells grown on Ti-P15 compared to control-Ti. Western blotting confirmed these findings. Surface modification of titanium with P15 significantly increased cell attachment, spreading, osteogenic gene expression, and differentiation. Results of this study suggest that Ti-P15 has the potential to safely enhance bone formation and promote osseointegration of titanium implants.
Collapse
Affiliation(s)
- Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Manso JEF, Mourão CFDAB, Pinheiro FAL, Ferreira ML, Silva PC, Schanaider A. Molars extraction for bone graft study in rabbits. Acta Cir Bras 2012; 26 Suppl 2:66-9. [PMID: 22030817 DOI: 10.1590/s0102-86502011000800012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PURPOSE The aim of this study was to describe an experimental surgical technique to be used in the evaluation of bone grafts in rabbits. METHODS The operative technique was performed in jaws, with external approach from the labial commissure to the last molar tooth. An incision about 1cm extended forward to the alveolar ridge, followed by a exposing the cervical region of the alveolar bone and dental elements was done. Thus, after extraction of first molar with forceps, the tooth socket left was filled with hydroxyapatite. The bone gain was analyzed by histopathological studies. RESULTS The histological analyses indicated formed bone surrounding the biomaterial. CONCLUSION The experimental model using the tooth socket of the rabbit molar is a feasible procedure for studies of bone grafts.
Collapse
|
18
|
Lindley EM, Guerra FA, Krauser JT, Matos SM, Burger EL, Patel VV. Small peptide (P-15) bone substitute efficacy in a rabbit cancellous bone model. J Biomed Mater Res B Appl Biomater 2010; 94:463-468. [PMID: 20578227 DOI: 10.1002/jbm.b.31676] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
P-15 is a synthetic 15-amino acid residue identical to the cell binding domain of type I collagen. P-15 can be adsorbed onto anorganic bovine bone mineral (ABM) and will enhance cell attachment and subsequent cell activation. Although ABM/P-15 has been studied as a bone graft substitute in the oral cavity, its use in orthopedic models has been limited. Thus, this study investigated the efficacy of ABM/P-15 treatment in a rabbit model of long bone cancellous healing. Defects were created in the distal femurs and proximal medial tibiae of rabbits and were filled with either ABMP/P-15 suspended in hydrogel, ABM alone suspended in hydrogel, hydrogel carrier alone, or no graft material. Rabbits were sacrificed at 1, 2, 4, or 8 weeks postsurgery, and the femurs and tibiae were harvested. Histomorphometric analyses indicated that defects treated with ABM/P-15 had significantly larger areas of new bone formation than the other three treatments at 2 and 8 weeks postsurgery. ABM/P-15 treated defects also had significantly more bone growth than defects left empty or filled with ABM alone at 4 weeks postsurgery. Furthermore, histological examination did not reveal acute inflammatory infiltrate cells in any of the treatment conditions. These results are consistent with the findings of ABM/P-15 use in human oral-maxillofacial studies and in large animal spine fusion models.
Collapse
Affiliation(s)
- Emily M Lindley
- The Spine Center, Department of Orthopedics, University of Colorado, Denver, Colorado, USA
| | | | | | | | | | | |
Collapse
|
19
|
Evaluation of ABM/P-15 versus autogenous bone in an ovine lumbar interbody fusion model. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2010; 19:2156-63. [PMID: 20694847 DOI: 10.1007/s00586-010-1546-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 06/15/2010] [Accepted: 07/25/2010] [Indexed: 10/19/2022]
Abstract
A prospective, randomized study was performed in an ovine model to compare the efficacy of an anorganic bovine-derived hydroxyapatite matrix combined with a synthetic 15 amino acid residue (ABM/P-15) in facilitating lumbar interbody fusion when compared with autogenous bone harvested from the iliac crest. P-15 is a biomimetic to the cell-binding site of Type-I collagen for bone-forming cells. When combined with ABM, it creates the necessary scaffold to initiate cell invasion, binding, and subsequent osteogenesis. In this study, six adult ewes underwent anterior-lateral interbody fusion at L3/L4 and L4/L5 using PEEK interbody rings filled with autogenous bone at one level and ABM/P-15 at the other level and no additional instrumentation. Clinical CT scans were obtained at 3 and 6 months; micro-CT scans and histomorphometry analyses were performed after euthanization at 6 months. Clinical CT scan analysis showed that all autograft and ABM/P-15 treated levels had radiographically fused outside of the rings at the 3-month study time point. Although the clinical CT scans of the autograft treatment group showed significantly better fusion within the PEEK rings than ABM/P-15 at 3 months, micro-CT scans, clinical CT scans, and histomorphometric analyses showed there were no statistical differences between the two treatment groups at 6 months. Thus, ABM/P-15 was as successful as autogenous bone graft in producing lumbar spinal fusion in an ovine model, and it should be further evaluated in clinical studies.
Collapse
|
20
|
Chen FM, Zhang J, Zhang M, An Y, Chen F, Wu ZF. A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials 2010; 31:7892-927. [PMID: 20684986 DOI: 10.1016/j.biomaterials.2010.07.019] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 07/04/2010] [Indexed: 12/17/2022]
Abstract
Periodontitis is a globally prevalent inflammatory disease that causes the destruction of the tooth-supporting apparatus and potentially leads to tooth loss. Currently, the methods to reconstitute lost periodontal structures (i.e. alveolar bone, periodontal ligament, and root cementum) have relied on conventional mechanical, anti-infective modalities followed by a range of regenerative procedures such as guided tissue regeneration, the use of bone replacement grafts and exogenous growth factors (GFs), and recently developed tissue engineering technologies. However, all current or emerging paradigms have either been shown to have limited and variable outcomes or have yet to be developed for clinical use. To accelerate clinical translation, there is an ongoing need to develop therapeutics based on endogenous regenerative technology (ERT), which can stimulate latent self-repair mechanisms in patients and harness the host's innate capacity for regeneration. ERT in periodontics applies the patient's own regenerative 'tools', i.e. patient-derived GFs and fibrin scaffolds, sometimes in association with commercialized products (e.g. Emdogain and Bio-Oss), to create a material niche in an injured site where the progenitor/stem cells from neighboring tissues can be recruited for in situ periodontal regeneration. The choice of materials and the design of implantable devices influence therapeutic potential and the number and invasiveness of the associated clinical procedures. The interplay and optimization of each niche component involved in ERT are particularly important to comprehend how to make the desired cell response safe and effective for therapeutics. In this review, the emerging opportunities and challenges of ERT that avoid the ex vivo culture of autologous cells are addressed in the context of new approaches for engineering or regeneration of functional periodontal tissues by exploiting the use of platelet-rich products and its associated formulations as key endogenous resources for future clinical management of periodontal tissue defects.
Collapse
Affiliation(s)
- Fa-Ming Chen
- Department of Periodontology & Oral Medicine, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.
| | | | | | | | | | | |
Collapse
|