1
|
Szwed-Georgiou A, Płociński P, Kupikowska-Stobba B, Urbaniak MM, Rusek-Wala P, Szustakiewicz K, Piszko P, Krupa A, Biernat M, Gazińska M, Kasprzak M, Nawrotek K, Mira NP, Rudnicka K. Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems. ACS Biomater Sci Eng 2023; 9:5222-5254. [PMID: 37585562 PMCID: PMC10498424 DOI: 10.1021/acsbiomaterials.3c00609] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
Novel tissue regeneration strategies are constantly being developed worldwide. Research on bone regeneration is noteworthy, as many promising new approaches have been documented with novel strategies currently under investigation. Innovative biomaterials that allow the coordinated and well-controlled repair of bone fractures and bone loss are being designed to reduce the need for autologous or allogeneic bone grafts eventually. The current engineering technologies permit the construction of synthetic, complex, biomimetic biomaterials with properties nearly as good as those of natural bone with good biocompatibility. To ensure that all these requirements meet, bioactive molecules are coupled to structural scaffolding constituents to form a final product with the desired physical, chemical, and biological properties. Bioactive molecules that have been used to promote bone regeneration include protein growth factors, peptides, amino acids, hormones, lipids, and flavonoids. Various strategies have been adapted to investigate the coupling of bioactive molecules with scaffolding materials to sustain activity and allow controlled release. The current manuscript is a thorough survey of the strategies that have been exploited for the delivery of biomolecules for bone regeneration purposes, from choosing the bioactive molecule to selecting the optimal strategy to synthesize the scaffold and assessing the advantages and disadvantages of various delivery strategies.
Collapse
Affiliation(s)
- Aleksandra Szwed-Georgiou
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Przemysław Płociński
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Barbara Kupikowska-Stobba
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Mateusz M. Urbaniak
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Paulina Rusek-Wala
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Konrad Szustakiewicz
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Paweł Piszko
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Agnieszka Krupa
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Monika Biernat
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Małgorzata Gazińska
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Mirosław Kasprzak
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Katarzyna Nawrotek
- Faculty
of Process and Environmental Engineering, Lodz University of Technology, Lodz 90-924, Poland
| | - Nuno Pereira Mira
- iBB-Institute
for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de
Lisboa, Lisboa 1049-001, Portugal
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior
Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
- Instituto
Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Karolina Rudnicka
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| |
Collapse
|
2
|
Haughan J, Ortved KF, Robinson MA. Administration and detection of gene therapy in horses: A systematic review. Drug Test Anal 2023; 15:143-162. [PMID: 36269665 DOI: 10.1002/dta.3394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Abstract
Gene therapy uses genetic modification of cells to produce a therapeutic effect. Defective or missing genes can be repaired or replaced, or gene expression can be modified using a variety of technologies. Repair of defective genes can be achieved using specialized gene editing tools. Gene addition promotes gene expression by introducing synthetic copies of genes of interest (transgenes) into cells where they are transcribed and translated into therapeutic proteins. Protein production can also be modified using therapies that regulate gene expression. Gene therapy is currently prohibited in both human and equine athletes because of the potential to induce production of performance-enhancing proteins in the athlete's body, also referred to as "gene doping." Detection of gene doping is challenging and necessitates development of creative, novel analytical methods for doping control. Methods for detection of gene doping must be specific to and will vary depending on the type of gene therapy. The purpose of this paper is to present the results of a systematic review of gene editing, gene therapy, and detection of gene doping in horses. Based on the published literature, gene therapy has been administered to horses in a large number of experimental studies and a smaller number of clinical cases. Detection of gene therapy is possible using a combination of PCR and sequencing technologies. This summary can provide a basis for discussion of appropriate and inappropriate uses for gene therapy in horses by the veterinary community and guide expansion of methods to detect inappropriate uses by the regulatory community.
Collapse
Affiliation(s)
- Joanne Haughan
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - Kyla F Ortved
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - Mary A Robinson
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA.,Pennsylvania Equine Toxicology & Research Center, West Chester University, West Chester, Pennsylvania, USA
| |
Collapse
|
3
|
Grzeskowiak RM, Alghazali KM, Hecht S, Donnell RL, Doherty TJ, Smith CK, Anderson DE, Biris AS, Adair HS. Influence of a novel scaffold composed of polyurethane, hydroxyapatite, and decellularized bone particles on the healing of fourth metacarpal defects in mares. Vet Surg 2021; 50:1117-1127. [PMID: 33948951 PMCID: PMC8360067 DOI: 10.1111/vsu.13608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 01/04/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To determine the effect of a novel scaffold, designed for use in bone regeneration, on healing of splint bone segmental defects in mares. STUDY DESIGN In vivo experimental study. SAMPLE POPULATION Five adult mares (4-10 years old; mean weight, 437.7 kg ± 29 kg). METHODS Bilateral 2-cm full-thickness defects were created in the fourth metacarpal bones (MCIV) of each horse. Each defect was randomly assigned to either a novel scaffold treatment (n = 5) or an untreated control (n = 5). The scaffold was composed of polyurethane, hydroxyapatite, and decellularized bone particles. Bone healing was assessed for a period of 60 days by thermography, ultrasonography, radiography, and computed tomography (CT). Biopsies of each defect were performed 60 days after surgery for histological evaluation. RESULTS On the basis of radiographic analysis, scaffold-treated defects had greater filling (67.42% ± 26.7%) compared with untreated defects (35.88% ± 32.7%; P = .006). After 60 days, CT revealed that the density of the defects treated with the scaffolds (807.80 ± 129.6 Hounsfield units [HU]) was greater than density of the untreated defects (464.80 ± 81.3 HU; P = .004). Evaluation of histology slides provided evidence of bone formation within an average of 9.43% ± 3.7% of the cross-sectional area of scaffolds in contrast to unfilled defects in which connective tissue was predominant throughout the biopsy specimens. CONCLUSION The novel scaffold was biocompatible and supported bone formation within the MCIV segmental defects. CLINICAL SIGNIFICANCE This novel scaffold offers an effective option for filling bone voids in horses when support of bone healing is indicated.
Collapse
Affiliation(s)
- Remigiusz M. Grzeskowiak
- Department of Large Animal Clinical SciencesThe University of Tennessee College of Veterinary MedicineKnoxvilleTennesseeUSA
| | - Karrer M. Alghazali
- Center for Integrative Nanotechnology SciencesUniversity of Arkansas at Little RockLittle RockArkansasUSA
| | - Silke Hecht
- Department of Small Animal Clinical SciencesThe University of Tennessee College of Veterinary MedicineKnoxvilleTennesseeUSA
| | - Robert L. Donnell
- Department of Biomedical and Diagnostic SciencesThe University of Tennessee College of Veterinary MedicineKnoxvilleTennesseeUSA
| | - Thomas J. Doherty
- Department of Large Animal Clinical SciencesThe University of Tennessee College of Veterinary MedicineKnoxvilleTennesseeUSA
| | - Christopher K. Smith
- Department of Small Animal Clinical SciencesThe University of Tennessee College of Veterinary MedicineKnoxvilleTennesseeUSA
| | - David E. Anderson
- Department of Large Animal Clinical SciencesThe University of Tennessee College of Veterinary MedicineKnoxvilleTennesseeUSA
| | - Alexandru S. Biris
- Center for Integrative Nanotechnology SciencesUniversity of Arkansas at Little RockLittle RockArkansasUSA
| | - Henry S. Adair
- Department of Large Animal Clinical SciencesThe University of Tennessee College of Veterinary MedicineKnoxvilleTennesseeUSA
| |
Collapse
|
4
|
Wilkinson P, Bozo IY, Braxton T, Just P, Jones E, Deev RV, Giannoudis PV, Feichtinger GA. Systematic Review of the Preclinical Technology Readiness of Orthopedic Gene Therapy and Outlook for Clinical Translation. Front Bioeng Biotechnol 2021; 9:626315. [PMID: 33816447 PMCID: PMC8011540 DOI: 10.3389/fbioe.2021.626315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/12/2021] [Indexed: 12/09/2022] Open
Abstract
Bone defects and improper healing of fractures are an increasing public health burden, and there is an unmet clinical need in their successful repair. Gene therapy has been proposed as a possible approach to improve or augment bone healing with the potential to provide true functional regeneration. While large numbers of studies have been performed in vitro or in vivo in small animal models that support the use of gene therapy for bone repair, these systems do not recapitulate several key features of a critical or complex fracture environment. Larger animal models are therefore a key step on the path to clinical translation of the technology. Herein, the current state of orthopedic gene therapy research in preclinical large animal models was investigated based on performed large animal studies. A summary and an outlook regarding current clinical studies in this sector are provided. It was found that the results found in the current research literature were generally positive but highly methodologically inconsistent, rendering a comparison difficult. Additionally, factors vital for translation have not been thoroughly addressed in these model systems, and the risk of bias was high in all reviewed publications. These limitations directly impact clinical translation of gene therapeutic approaches due to lack of comparability, inability to demonstrate non-inferiority or equivalence compared with current clinical standards, and lack of safety data. This review therefore aims to provide a current overview of ongoing preclinical and clinical work, potential bottlenecks in preclinical studies and for translation, and recommendations to overcome these to enable future deployment of this promising technology to the clinical setting.
Collapse
Affiliation(s)
- Piers Wilkinson
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom.,CDT Tissue Engineering and Regenerative Medicine, Institute of Medical and Biological Engineering, University of Leeds, Leeds, United Kingdom
| | - Ilya Y Bozo
- Federal Medical Biophysical Center, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Thomas Braxton
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom.,CDT Tissue Engineering and Regenerative Medicine, Institute of Medical and Biological Engineering, University of Leeds, Leeds, United Kingdom
| | - Peter Just
- Into Numbers Data Science GmbH, Vienna, Austria
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Peter V Giannoudis
- Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, Leeds General Infirmary, Leeds, United Kingdom.,NIHR Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, United Kingdom
| | - Georg A Feichtinger
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
5
|
Cheung HW, Wong KS, Lin VYC, Wan TSM, Ho ENM. A duplex qPCR assay for human erythropoietin (EPO) transgene to control gene doping in horses. Drug Test Anal 2020; 13:113-121. [PMID: 32762114 DOI: 10.1002/dta.2907] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022]
Abstract
The misuse of genetic manipulation technology to enhance athletic performance is termed gene doping which is prohibited in human sports, horseracing, and equestrian sports. Although many qPCR assays have been developed, most assays employ genomic DNA (gDNA) from humans, non-human primates, and mice as a background and they may not be applicable for testing horse samples. This study aimed to develop a qPCR assay for the detection of human erythropoietin (hEPO) transgene in horse blood cells where the viral vectors used in gene therapy can reside for months. For the detection of hEPO transgene, the performance of three sets of primers and a hydrolysis probe for hEPO were compared. One set showed adequate specificity, sensitivity, amplification efficiency, and a dynamic range of detection in the presence of horse gDNA. The assay was duplexed with the detection of horse tubulin α 4A (TUBA4A) gene as an endogenous internal control in order to prevent false-negative results due to poor recovery and storage of extracted DNA and/or qPCR experimental variation. For the extraction of hEPO-plasmid, the QIAGEN Gentra Puregene blood kit was shown to recover the majority (62%) of hEPO-plasmid from spiked horse blood cells. The specificity and limit of detection (LOD) of the duplex qPCR assay were determined in accordance with MIQE guidelines. These findings supported the application of this duplex qPCR assay to the detection of hEPO transgene in horse blood cells.
Collapse
Affiliation(s)
- Hiu Wing Cheung
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T., Hong Kong, China
| | - Kin-Sing Wong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T., Hong Kong, China
| | - Venus Y C Lin
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T., Hong Kong, China
| | - Terence S M Wan
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T., Hong Kong, China
| | - Emmie N M Ho
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T., Hong Kong, China
| |
Collapse
|
6
|
Microfluidic Quantitative PCR Detection of 12 Transgenes from Horse Plasma for Gene Doping Control. Genes (Basel) 2020; 11:genes11040457. [PMID: 32340130 PMCID: PMC7230449 DOI: 10.3390/genes11040457] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
Gene doping, an activity which abuses and misuses gene therapy, is a major concern in sports and horseracing industries. Effective methods capable of detecting and monitoring gene doping are urgently needed. Although several PCR-based methods that detect transgenes have been developed, many of them focus only on a single transgene. However, numerous genes associated with athletic ability may be potential gene-doping material. Here, we developed a detection method that targets multiple transgenes. We targeted 12 genes that may be associated with athletic performance and designed two TaqMan probe/primer sets for each one. A panel of 24 assays was prepared and detected via a microfluidic quantitative PCR (MFQPCR) system using integrated fluidic circuits (IFCs). The limit of detection of the panel was 6.25 copy/μL. Amplification-specificity was validated using several concentrations of reference materials and animal genomic DNA, leading to specific detection. In addition, target-specific detection was successfully achieved in a horse administered 20 mg of the EPO transgene via MFQPCR. Therefore, MFQPCR may be considered a suitable method for multiple-target detection in gene-doping control. To our knowledge, this is the first application of microfluidic qPCR (MFQPCR) for gene-doping control in horseracing.
Collapse
|
7
|
Venkatesan JK, Rey-Rico A, Cucchiarini M. Current Trends in Viral Gene Therapy for Human Orthopaedic Regenerative Medicine. Tissue Eng Regen Med 2019; 16:345-355. [PMID: 31413939 PMCID: PMC6675832 DOI: 10.1007/s13770-019-00179-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022] Open
Abstract
Background Viral vector-based therapeutic gene therapy is a potent strategy to enhance the intrinsic reparative abilities of human orthopaedic tissues. However, clinical application of viral gene transfer remains hindered by detrimental responses in the host against such vectors (immunogenic responses, vector dissemination to nontarget locations). Combining viral gene therapy techniques with tissue engineering procedures may offer strong tools to improve the current systems for applications in vivo. Methods The goal of this work is to provide an overview of the most recent systems exploiting biomaterial technologies and therapeutic viral gene transfer in human orthopaedic regenerative medicine. Results Integration of tissue engineering platforms with viral gene vectors is an active area of research in orthopaedics as a means to overcome the obstacles precluding effective viral gene therapy. Conclusions In light of promising preclinical data that may rapidly expand in a close future, biomaterial-guided viral gene therapy has a strong potential for translation in the field of human orthopaedic regenerative medicine.
Collapse
Affiliation(s)
- Jagadeesh Kumar Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr, Bldg 37, 66421 Homburg/Saar, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr, Bldg 37, 66421 Homburg/Saar, Germany
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr, Bldg 37, 66421 Homburg/Saar, Germany
| |
Collapse
|
8
|
Droplet Digital PCR Detection of the Erythropoietin Transgene from Horse Plasma and Urine for Gene-Doping Control. Genes (Basel) 2019; 10:genes10030243. [PMID: 30901981 PMCID: PMC6471249 DOI: 10.3390/genes10030243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/16/2019] [Accepted: 03/16/2019] [Indexed: 02/08/2023] Open
Abstract
Indiscriminate genetic manipulation to improve athletic ability is a major threat to human sports and the horseracing industry, in which methods involving gene-doping, such as transgenesis, should be prohibited to ensure fairness. Therefore, development of methods to detect indiscriminate genetic manipulation are urgently needed. Here, we developed a highly sensitive method to detect horse erythropoietin (EPO) transgenes using droplet digital PCR (ddPCR). We designed two TaqMan probe/primer sets, and the EPO transgene was cloned into a plasmid for use as a model. We extracted the spiked EPO transgene from horse plasma and urine via magnetic beads, followed by ddPCR amplification for absolute quantification and transgene detection. The results indicated high recovery rates (at least ~60% and ~40% in plasma and urine, respectively), suggesting successful detection of the spiked transgene at concentrations of >130 and 200 copies/mL of plasma and urine, respectively. Additionally, successful detection was achieved following intramuscular injection of 20 mg of the EPO transgene. This represents the first study demonstrating a method for detecting the EPO transgene in horse plasma and urine, with our results demonstrating its efficacy for promoting the control of gene-doping in the horseracing industry.
Collapse
|
9
|
Reisbig NA, Pinnell E, Scheuerman L, Hussein H, Bertone AL. Synovium extra cellular matrices seeded with transduced mesenchymal stem cells stimulate chondrocyte maturation in vitro and cartilage healing in clinically-induced rat-knee lesions in vivo. PLoS One 2019; 14:e0212664. [PMID: 30861010 PMCID: PMC6414009 DOI: 10.1371/journal.pone.0212664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 02/07/2019] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is a progressive disease associated with cartilage injury and its inherently limited repair capability. Synovium-based cellular constructs (sConstructs) are proposed as possible treatments. Equine sConstructs were produced from decellularized synovium-based extracellular matrix scaffolds (sECM) seeded with synovium-derived mesenchymal stem cells (sMSC), and engineered to express green fluorescent protein (GFP), or bone morphogenetic protein-2 (BMP-2). Survival, distribution, and chondrogenic potential of the sConstructs in vitro and in vivo were assessed. sConstructs in co-culture with chondrocytes increased chondrocyte proliferation, viability, and Col II production, greatest in BMP-2-sConstructs. Chondrocyte presence increased the production of hyaluronic acid (HA), proteoglycan (PG), and BMP-2 by the sConstructs in a positive feedback loop. sECM alone, or GFP- or BMP-2-sConstructs were implanted in synovium adjacent to clinically created full-thickness rat-knee cartilage lesions. At 5 weeks, the lesion area and implants were resected. Gross anatomy, adjacent articulate cartilage growth and subchondral bone repair were scored; and peripheral, central and cartilage lesion measurements taken. For all scores and measurements, sConstruct implants were significantly greater than controls, greatest with the BMP-2-sConstructs. Immunohistochemistry demonstrated migration of endogenous cells into the sECM, with greater cellularity in the constructs with intense positive GFP staining confirming engraftment of implanted sMSC and continued gene expression. In summary, exposing cartilage to sConstructs was chondrogenic in vitro and in vivo, and resulted in substantially increased growth in vivo. This effect was mediated, in part, by soluble ECM and cell factors and upregulation of anabolic growth proteins, such as BMP-2. This work is "proof of concept" that sConstructs surgically implanted adjacent to cartilage damage can significantly improve cartilage and subchondral bone repair, and potentially prevent the progression of OA.
Collapse
Affiliation(s)
- Nathalie A. Reisbig
- Comparative Orthopedics Research Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Erin Pinnell
- Comparative Orthopedics Research Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Logan Scheuerman
- Comparative Orthopedics Research Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Hayam Hussein
- Comparative Orthopedics Research Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Alicia L. Bertone
- Comparative Orthopedics Research Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
10
|
Betz VM, Kochanek S, Rammelt S, Müller PE, Betz OB, Messmer C. Recent advances in gene-enhanced bone tissue engineering. J Gene Med 2018; 20:e3018. [PMID: 29601661 DOI: 10.1002/jgm.3018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/18/2018] [Accepted: 03/18/2018] [Indexed: 12/13/2022] Open
Abstract
The loss of bone tissue represents a critical clinical condition that is frequently faced by surgeons. Substantial progress has been made in the area of bone research, providing insight into the biology of bone under physiological and pathological conditions, as well as tools for the stimulation of bone regeneration. The present review discusses recent advances in the field of gene-enhanced bone tissue engineering. Gene transfer strategies have emerged as highly effective tissue engineering approaches for supporting the repair of the musculoskeletal system. By contrast to treatment with recombinant proteins, genetically engineered cells can release growth factors at the site of injury over extended periods of time. Of particular interest are the expedited technologies that can be applied during a single surgical procedure in a cost-effective manner, allowing translation from bench to bedside. Several promising methods based on the intra-operative genetic manipulation of autologous cells or tissue fragments have been developed in preclinical studies. Moreover, gene therapy for bone regeneration has entered the clinical stage with clinical trials for the repair of alveolar bone. Current trends in gene-enhanced bone engineering are also discussed with respect to the movement of the field towards expedited, translational approaches. It is possible that gene-enhanced bone tissue engineering will become a clinical reality within the next few years.
Collapse
Affiliation(s)
- Volker M Betz
- Department of Gene Therapy, University of Ulm, Ulm, Germany.,Center for Rehabilitation, RKU - University and Rehabilitation Hospitals Ulm, Ulm, Germany
| | | | - Stefan Rammelt
- University Center of Orthopedics and Traumatology and Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, Dresden, Germany
| | - Peter E Müller
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, University Hospital Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver B Betz
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, University Hospital Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carolin Messmer
- Center for Rehabilitation, RKU - University and Rehabilitation Hospitals Ulm, Ulm, Germany
| |
Collapse
|
11
|
Bougioukli S, Sugiyama O, Pannell W, Ortega B, Tan MH, Tang AH, Yoho R, Oakes DA, Lieberman JR. Gene Therapy for Bone Repair Using Human Cells: Superior Osteogenic Potential of Bone Morphogenetic Protein 2-Transduced Mesenchymal Stem Cells Derived from Adipose Tissue Compared to Bone Marrow. Hum Gene Ther 2018; 29:507-519. [PMID: 29212377 DOI: 10.1089/hum.2017.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ex vivo regional gene therapy strategies using animal mesenchymal stem cells genetically modified to overexpress osteoinductive growth factors have been successfully used in a variety of animal models to induce both heterotopic and orthotopic bone formation. However, in order to adapt regional gene therapy for clinical applications, it is essential to assess the osteogenic capacity of transduced human cells and choose the cell type that demonstrates the best clinical potential. Bone-marrow stem cells (BMSC) and adipose-derived stem cells (ASC) were selected in this study for in vitro evaluation, before and after transduction with a lentiviral two-step transcriptional amplification system (TSTA) overexpressing bone morphogenetic protein 2 (BMP-2; LV-TSTA-BMP-2) or green fluorescent protein (GFP; LV-TSTA-GFP). Cell growth, transduction efficiency, BMP-2 production, and osteogenic capacity were assessed. The study demonstrated that BMSC were characterized by a slower cell growth compared to ASC. Fluorescence-activated cell sorting analysis of GFP-transduced cells confirmed successful transduction with the vector and revealed an overall higher but not statistically significant transduction efficiency in ASC versus BMSC (90.2 ± 4.06% vs. 80.4 ± 8.51%, respectively; p = 0.146). Enzyme-linked immunosorbent assay confirmed abundant BMP-2 production by both cell types transduced with LV-TSTA-BMP-2, with BMP-2 production being significantly higher in ASC versus BMSC (239.5 ± 116.55 ng vs. 70.86 ± 24.7 ng; p = 0.001). Quantitative analysis of extracellular deposition of calcium (Alizarin red) and alkaline phosphatase activity showed that BMP-2-transduced cells had a higher osteogenic differentiation capacity compared to non-transduced cells. When comparing the two cell types, ASC/LV-TSTA-BMP-2 demonstrated a significantly higher mineralization potential compared to BMSC/LV-TSTA-BMP-2 7 days post transduction (p = 0.014). In conclusion, this study demonstrates that transduction with LV-TSTA-BMP-2 can significantly enhance the osteogenic potential of both human BMSC and ASC. BMP-2-treated ASC exhibited higher BMP-2 production and greater osteogenic differentiation capacity compared to BMP-2-treated BMSC. These results, along with the fact that liposuction is an easy procedure with lower donor-site morbidity compared to BM aspiration, indicate that adipose tissue might be a preferable source of MSCs to develop a regional gene therapy approach to treat difficult bone-repair scenarios.
Collapse
Affiliation(s)
- Sofia Bougioukli
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Osamu Sugiyama
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - William Pannell
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Brandon Ortega
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Matthew H Tan
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Amy H Tang
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Robert Yoho
- 2 Cosmetic Surgery Practice , Pasadena, California
| | - Daniel A Oakes
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Jay R Lieberman
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
12
|
Gene Therapy Strategies in Bone Tissue Engineering and Current Clinical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:85-101. [DOI: 10.1007/5584_2018_253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Effects of a novel hydrogel on equine bone healing: A pilot study. Vet Comp Orthop Traumatol 2017; 25:184-91. [DOI: 10.3415/vcot-11-01-0006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 11/29/2011] [Indexed: 11/17/2022]
Abstract
SummaryObjective: To examine the efficacy and biocompatibility of a thiolated gelatin-thiolated carboxymethyl hyaluronan (CMHA-SGX) sponge as an osteoconductive device in an equine second and fourth metacarpal bone defect model.Methods: Seven millimetre segmental ostectomies were created bilaterally in the second and fourth metacarpal bones of four horses. The left and right metacarpal defects were randomly assigned to (1) be filled with a CMHA-SGX sponge (treated) or (2) were left unfilled (control). The duration of the study was nine weeks. Bone healing was evaluated using serial radiology, as well as histologically and histomorphometrically. Data were analyzed using an analysis of variance (ANOVA). The level of significance was p <0.05.Results: Serial radiographic evaluation revealed improved healing in the treated compared to the control defects at weeks eight and nine (p = 0.02). This finding was not corroborated histologically. Histomorphometry did not reveal any significant differences in healing between experimental groups. The CMHA-SGX sponge did not inhibit bone formation, induce local inflammation or lead to surgical site infection.Clinical significance: While further optimization to improve osteoconductive properties should be considered, the CMHA-SGX sponge appears to be a biocompatible orthopaedic implant and its use as a carrier for osteogenic proteins warrants further investigation.
Collapse
|
14
|
Abstract
Bone, despite its relatively inert appearance, is a tissue that is capable of adapting to its environment. Wolff’s law, first described in the 19th century, describes the ability of bone to change structure depending on the mechanical forces applied to it. The mechanostat model extended this principle and suggested that the amount of strain a bone detects depends on bone strength and the amount of muscle force applied to the bone. Experimental studies have found that low-magnitude, high-frequency mechanical loading is considered to be the most effective at increasing bone formation. The osteocyte is considered to be the master regulator of the bone response to mechanical loading. Deformation of bone matrix by mechanical loading is thought to result in interstitial fluid flow within the lacunar–canalicular system, which may activate osteocyte mechanosensors, leading to changes in osteocyte gene expression and ultimately increased bone formation and decreased bone resorption. However, repetitive strain applied to bone can result in microcracks, which may propagate and coalesce, and if not repaired predispose to catastrophic fracture. Osteocytes are a key component in this process, whereby apoptotic osteocytes in an area of microdamage promote targeted remodeling of the damaged bone. If fractures do occur, fracture repair can be divided into 2 types: primary and secondary healing. Secondary fracture repair is the most common and is a multistage process consisting of hematoma formation and acute inflammation, callus formation, and finally remodeling, whereby bone may return to its original form.
Collapse
|
15
|
Iijima H, Aoyama T, Ito A, Tajino J, Yamaguchi S, Nagai M, Kiyan W, Zhang X, Kuroki H. Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic rat knee model. Osteoarthritis Cartilage 2016; 24:1092-102. [PMID: 26805018 DOI: 10.1016/j.joca.2016.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study aimed to determine whether treadmill walking (TW) prevents the progression of post-traumatic osteoarthritic changes in cartilage-subchondral bone unit, and whether the exercise timing changes the exercise efficacy in destabilized medial meniscus (DMM) rat knees. DESIGN Twelve-week-old male Wistar rats underwent DMM surgery on their right knees and sham surgery on their left knees and were assigned to either the sedentary (n = 10) or walking (n = 24) groups. The rats in the walking group were subjected to TW from day 2 through 4 weeks, from 4 through 8 weeks, or from day 2 through 8 weeks (n = 8 per group). Osteoarthritic changes of cartilage and subchondral bone were assessed with micro-computed tomography, histology, and immunohistochemistry 8 weeks after surgery. RESULTS TW prevented the progression of cartilage and subchondral bone lesions induced by the DMM, and increased bone morphogenetic protein (BMP)-2 and -6 expressions in superficial zone chondrocytes and bone-lining cells including osteoblasts. Furthermore, the TW-induced increase in BMPs varied with the exercise timing. Beginning TW 4 weeks after DMM surgery was the best option for increasing BMPs, coinciding with the most robust prevention of osteoarthritic changes. CONCLUSIONS TW increased the expression of BMPs and prevented the progression of cartilage-subchondral bone lesions in rat knees with a DMM. Selective exercise timing may be a key factor in the development of an exercise regimen for preventing the progression of post-traumatic osteoarthritis (PTOA). Furthermore, exercise may have favorable effects even after the PTOA has been developed.
Collapse
Affiliation(s)
- H Iijima
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Japan Society for the Promotion of Science, Tokyo, Japan.
| | - T Aoyama
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - A Ito
- Japan Society for the Promotion of Science, Tokyo, Japan; Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - J Tajino
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - S Yamaguchi
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Japan Society for the Promotion of Science, Tokyo, Japan.
| | - M Nagai
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - W Kiyan
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - X Zhang
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - H Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
16
|
Abstract
Stimulating bone growth and regeneration, especially in patients with delayed union or non-union of bone, is a challenge for orthopaedic surgeons. Treatments employed for bone regeneration are based on the use of cells, biomaterials and factors. Among these therapies, cell treatment with mesenchymal stem cells (MSCs) has a number of advantages as MSCs: (1) are multipotent cells that can migrate to sites of injury; (2) are capable of suppressing the local immune response; and (3) are available in large quantities from the patients themselves. MSC therapies have been used for stimulating bone regeneration in animal models and in patients. Methods of application range from direct MSC injection, seeding MSCs on synthetic scaffolds, the use of gene-modified MSCs, and hetero-MSCs application. However, only a small number of these cell-based strategies are in clinical use, and none of these treatments has become the gold standard treatment for delayed or non-union of bone.
Collapse
Affiliation(s)
- Yunhao Qin
- Shanghai Sixth People's Hospital affiliated to Department of Orthopaedic, Shanghai Jiaotong University, Shanghai, China
| | - Junjie Guan
- Shanghai Sixth People's Hospital affiliated to Department of Orthopaedic, Shanghai Jiaotong University, Shanghai, China
| | - Changqing Zhang
- Shanghai Sixth People's Hospital affiliated to Department of Orthopaedic, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
17
|
Extracellular signaling molecules to promote fracture healing and bone regeneration. Adv Drug Deliv Rev 2015; 94:3-12. [PMID: 26428617 DOI: 10.1016/j.addr.2015.09.008] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 09/12/2015] [Accepted: 09/16/2015] [Indexed: 12/31/2022]
Abstract
To date, the delivery of signaling molecules for bone regeneration has focused primarily on factors that directly affect the bone formation pathways (osteoinduction) or that serve to increase the number of bone forming progenitor cells. The first commercialized growth factors approved for bone regeneration, Bone Morphogenetic Protein 2 and 7 (BMP2 and BMP7), are direct inducers of osteoblast differentiation. As well, newer generations of potential therapeutics that target the Wnt signaling pathway are also direct osteoinducers. On the other hand, some signaling molecules may play a role as mitogens and serve to increase the number of bone producing cells or may increase vascularization. This is true for factors such as Platelet Derived Growth Factor (PDGF) or Fibroblast Growth Factor (FGF). Vascular Endothelial Growth Factor (VEGF) likely has a special role. Not only does it induce new blood vessel formation, it also has direct effects on osteoblasts through endothelial cell-based BMP production. In addition to these pathways that classically have targeted bone production, there are also opportunities to target other aspects of the bone healing process such as inflammation, vascularization, and cell ingress to the fracture site. Bone regeneration is highly complex with defined, yet overlapping stages of healing. We will review established and novel extracellular signaling factors associated with various stages of fracture healing that could be targeted to promote enhanced bone regeneration. Importantly, multiple potential cell and tissues could be targeted to enhance healing in addition to focusing solely on osteoinductive therapeutics.
Collapse
|
18
|
Ishihara A, Weisbrode SE, Bertone AL. Autologous implantation of BMP2-expressing dermal fibroblasts to improve bone mineral density and architecture in rabbit long bones. J Orthop Res 2015; 33:1455-65. [PMID: 25418909 PMCID: PMC4441610 DOI: 10.1002/jor.22791] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/17/2014] [Indexed: 02/04/2023]
Abstract
Cell-mediated gene therapy may treat bone fragility disorders. Dermal fibroblasts (DFb) may be an alternative cell source to stem cells for orthopedic gene therapy because of their rapid cell yield and excellent plasticity with bone morphogenetic protein-2 (BMP2) gene transduction. Autologous DFb or BMP2-expressing autologous DFb were administered in twelve rabbits by two delivery routes; a transcortical intra-medullar infusion into tibiae and delayed intra-osseous injection into femoral drill defects. Both delivery methods of DFb-BMP2 resulted in a successful cell engraftment, increased bone volume, bone mineral density, improved trabecular bone microarchitecture, greater bone defect filling, external callus formation, and trabecular surface area, compared to non-transduced DFb or no cells. Cell engraftment within trabecular bone and bone marrow tissue was most efficiently achieved by intra-osseous injection of DFb-BMP2. Our results suggested that BMP2-expressing autologous DFb have enhanced efficiency of engraftment in target bones resulting in a measurable biologic response by the bone of improved bone mineral density and bone microarchitecture. These results support that autologous implantation of DFb-BMP2 warrants further study on animal models of bone fragility disorders, such as osteogenesis imperfecta and osteoporosis to potentially enhance bone quality, particularly along with other gene modification of these diseases.
Collapse
Affiliation(s)
- Akikazu Ishihara
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio
| | - Steve E Weisbrode
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Alicia L Bertone
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| |
Collapse
|
19
|
Sarrafian TL, Garcia TC, Dienes EE, Murphy B, Stover SM, Galuppo LD. A Nonterminal Equine Mandibular Model of Bone Healing. Vet Surg 2014; 44:314-21. [DOI: 10.1111/j.1532-950x.2014.12279.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/01/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Tiffany L. Sarrafian
- Department of Anatomy, Physiology, and Cell Biology; JD Wheat Veterinary Orthopedic Research Laboratory; University of California at Davis; Davis California
| | - Tanya C. Garcia
- Department of Anatomy, Physiology, and Cell Biology; JD Wheat Veterinary Orthopedic Research Laboratory; University of California at Davis; Davis California
| | - Erin E. Dienes
- Department of Statistics; University of California at Davis; Davis California
| | - Brian Murphy
- Department of Pathology, Microbiology and Immunology; University of California at Davis; Davis California
| | - Susan M. Stover
- Department of Anatomy, Physiology, and Cell Biology; JD Wheat Veterinary Orthopedic Research Laboratory; University of California at Davis; Davis California
| | - Larry D. Galuppo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine; University of California at Davis; Davis California
| |
Collapse
|
20
|
Evans C. Using genes to facilitate the endogenous repair and regeneration of orthopaedic tissues. INTERNATIONAL ORTHOPAEDICS 2014; 38:1761-9. [PMID: 25038968 DOI: 10.1007/s00264-014-2423-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
Traditional tissue engineering approaches to the restoration of orthopaedic tissues promise to be expensive and not well suited to treating large numbers of patients. Advances in gene transfer technology offer the prospect of developing expedited techniques in which all manipulations can be performed percutaneously or in a single operation. This rests on the ability of gene delivery to provoke the sustained synthesis of relevant gene products in situ without further intervention. Regulated gene expression is also possible, but its urgency is reduced by our ignorance of exactly what levels and periods of expression are needed for specific gene products. This review describes various strategies by which gene therapy can be used to expedite the repair and regeneration of orthopaedic tissues. Strategies include the direct injection of vectors into sites of injury, the use of genetically modified, allogeneic cell lines and the intra-operative harvest of autologous tissues that are quickly transduced and returned to the body, either intact or following rapid cell isolation. Data obtained from pre-clinical experiments in animal models have provided much encouragement that such approaches may eventually find clinical application in human and veterinary medicine.
Collapse
Affiliation(s)
- Christopher Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA,
| |
Collapse
|
21
|
Effect of Biodegradable Gelatin β-Tri Calcium Phosphate Sponges Containing Mesenchymal Stem Cells and Bone Morphogenetic Protein-2 on Equine Bone Defect. J Equine Vet Sci 2014. [DOI: 10.1016/j.jevs.2014.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Recent progresses in gene delivery-based bone tissue engineering. Biotechnol Adv 2013; 31:1695-706. [DOI: 10.1016/j.biotechadv.2013.08.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/24/2013] [Accepted: 08/19/2013] [Indexed: 12/18/2022]
|
23
|
Lithium chloride enhances cathepsin H expression and BMP-4 degradation in C3H10T1/2 cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:143742. [PMID: 24312905 PMCID: PMC3842059 DOI: 10.1155/2013/143742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/26/2013] [Indexed: 12/16/2022]
Abstract
The effect of canonical Wnt/β-catenin signaling on chondrogenic differentiation induced by transfection of BMP4 expressing plasmid was analyzed. Lithium chloride (LiCl) which mimics canonical Wnt/β-catenin signaling was added to cells transfected with BMP4 expressing plasmid. Although BMP4 mRNA expression was not affected by LiCl, LiCl decreased BMP4 protein accumulation. Gene expression analysis exhibited upregulation of cathepsin H by LiCl treatment. Gene silencing of cathepsin H enhanced BMP4 protein accumulation from BMP4 expressing cells. These results suggested that cathepsin H is regulated by Wnt/β-catenin signaling and plays an important role in the regulation of BMP4 biological activity.
Collapse
|
24
|
Investigation of the immune response to autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses. Vet Immunol Immunopathol 2013; 156:99-106. [DOI: 10.1016/j.vetimm.2013.09.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/25/2013] [Accepted: 09/12/2013] [Indexed: 01/14/2023]
|
25
|
Rose L, Uludağ H. Realizing the potential of gene-based molecular therapies in bone repair. J Bone Miner Res 2013; 28:2245-62. [PMID: 23553878 DOI: 10.1002/jbmr.1944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/13/2013] [Accepted: 03/19/2013] [Indexed: 12/17/2022]
Abstract
A better understanding of osteogenesis at genetic and biochemical levels is yielding new molecular entities that can modulate bone regeneration and potentially act as novel therapies in a clinical setting. These new entities are motivating alternative approaches for bone repair by utilizing DNA-derived expression systems, as well as RNA-based regulatory molecules controlling the fate of cells involved in osteogenesis. These sophisticated mediators of osteogenesis, however, pose unique delivery challenges that are not obvious in deployment of conventional therapeutic agents. Viral and nonviral delivery systems are actively pursued in preclinical animal models to realize the potential of the gene-based medicines. This article will summarize promising bone-inducing molecular agents on the horizon as well as provide a critical review of delivery systems employed for their administration. Special attention was paid to synthetic (nonviral) delivery systems because they are more likely to be adopted for clinical testing because of safety considerations. We present a comparative analysis of dose-response relationships, as well as pharmacokinetic and pharmacodynamic features of various approaches, with the purpose of clearly defining the current frontier in the field. We conclude with the authors' perspective on the future of gene-based therapy of bone defects, articulating promising research avenues to advance the field of clinical bone repair.
Collapse
Affiliation(s)
- Laura Rose
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
26
|
Effect of Gelatin Hydrogel Sheet Containing Basic Fibroblast Growth Factor on Proximal Sesamoid Bone Transverse Fracture Healing in the Horse. J Equine Vet Sci 2013. [DOI: 10.1016/j.jevs.2012.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Adenoviral Delivery of the VEGF and BMP-6 Genes to Rat Mesenchymal Stem Cells Potentiates Osteogenesis. BONE MARROW RESEARCH 2013; 2013:737580. [PMID: 23533768 PMCID: PMC3600300 DOI: 10.1155/2013/737580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/18/2012] [Indexed: 11/17/2022]
Abstract
The combined delivery of mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF), and bone morphogenetic protein (BMP) to sites of bone injury results in enhanced repair compared to the administration of a single factor or a combination of two factors. Based on these findings, we hypothesized that coexpression of VEGF and BMP-6 genes would enhance the osteoblastic differentiation of rat bone-marrow-derived stem cells (rMSCs) and osteogenesis by comparison to rMSCs that do not express VEGF and BMP-6. We prepared a GFP tagged adenovirus vector (Ad-VEGF+BMP-6) that contained DNA encoding the hVEGF and hBMP-6 genes. rMSCs were transduced with the virus, and the successful transduction was confirmed by green fluorescence and by production of VEGF and BMP-6 proteins. The cells were cultured to assess osteoblastic differentiation or administered in the Fischer 344 rats to assess bone formation. Mineralization of rMSCs transduced with Ad-VEGF+BMP-6 was significantly enhanced over the nontransduced rMSCs. Only transduced rMSCs could induce osteogenesis in vivo, whereas Ad-VEGF+BMP-6 or nontransduced rMSCs alone did not induce osteogenesis. The data suggests that the combined delivery of MSCs, VEGF, and BMP-6 is an attractive option for bone repair therapy.
Collapse
|
28
|
Schwabe P, Greiner S, Ganzert R, Eberhart J, Dähn K, Stemberger A, Plank C, Schmidmaier G, Wildemann B. Effect of a novel nonviral gene delivery of BMP-2 on bone healing. ScientificWorldJournal 2012; 2012:560142. [PMID: 23213289 PMCID: PMC3504401 DOI: 10.1100/2012/560142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/30/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Gene therapeutic drug delivery approaches have been introduced to improve the efficiency of growth factors at the site of interest. This study investigated the efficacy and safety of a new nonviral copolymer-protected gene vector (COPROG) for the stimulation of bone healing. METHODS In vitro, rat osteoblasts were transfected with COPROG + luciferase plasmid or COPROG + hBMP-2 plasmid. In vivo, rat tibial fractures were intramedullary stabilized with uncoated versus COPROG+hBMP-2-plasmid-coated titanium K-wires. The tibiae were prepared for biomechanical and histological analyses at days 28 and 42 and for transfection/safety study at days 2, 4, 7, 28, and 42. RESULTS In vitro results showed luciferase expression until day 21, and hBMP-2-protein was measured from day 2 - day 10. In vivo, the local application of hBMP-2-plasmid showed a significantly higher maximum load after 42 days compared to that in the control. The histomorphometric analysis revealed a significantly less mineralized periosteal callus area in the BMP-2 group compared to the control at day 28. The rt-PCR showed no systemic biodistribution of luciferase RNA. CONCLUSION A positive effect on fracture healing by nonviral BMP-2 plasmid application from COPROG-coated implants could be shown in this study; however, the effect of the vector may be improved with higher plasmid concentrations. Transfection showed no biodistribution to distant organs and was considered to be safe.
Collapse
Affiliation(s)
- P Schwabe
- Center for Musculoskeletal Surgery and Julius Wolff Institute, Charité-University Medicine Berlin, Campus Virchow, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
In vivo osteoinductivity of gelatin β-tri-calcium phosphate sponge and bone morphogenetic protein-2 on an equine third metacarpal bone defect. Res Vet Sci 2012; 93:1021-5. [DOI: 10.1016/j.rvsc.2011.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 11/11/2011] [Accepted: 12/02/2011] [Indexed: 02/03/2023]
|
30
|
Gene therapy approaches to regenerating bone. Adv Drug Deliv Rev 2012; 64:1320-30. [PMID: 22429662 DOI: 10.1016/j.addr.2012.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/13/2012] [Accepted: 03/05/2012] [Indexed: 02/07/2023]
Abstract
Bone formation and regeneration therapies continue to require optimization and improvement because many skeletal disorders remain undertreated. Clinical solutions to nonunion fractures and osteoporotic vertebral compression fractures, for example, remain suboptimal and better therapeutic approaches must be created. The widespread use of recombinant human bone morphogenetic proteins (rhBMPs) for spine fusion was recently questioned by a series of reports in a special issue of The Spine Journal, which elucidated the side effects and complications of direct rhBMP treatments. Gene therapy - both direct (in vivo) and cell-mediated (ex vivo) - has long been studied extensively to provide much needed improvements in bone regeneration. In this article, we review recent advances in gene therapy research whose aims are in vivo or ex vivo bone regeneration or formation. We examine appropriate vectors, safety issues, and rates of bone formation. The use of animal models and their relevance for translation of research results to the clinical setting are also discussed in order to provide the reader with a critical view. Finally, we elucidate the main challenges and hurdles faced by gene therapy aimed at bone regeneration as well as expected future trends in this field.
Collapse
|
31
|
Abstract
Gene delivery to bone is useful both as an experimental tool and as a potential therapeutic strategy. Among its advantages over protein delivery are the potential for directed, sustained and regulated expression of authentically processed, nascent proteins. Although no clinical trials have been initiated, there is a substantial pre-clinical literature documenting the successful transfer of genes to bone, and their intraosseous expression. Recombinant vectors derived from adenovirus, retrovirus and lentivirus, as well as non-viral vectors, have been used for this purpose. Both ex vivo and in vivo strategies, including gene-activated matrices, have been explored. Ex vivo delivery has often employed mesenchymal stem cells (MSCs), partly because of their ability to differentiate into osteoblasts. MSCs also have the potential to home to bone after systemic administration, which could serve as a useful way to deliver transgenes in a disseminated fashion for the treatment of diseases affecting the whole skeleton, such as osteoporosis or osteogenesis imperfecta. Local delivery of osteogenic transgenes, particularly those encoding bone morphogenetic proteins, has shown great promise in a number of applications where it is necessary to regenerate bone. These include healing large segmental defects in long bones and the cranium, as well as spinal fusion and treating avascular necrosis.
Collapse
Affiliation(s)
- C H Evans
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
32
|
McDuffee LA, Pack L, Lores M, Wright GM, Esparza-Gonzalez B, Masaoud E. Osteoprogenitor Cell Therapy in an Equine Fracture Model. Vet Surg 2012; 41:773-83. [DOI: 10.1111/j.1532-950x.2012.01024.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Laurie A. McDuffee
- Departments of Health Management; University of Prince Edward Island; Charlottetown; PEI; Canada
| | - LeeAnn Pack
- Companion Animals; University of Prince Edward Island; Charlottetown; PEI; Canada
| | - Marcos Lores
- Departments of Health Management; University of Prince Edward Island; Charlottetown; PEI; Canada
| | - Glenda M. Wright
- Biomedical Sciences; University of Prince Edward Island; Charlottetown; PEI; Canada
| | - Blanca Esparza-Gonzalez
- Departments of Health Management; University of Prince Edward Island; Charlottetown; PEI; Canada
| | | |
Collapse
|
33
|
Yun YR, Jang JH, Jeon E, Kang W, Lee S, Won JE, Kim HW, Wall I. Administration of growth factors for bone regeneration. Regen Med 2012; 7:369-85. [DOI: 10.2217/rme.12.1] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Growth factors (GFs) such as BMPs, FGFs, VEGFs and IGFs have significant impacts on osteoblast behavior, and thus have been widely utilized for bone tissue regeneration. Recently, securing biological stability for a sustainable and controllable release to the target tissue has been a challenge to practical applications. This challenge has been addressed to some degree with the development of appropriate carrier materials and delivery systems. This review highlights the importance and roles of those GFs, as well as their proper administration for targeting bone regeneration. Additionally, the in vitro and in vivo performance of those GFs with or without the use of carrier systems in the repair and regeneration of bone tissue is systematically addressed. Moreover, some recent advances in the utility of the GFs, such as using fusion technology, are also reviewed.
Collapse
Affiliation(s)
- Ye-Rang Yun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Korea
| | - Jun Hyeog Jang
- Department of Biochemistry, Inha University School of Medicine, Incheon 400-712, Korea
| | - Eunyi Jeon
- Department of Biochemistry, Inha University School of Medicine, Incheon 400-712, Korea
| | - Wonmo Kang
- Department of Biochemistry, Inha University School of Medicine, Incheon 400-712, Korea
| | - Sujin Lee
- Department of Biochemistry, Inha University School of Medicine, Incheon 400-712, Korea
| | - Jong-Eun Won
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Korea
- Department of Nanobiomedical Science & WCU Research Center, Dankook University Graduate School, Cheonan 330-714, Korea
| | - Hae Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, Korea
| | - Ivan Wall
- Department of Nanobiomedical Science & WCU Research Center, Dankook University Graduate School, Cheonan 330-714, Korea
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
34
|
Orsini JA. A Fresh Look at the Process of Arriving at a Clinical Prognosis Part 4: Fractures. J Equine Vet Sci 2012. [DOI: 10.1016/j.jevs.2012.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Southwood LL, Kawcak CE, Hidaka C, McIlwraith CW, Werpy N, Macleay J, Frisbie DD. Evaluation of direct in vivo gene transfer in an equine metacarpal IV ostectomy model using an adenoviral vector encoding the bone morphogenetic protein-2 and protein-7 gene. Vet Surg 2012; 41:345-54. [PMID: 22308976 DOI: 10.1111/j.1532-950x.2011.00947.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To evaluate gene transfer in an equine metacarpal IV (MCIV) ostectomy model using adenoviral vectors encoding the human bone morphogenetic protein-2 and protein-7 gene (Ad-BMP-2/-7). STUDY DESIGN EXPERIMENTAL ANIMALS Healthy adult horses (n = 15). METHODS A plate stabilized, critical size 1.5 cm ostectomy was created in left and right MCIV. The ostectomy site was injected with either Ad-green fluorescent protein (Ad-GFP) or Ad-hBMP-2/-7 at completion of surgery; the same treatment was assigned to both the left and right forelimb of each horse (n = 5 horses/group). Bone healing was evaluated radiographically every 2 weeks for 16 weeks. Horses in a pilot study (n = 5) were used as untreated controls for radiographic evaluation to 8 weeks. After euthanasia at 16 weeks bone healing was evaluated using dual energy X-ray absorptiometry (DEXA) and histomorphometry. Data were analyzed using an ANOVA or Kruskal-Wallis test. Level of significance was P < .05. RESULTS At 4 and 6 weeks, the Ad-GFP group had a significantly lower percentage defect ossification compared with the untreated control group. There was no significant difference between untreated and Ad-hBMP-2/-7 groups at any time point and no significant difference in bone healing radiographically, histologically, or using DEXA between any groups at 16 weeks. CONCLUSIONS Ad-hBMP-2/-7 did not improve bone healing in horses at 16 weeks.
Collapse
Affiliation(s)
- Louise L Southwood
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA 19348, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Taub PJ, Lampert JA. Pediatric Craniofacial Surgery: A Review for the Multidisciplinary Team. Cleft Palate Craniofac J 2011; 48:670-83. [DOI: 10.1597/08-051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pediatric craniofacial surgery is a specialty that grew dramatically in the 20th century and continues to evolve today. Out of the efforts to correct facial deformities encountered during World War II, the techniques of modern craniofacial surgery developed. An analysis of the relevant literature allowed the authors to explore this historical progression. Current advances in technology, tissue engineering, and molecular biology have further refined pediatric craniofacial surgery. The development of distraction osteogenesis and the progressive study of craniosynostosis provide remarkable examples of this momentum. The growing study of genetics, biotechnology, the influence of growth factors, and stem cell research provide additional avenues of innovation for the future. The following article is intended to reveal a greater understanding of pediatric craniofacial surgery by examining the past, present, and possible future direction. It is intended both for the surgeon, as well as for the nonsurgical individual specialists vital to the multidisciplinary craniofacial team.
Collapse
Affiliation(s)
- Peter J. Taub
- Division of Plastic Surgery, Mount Sinai Medical Center, New York, New York
| | - Joshua A. Lampert
- Division of Plastic Surgery, Mount Sinai Medical Center, New York, New York
| |
Collapse
|
37
|
Wagner DE, Bhaduri SB. Progress and outlook of inorganic nanoparticles for delivery of nucleic acid sequences related to orthopedic pathologies: a review. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:1-14. [PMID: 21707439 DOI: 10.1089/ten.teb.2011.0081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The anticipated growth in the aging population will drastically increase medical needs of society; of which, one of the largest components will undoubtedly be from orthopedic-related pathologies. There are several proposed solutions being investigated to cost-effectively prepare for the future--pharmaceuticals, implant devices, cell and gene therapies, or some combination thereof. Gene therapy is one of the more promising possibilities because it seeks to correct the root of the problem, thereby minimizing treatment duration and cost. Currently, viral vectors have shown the highest efficacies, but immunological concerns remain. Nonviral methods show reduced immune responses but are regarded as less efficient. The nonviral paradigms consist of mechanical and chemical approaches. While organic-based materials have been used more frequently in particle-based methods, inorganic materials capable of delivery have distinct advantages, especially advantageous in orthopedic applications. The inorganic gene therapy field is highly interdisciplinary in nature, and requires assimilation of knowledge across the broad fields of cell biology, biochemistry, molecular genetics, materials science, and clinical medicine. This review provides an overview of the role each area plays in orthopedic gene therapy as well as possible future directions for the field.
Collapse
Affiliation(s)
- Darcy E Wagner
- Department of Biomedical Engineering, Colleges of Medicine and Engineering, University of Toledo, Toledo, Ohio 43606, USA.
| | | |
Collapse
|
38
|
Menendez MI, Clark DJ, Carlton M, Flanigan DC, Jia G, Sammet S, Weisbrode SE, Knopp MV, Bertone AL. Direct delayed human adenoviral BMP-2 or BMP-6 gene therapy for bone and cartilage regeneration in a pony osteochondral model. Osteoarthritis Cartilage 2011; 19:1066-75. [PMID: 21683796 DOI: 10.1016/j.joca.2011.05.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 04/19/2011] [Accepted: 05/17/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate healing of surgically created large osteochondral defects in a weight-bearing femoral condyle in response to delayed percutaneous direct injection of adenoviral (Ad) vectors containing coding regions for either human bone morphogenetic proteins 2 (BMP-2) or -6. METHODS Four 13mm diameter and 7mm depth circular osteochondral defects were drilled, 1/femoral condyle (n=20 defects in five ponies). At 2 weeks, Ad-BMP-2, Ad-BMP-6, Ad-green fluorescent protein (GFP), or saline was percutaneously injected into the central drill hole of the defect. Quantitative magnetic resonance imaging (qMRI) and computed tomography (CT) were serially performed at 12, 24, and 52 weeks. At 12 (one pony) or 52 weeks, histomorphometry and microtomographic analyses were performed to assess subchondral bone and cartilage repair tissue quality. RESULTS Direct delivery of Ad-BMP-6 demonstrated delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and histologic evidence of greater Glycosaminoglycan (GAG) content in repair tissue at 12 weeks, while Ad-BMP-2 had greater non-mineral cartilage at the surface at 52 weeks (p<0.04). Ad-BMP-2 demonstrated greater CT subchondral bone mineral density (BMD) by 12 weeks and both Ad-BMP-2 and -6 had greater subchondral BMD at 52 weeks (p<0.05). Despite earlier (Ad-BMP-6) and more persistent (Ad-BMP-2) chondral tissue and greater subchondral bone density (Ad-BMP-2 and -6), the tissue within the large weight-bearing defects at 52 weeks was suboptimal in all groups due to poor quality repair cartilage, central fibrocartilage retention, and central bone cavitation. Delivery of either BMP by this method had greater frequency of subchondral bone cystic formation (p<0.05). CONCLUSIONS Delivery of Ad-BMP-2 or Ad-BMP-6 via direct injection supported cartilage and subchondral bone regeneration but was insufficient to provide long-term quality osteochondral repair.
Collapse
Affiliation(s)
- M I Menendez
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Gene transfer technologies offer the prospect of enhancing bone regeneration by delivering osteogenic gene products locally to osseous defects. In most cases the gene product will be a protein, which will be synthesized endogenously within and around the lesion in a sustained fashion. It will have undergone authentic post-translational processing and lack the alterations that occur when recombinant proteins are synthesized in bioreactors and stored. Several different ex vivo and in vivo gene delivery strategies have been developed for this purpose, using viral and non-viral vectors. Proof of principle has been established in small animal models using a variety of different transgenes, including those encoding morphogens, growth factors, angiogenic factors, and transcription factors. A small number of studies demonstrate efficacy in large animal models. Developing these promising findings into clinical trials will be a long process, constrained by economic, regulatory and practical considerations. Nevertheless, the overall climate for gene therapy is improving, permitting optimism that applications in bone regeneration will eventually become available.
Collapse
Affiliation(s)
- Christopher Evans
- Center for Advanced Orthopaedic Studies, Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, BIDMC-RN-115, 330, Brookline Avenue, Boston, MA 02215, United States.
| |
Collapse
|
40
|
Atesok K, Li R, Stewart DJ, Schemitsch EH. Endothelial progenitor cells promote fracture healing in a segmental bone defect model. J Orthop Res 2010; 28:1007-1014. [PMID: 20135674 DOI: 10.1002/jor.21083] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Accepted: 11/16/2009] [Indexed: 02/04/2023]
Abstract
The objective of this study was to evaluate the effects of local endothelial progenitor cell (EPC) therapy on bone regeneration in a rat model. A segmental bone defect (5 mm) was created in the femur and fixed with a mini-plate. There were two groups: EPC-treated (N = 28) and control (N = 28). Seven animals were sacrificed from each group at 1, 2, 3, and 10 weeks postoperatively. Healing of the defect was evaluated with radiographic, histological, and quantitative micro-computed tomography (micro-CT) scans. Radiographically, mean scores of the EPC and control groups were, respectively, 1.16-0.61 (p < 0.05) at 1 week, 2.53-1.54 (p < 0.05) at 2 weeks, and 4.58-2.35 at 3 weeks (p < 0.05). At 10 weeks, all the animals in the EPC-treated group had complete union (7/7), but in the control group none achieved union (0/7). Histological evaluation revealed that specimens from EPC-treated animals had abundant new bone and vessel formation compared to that in controls. Micro-CT assessment of the samples from the animals sacrificed at 10 weeks (N = 14) showed significantly improved parameters of bone volume (36.58-10.57, p = 0.000), bone volume density (0.26-0.17, p = 0.000), model index -2.22-2.79, p = 0.000), trabecular number (1.28-0.91, p = 0.063), trabecular thickness (0.21-0.15, p = 0.001), trabecular spacing (0.63-1.07, p = 0.022), bone surface (353.75-152.08, p = 0.000), and bone surface to bone volume ratio (9.54-14.24, p = 0.004) for the EPC group compared to control, respectively. In conclusion, local EPC therapy significantly enhanced bone regeneration in a segmental defect model in rat femur diaphysis.
Collapse
Affiliation(s)
- Kivanc Atesok
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital and the Musculoskeletal Research Laboratory, Division of Orthopaedic Surgery, University of Toronto, 30 Bond Street, Toronto, Ontario M5B IW8, Canada
| | | | | | | |
Collapse
|
41
|
Abstract
Clinical problems in bone healing include large segmental defects, spinal fusions, and the nonunion and delayed union of fractures. Gene-transfer technologies have the potential to aid healing by permitting the local delivery and sustained expression of osteogenic gene products within osseous lesions. Key questions for such an approach include the choice of transgene, vector and gene-transfer strategy. Most experimental data have been obtained using cDNAs encoding osteogenic growth factors such as bone morphogenetic protein-2 (BMP-2), BMP-4 and BMP-7, in conjunction with both nonviral and viral vectors using in vivo and ex vivo delivery strategies. Proof of principle has been convincingly demonstrated in small-animal models. Relatively few studies have used large animals, but the results so far are encouraging. Once a reliable method has been developed, it will be necessary to perform detailed pharmacological and toxicological studies, as well as satisfy other demands of the regulatory bodies, before human clinical trials can be initiated. Such studies are very expensive and often protracted. Thus, progress in developing a clinically useful gene therapy for bone healing is determined not only by scientific considerations, but also by financial constraints and the ambient regulatory environment.
Collapse
|
42
|
Comparative efficacy of dermal fibroblast-mediated and direct adenoviral bone morphogenetic protein-2 gene therapy for bone regeneration in an equine rib model. Gene Ther 2010; 17:733-44. [DOI: 10.1038/gt.2010.13] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Ishihara A, Zekas LJ, Litsky AS, Weisbrode SE, Bertone AL. Dermal fibroblast-mediated BMP2 therapy to accelerate bone healing in an equine osteotomy model. J Orthop Res 2010; 28:403-11. [PMID: 19777486 DOI: 10.1002/jor.20978] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study evaluated healing of equine metacarpal/metatarsal osteotomies in response to percutaneous injection of autologous dermal fibroblasts (DFbs) genetically engineered to secrete bone morphogenetic protein-2 (BMP2) or demonstrate green fluorescent protein (GFP) gene expression administered 14 days after surgery. Radiographic assessment of bone formation indicated greater and earlier healing of bone defects treated with DFb with BMP2 gene augmentation. Quantitative computed tomography and biomechanical testing revealed greater mineralized callus and torsional strength of DFb-BMP2-treated bone defects. On the histologic evaluation, the bone defects with DFb-BMP2 implantation had greater formation of mature cartilage and bone nodules within the osteotomy gap and greater mineralization activity on osteotomy edges. Autologous DFbs were successfully isolated in high numbers by a skin biopsy, rapidly expanded without fastidious culture techniques, permissive to adenoviral vectors, and efficient at in vitro BMP2 protein production and BMP2-induced osteogenic differentiation. This study demonstrated an efficacy and feasibility of DFb-mediated BMP2 therapy to accelerate the healing of osteotomies. Skin cell-mediated BMP2 therapy may be considered as a potential treatment for various types of fractures and bone defects.
Collapse
Affiliation(s)
- Akikazu Ishihara
- Comparative Orthopedic Research Laboratories, Department of Veterinary Clinical Sciences, The Ohio State University, 601 Tharp Street, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
44
|
Murray SJ, Santangelo KS, Bertone AL. Evaluation of early cellular influences of bone morphogenetic proteins 12 and 2 on equine superficial digital flexor tenocytes and bone marrow-derived mesenchymal stem cells in vitro. Am J Vet Res 2010; 71:103-14. [PMID: 20043789 DOI: 10.2460/ajvr.71.1.103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate early cellular influences of bone morphogenetic protein (BMP)12 and BMP2 on equine superficial digital flexor tenocytes (SDFTNs) and equine bone marrow-derived mesenchymal stem cells (BMDMSCs). ANIMALS 9 adult clinically normal horses. PROCEDURES BMDMSCs and SDFTNs were cultured in monolayer, either untreated or transduced with adenovirus encoding green fluorescent protein, adenovirus encoding BMP12, or adenovirus encoding BMP2. Cytomorphologic, cytochemical, immunocytochemical, and reverse transcriptase-quantitative PCR (RT-qPCR) analyses were performed on days 3 and 6. Genetic profiling for effects of BMP12 was evaluated by use of an equine gene expression microarray on day 6. RESULTS BMDMSCs and SDFTNs had high BMP12 gene expression and remained viable and healthy for at least 6 days. Type l collagen immunocytochemical staining for SDFTNs and tenocyte-like morphology for SDFTNs and BMDMSCs were greatest in BMP12 cells. Cartilage oligomeric matrix protein, as determined via RT-qPCR assay, and chondroitin sulfate, as determined via gene expression microarray analysis, were upregulated relative to control groups in SDFTN-BMP12 cells. The BMDMSCs and SDFTNs became mineralized with BMP2, but not BMP12. Superficial digital flexor tenocytes responded to BMP12 with upregulation of genes relevant to tendon healing and without mineralization as seen with BMP2. CONCLUSIONS AND CLINICAL RELEVANCE Targeted equine SDFTNs may respond to BMP12 with improved tenocyte morphology and without mineralization, as seen with BMP2. Bone marrow-derived mesenchymal stem cells may be able to serve as a cell delivery method for BMP12.
Collapse
Affiliation(s)
- Shannon J Murray
- Comparative Orthopedic Molecular Medicine and Applied Research Laboratory, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
45
|
Wang X, Nyman J, Dong X, Leng H, Reyes M. Fundamental Biomechanics in Bone Tissue Engineering. ACTA ACUST UNITED AC 2010. [DOI: 10.2200/s00246ed1v01y200912tis004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
46
|
Evans CH, Ghivizzani SC, Robbins PD. Progress and Prospects: genetic treatments for disorders of bones and joints. Gene Ther 2009; 16:944-52. [DOI: 10.1038/gt.2009.73] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Evans CH, Ghivizzani SC, Robbins PD. Orthopedic gene therapy in 2008. Mol Ther 2009; 17:231-44. [PMID: 19066598 PMCID: PMC2835052 DOI: 10.1038/mt.2008.265] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 10/26/2008] [Indexed: 02/07/2023] Open
Abstract
Orthopedic disorders, although rarely fatal, are the leading cause of morbidity and impose a huge socioeconomic burden. Their prevalence will increase dramatically as populations age and gain weight. Many orthopedic conditions are difficult to treat by conventional means; however, they are good candidates for gene therapy. Clinical trials have already been initiated for arthritis and the aseptic loosening of prosthetic joints, and the development of bone-healing applications is at an advanced, preclinical stage. Other potential uses include the treatment of Mendelian diseases and orthopedic tumors, as well as the repair and regeneration of cartilage, ligaments, and tendons. Many of these goals should be achievable with existing technologies. The main barriers to clinical application are funding and regulatory issues, which in turn reflect major safety concerns and the opinion, in some quarters, that gene therapy should not be applied to nonlethal, nongenetic diseases. For some indications, advances in nongenetic treatments have also diminished enthusiasm. Nevertheless, the preclinical and early clinical data are impressive and provide considerable optimism that gene therapy will provide straightforward, effective solutions to the clinical management of several common debilitating disorders that are otherwise difficult and expensive to treat.
Collapse
Affiliation(s)
- Christopher H Evans
- Center for Molecular Orthopaedics, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
48
|
Liu F, Bloch N, Bhushan KR, De Grand AM, Tanaka E, Solazzo S, Mertyna PM, Goldberg N, Frangioni JV, Lenkinski RE. Humoral Bone Morphogenetic Protein 2 Is Sufficient for Inducing Breast Cancer Microcalcification. Mol Imaging 2008. [DOI: 10.2310/7290.2008.00018a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Fangbing Liu
- From the Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - Nathalie Bloch
- From the Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - Kumar R. Bhushan
- From the Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - Alec M. De Grand
- From the Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - Eiichi Tanaka
- From the Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - Stephanie Solazzo
- From the Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - Pawel M. Mertyna
- From the Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - Nahum Goldberg
- From the Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - John V. Frangioni
- From the Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - Robert E. Lenkinski
- From the Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| |
Collapse
|