1
|
Gruber R. How to explain the beneficial effects of platelet-rich plasma. Periodontol 2000 2025; 97:95-103. [PMID: 38600634 PMCID: PMC11808461 DOI: 10.1111/prd.12565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/19/2024] [Accepted: 03/02/2024] [Indexed: 04/12/2024]
Abstract
Platelet-rich plasma (PRP) is the platelet and leukocyte-containing plasmatic fraction of anticoagulated autologous blood. While evidence supporting the clinical use of PRP in dentistry is low, PRP is widely used in sports medicine, orthopedics, and dermatology. Its beneficial activity is commonly attributed to the growth factors released from platelets accumulating in PRP; however, evidence is indirect and not comprehensive. There is thus a demand to revisit PRP with respect to basic and translational science. This review is to (i) recapitulate protocols and tools to prepare PRP; (ii) to discuss the cellular and molecular composition of PRP with a focus on platelets, leukocytes, and the fibrin-rich extracellular matrix of coagulated plasma; and finally (iii) to discuss potential beneficial effects of PRP on a cellular and molecular level with an outlook on its current use in dentistry and other medical fields.
Collapse
Affiliation(s)
- Reinhard Gruber
- Department of Oral Biology, University Clinic of DentistryMedical University of ViennaViennaAustria
| |
Collapse
|
2
|
Khan RS, Newsome PN. A Comparison of Phenotypic and Functional Properties of Mesenchymal Stromal Cells and Multipotent Adult Progenitor Cells. Front Immunol 2019; 10:1952. [PMID: 31555259 PMCID: PMC6724467 DOI: 10.3389/fimmu.2019.01952] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022] Open
Abstract
Both Multipotent Adult Progenitor Cells and Mesenchymal Stromal Cells are bone-marrow derived, non-haematopoietic adherent cells, that are well-known for having immunomodulatory and pro-angiogenic properties, whilst being relatively non-immunogenic. However, they are phenotypically and functionally distinct cell types, which has implications for their efficacy in different settings. In this review we compare the phenotypic and functional properties of these two cell types, to help in determining which would be the superior cell type for different applications.
Collapse
Affiliation(s)
- Reenam S Khan
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N Newsome
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
3
|
Soria-Juan B, Escacena N, Capilla-González V, Aguilera Y, Llanos L, Tejedo JR, Bedoya FJ, Juan V, De la Cuesta A, Ruiz-Salmerón R, Andreu E, Grochowicz L, Prósper F, Sánchez-Guijo F, Lozano FS, Miralles M, Del Río-Solá L, Castellanos G, Moraleda JM, Sackstein R, García-Arranz M, García-Olmo D, Martín F, Hmadcha A, Soria B. Cost-Effective, Safe, and Personalized Cell Therapy for Critical Limb Ischemia in Type 2 Diabetes Mellitus. Front Immunol 2019; 10:1151. [PMID: 31231366 PMCID: PMC6558400 DOI: 10.3389/fimmu.2019.01151] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022] Open
Abstract
Cell therapy is a progressively growing field that is rapidly moving from preclinical model development to clinical application. Outcomes obtained from clinical trials reveal the therapeutic potential of stem cell-based therapy to deal with unmet medical treatment needs for several disorders with no therapeutic options. Among adult stem cells, mesenchymal stem cells (MSCs) are the leading cell type used in advanced therapies for the treatment of autoimmune, inflammatory and vascular diseases. To date, the safety and feasibility of autologous MSC-based therapy has been established; however, their indiscriminate use has resulted in mixed outcomes in preclinical and clinical studies. While MSCs derived from diverse tissues share common properties depending on the type of clinical application, they markedly differ within clinical trials in terms of efficacy, resulting in many unanswered questions regarding the application of MSCs. Additionally, our experience in clinical trials related to critical limb ischemia pathology (CLI) shows that the therapeutic efficacy of these cells in different animal models has only been partially reproduced in humans through clinical trials. Therefore, it is crucial to develop new research to identify pitfalls, to optimize procedures and to clarify the repair mechanisms used by these cells, as well as to be able to offer a next generation of stem cell that can be routinely used in a cost-effective and safe manner in stem cell-based therapies targeting CLI.
Collapse
Affiliation(s)
| | - Natalia Escacena
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Vivian Capilla-González
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Yolanda Aguilera
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Lucía Llanos
- Fundación Jiménez Díaz Health Research Institute, Madrid, Spain
| | - Juan R Tejedo
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Francisco J Bedoya
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | | | - Antonio De la Cuesta
- Unidad de Isquemia Crónica de Miembros Inferiores, Hospital Victoria Eugenia de la Cruz Roja, Sevilla, Spain
| | | | | | | | | | | | | | - Manuel Miralles
- Department of Surgery, University of Valencia, Valencia, Spain
| | | | - Gregorio Castellanos
- Servicio Hematología y Hemoterapia, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - José M Moraleda
- Servicio Hematología y Hemoterapia, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Robert Sackstein
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | | | | | - Franz Martín
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Abdelkrim Hmadcha
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Bernat Soria
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | | |
Collapse
|
4
|
Lavenus S, Rozé J, Louarn G, Layrolle P. Impact of nanotechnology on dental implants. NANOBIOMATERIALS IN CLINICAL DENTISTRY 2019:385-399. [DOI: 10.1016/b978-0-12-815886-9.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
PDGF Restores the Defective Phenotype of Adipose-Derived Mesenchymal Stromal Cells from Diabetic Patients. Mol Ther 2018; 26:2696-2709. [PMID: 30195725 DOI: 10.1016/j.ymthe.2018.08.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a chronic metabolic disorder that affects 415 million people worldwide. This pathology is often associated with long-term complications, such as critical limb ischemia (CLI), which increases the risk of limb loss and mortality. Mesenchymal stromal cells (MSCs) represent a promising option for the treatment of diabetes complications. Although MSCs are widely used in autologous cell-based therapy, their effects may be influenced by the constant crosstalk between the graft and the host, which could affect the MSC fate potential. In this context, we previously reported that MSCs derived from diabetic patients with CLI have a defective phenotype that manifests as reduced fibrinolytic activity, thereby enhancing the thrombotic risk and compromising patient safety. Here, we found that MSCs derived from diabetic patients with CLI not only exhibit a prothrombotic profile but also have altered multi-differentiation potential, reduced proliferation, and inhibited migration and homing to sites of inflammation. We further demonstrated that this aberrant cell phenotype is reversed by the platelet-derived growth factor (PDGF) BB, indicating that PDGF signaling is a key regulator of MSC functionality. These findings provide an attractive approach to improve the therapeutic efficacy of MSCs in autologous therapy for diabetic patients.
Collapse
|
6
|
Subramani K, Lavenus S, Rozé J, Louarn G, Layrolle P. Impact of nanotechnology on dental implants. EMERGING NANOTECHNOLOGIES IN DENTISTRY 2018:83-97. [DOI: 10.1016/b978-0-12-812291-4.00005-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Mozgan EM, Edelmayer M, Janjić K, Pensch M, Fischer MB, Moritz A, Agis H. Release kinetics and mitogenic capacity of collagen barrier membranes supplemented with secretome of activated platelets - the in vitro response of fibroblasts of the periodontal ligament and the gingiva. BMC Oral Health 2017; 17:66. [PMID: 28327149 PMCID: PMC5361806 DOI: 10.1186/s12903-017-0357-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/03/2017] [Indexed: 01/08/2023] Open
Abstract
Background Platelet preparations can stimulate the healing process and have mitogenic properties. We hypothesized that collagen barrier membranes (CBM), clinically used in guided bone regeneration and guided tissue regeneration, can serve as carriers for platelet secretome. Methods Secretome was generated from washed platelets and unwashed platelets (washed/unwashed PSEC) and lyophilized onto CBM. Overall appearance of CBM was evaluated by scanning electron microscopy. The impact of PSEC on cell attachment was measured based on fluorescence microscopy with DiI-labeled cells. To assess the release kinetics, supernatants of CBM were collected and medium was replaced at hour 1–48. The mitogenic effect was evaluated with periodontal fibroblasts. Furthermore, the release of total protein, platelet-derived growth factor (PDGF)-BB, and transforming growth factor (TGF) β1 was measured. Results CBM overall appearance and cell attachment was not modulated by PSEC. Supernatants taken after one hour induced a mitogenic response in fibroblasts and showed the highest levels of total protein, TGFβ1 and PDGF-BB. These effects decreased rapidly in subsequent supernatants. While supernatants of CBM loaded with unwashed PSEC induced a stronger mitogenic response than supernatants of CBM loaded with washed PSEC this difference between the PSEC preparations was not observed when cells were seeded on 48–hours-washed CBM. Conclusions CBM release platelet-derived factors in continuously declining release kinetics.
Collapse
Affiliation(s)
- Eva-Maria Mozgan
- Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, 1200, Vienna, Austria
| | - Michael Edelmayer
- Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, 1200, Vienna, Austria
| | - Klara Janjić
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, 1200, Vienna, Austria
| | - Manuela Pensch
- Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, 1200, Vienna, Austria
| | - Michael B Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Center for Biomedical Technology, Danube University Krems, Dr.-Karl-Dorrek-Straße 30, Krems, 3500, Austria
| | - Andreas Moritz
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, 1200, Vienna, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria. .,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, 1200, Vienna, Austria.
| |
Collapse
|
8
|
Wehner C, Janjić K, Agis H. Relevance of the plasminogen system in physiology, pathology, and regeneration of oral tissues - From the perspective of dental specialties. Arch Oral Biol 2016; 74:136-145. [PMID: 27743595 DOI: 10.1016/j.archoralbio.2016.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 09/15/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022]
Abstract
Plasmin is a proteolytic enzyme that is crucial in fibrinolysis. In oral tissues, the plasminogen system plays an essential role in physiological and pathological processes, which in addition to fibrinolysis include degradation of extracellular matrix, inflammation, immune response, angiogenesis, tissue remodeling, cell migration, and wound healing. Oral tissues reveal a change in the plasminogen system during pathological processes such as periodontitis, peri-implantitis, or pulpitis, as well as in response to mechanical load. The plasminogen system is also a key element in tissue regeneration. The number of studies investigating the plasminogen system in dentistry have grown continuously in recent years, highlighting its increasing relevance in dental medicine. In this review, we present the diverse functions of the plasminogen system in physiology and its importance for dental specialists in pathology and regeneration. We thus provide an overview of the current knowledge on the role of the plasminogen system in the different fields of dentistry, including endodontics, orthodontics, periodontics, and oral surgery.
Collapse
Affiliation(s)
- Christian Wehner
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Klara Janjić
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
9
|
Cappuzzello C, Doni A, Dander E, Pasqualini F, Nebuloni M, Bottazzi B, Mantovani A, Biondi A, Garlanda C, D'Amico G. Mesenchymal Stromal Cell-Derived PTX3 Promotes Wound Healing via Fibrin Remodeling. J Invest Dermatol 2016; 136:293-300. [PMID: 26763449 DOI: 10.1038/jid.2015.346] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022]
Abstract
Although mesenchymal stromal cells (MSCs) can promote wound healing in different clinical settings, the underlying mechanism of MSC-mediated tissue repair has yet to be determined. Because a nonredundant role of pentraxin 3 (PTX3) in tissue repair and remodeling has been recently described, here we sought to determine whether MSC-derived PTX3 might play a role in wound healing. Using a murine model of skin repair, we found that Ptx3-deficient (Ptx3(-/-)) MSCs delayed wound closure and reduced granulation tissue formation compared with wt MSCs. At day 2, confocal microscopy revealed a dramatic reduction in green fluorescent protein (GFP)-expressing Ptx3(-/-) MSCs recruited to the wound, where they appeared to be not only poorly organized in bundles but also scattered in the extracellular matrix. These findings were further confirmed by quantitative biochemical analysis of GFP content in wound extracts. Furthermore, Ptx3(-/-) MSC-treated skins displayed increased levels of fibrin and lower levels of D-dimer, suggesting delayed fibrin-rich matrix remodeling compared with control skins. Consistently, both pericellular fibrinolysis and migration through fibrin were found to be severely affected in Ptx3(-/-) MSCs. Overall, our findings identify an essential role of MSC-derived PTX3 in wound repair underscoring the beneficial potential of MSC-based therapy in the management of intractable wounds.
Collapse
Affiliation(s)
- Claudia Cappuzzello
- Centro Ricerca Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Fondazione MBBM/San Gerardo Hospital, Monza, Italy
| | - Andrea Doni
- IRCCS-Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Erica Dander
- Centro Ricerca Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Fondazione MBBM/San Gerardo Hospital, Monza, Italy
| | - Fabio Pasqualini
- IRCCS-Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Manuela Nebuloni
- Pathology Unit, L. Sacco Department of Clinical Sciences, L. Sacco Hospital, Università degli Studi di Milano, Milan, Italy
| | - Barbara Bottazzi
- IRCCS-Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | | | - Andrea Biondi
- Centro Ricerca Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Fondazione MBBM/San Gerardo Hospital, Monza, Italy
| | - Cecilia Garlanda
- IRCCS-Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Giovanna D'Amico
- Centro Ricerca Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Fondazione MBBM/San Gerardo Hospital, Monza, Italy.
| |
Collapse
|
10
|
Keceli HG, Akman AC, Bayram C, Nohutcu RM. Tissue engineering applications and nanobiomaterials in periodontology and implant dentistry. NANOBIOMATERIALS IN DENTISTRY 2016:337-387. [DOI: 10.1016/b978-0-323-42867-5.00013-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Macrophage subpopulations are essential for infarct repair with and without stem cell therapy. J Am Coll Cardiol 2013; 62:1890-901. [PMID: 23973704 DOI: 10.1016/j.jacc.2013.07.057] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/10/2013] [Accepted: 07/24/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVES This study sought to investigate the hypothesis that the favorable effects of mesenchymal stromal cells (MSCs) on infarct repair are mediated by macrophages. BACKGROUND The favorable effects of MSC therapy in myocardial infarction (MI) are complex and not fully understood. METHODS We induced MI in mice and allocated them to bone marrow MSCs, mononuclear cells, or saline injection into the infarct, with and without early (4 h before MI) and late (3 days after MI) macrophage depletion. We then analyzed macrophage phenotype in the infarcted heart by flow cytometry and macrophage secretome in vitro. Left ventricular remodeling and global and regional function were assessed by echocardiography and speckle-tracking based strain imaging. RESULTS The MSC therapy significantly increased the percentage of reparative M2 macrophages (F4/80(+)CD206(+)) in the infarcted myocardium, compared with mononuclear- and saline-treated hearts, 3 and 4 days after MI. Macrophage cytokine secretion, relevant to infarct healing and repair, was significantly increased after MSC therapy, or incubation with MSCs or MSC supernatant. Significantly, with and without MSC therapy, transient macrophage depletion increased mortality 30 days after MI. Furthermore, early macrophage depletion produced the greatest negative effect on infarct size and left ventricular remodeling and function, as well as a significant incidence of left ventricular thrombus formation. These deleterious effects were attenuated with macrophage restoration and MSC therapy. CONCLUSIONS Some of the protective effects of MSCs on infarct repair are mediated by macrophages, which are essential for early healing and repair. Thus, targeting macrophages could be a novel strategy to improve infarct healing and repair.
Collapse
|
12
|
Lavenus S, Rozé J, Louarn G, Layrolle P. Impact of Nanotechnology on Dental Implants. NANOBIOMATERIALS IN CLINICAL DENTISTRY 2013:323-336. [DOI: 10.1016/b978-1-4557-3127-5.00016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Moll G, Rasmusson-Duprez I, von Bahr L, Connolly-Andersen AM, Elgue G, Funke L, Hamad OA, Lönnies H, Magnusson PU, Sanchez J, Teramura Y, Nilsson-Ekdahl K, Ringdén O, Korsgren O, Nilsson B, Le Blanc K. Are therapeutic human mesenchymal stromal cells compatible with human blood? Stem Cells 2012; 30:1565-74. [PMID: 22522999 DOI: 10.1002/stem.1111] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multipotent mesenchymal stromal cells (MSCs) are tested in numerous clinical trials. Questions have been raised concerning fate and function of these therapeutic cells after systemic infusion. We therefore asked whether culture-expanded human MSCs elicit an innate immune attack, termed instant blood-mediated inflammatory reaction (IBMIR), which has previously been shown to compromise the survival and function of systemically infused islet cells and hepatocytes. We found that MSCs expressed hemostatic regulators similar to those produced by endothelial cells but displayed higher amounts of prothrombotic tissue/stromal factors on their surface, which triggered the IBMIR after blood exposure, as characterized by formation of blood activation markers. This process was dependent on the cell dose, the choice of MSC donor, and particularly the cell-passage number. Short-term expanded MSCs triggered only weak blood responses in vitro, whereas extended culture and coculture with activated lymphocytes increased their prothrombotic properties. After systemic infusion to patients, we found increased formation of blood activation markers, but no formation of hyperfibrinolysis marker D-dimer or acute-phase reactants with the currently applied dose of 1.0-3.0 × 10(6) cells per kilogram. Culture-expanded MSCs trigger the IBMIR in vitro and in vivo. Induction of IBMIR is dose-dependent and increases after prolonged ex vivo expansion. Currently applied doses of low-passage clinical-grade MSCs elicit only minor systemic effects, but higher cell doses and particularly higher passage cells should be handled with care. This deleterious reaction can compromise the survival, engraftment, and function of these therapeutic cells.
Collapse
Affiliation(s)
- Guido Moll
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lavenus S, Rozé J, Hoornaert A, Louarn G, Layrolle P. Impact of Nanotechnology on Dental Implants. EMERGING NANOTECHNOLOGIES IN DENTISTRY 2012:71-84. [DOI: 10.1016/b978-1-4557-7862-1.00005-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Doorn J, Moll G, Le Blanc K, van Blitterswijk C, de Boer J. Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:101-15. [PMID: 21995703 DOI: 10.1089/ten.teb.2011.0488] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Among the various types of cell-to-cell signaling, paracrine signaling comprises those signals that are transmitted over short distances between different cell types. In the human body, secreted growth factors and cytokines instruct, among others, proliferation, differentiation, and migration. In the hematopoietic stem cell (HSC) niche, stromal cells provide instructive cues to stem cells via paracrine signaling and one of these cell types, known to secrete a broad panel of growth factors and cytokines, is mesenchymal stromal cells (MSCs). The factors secreted by MSCs have trophic, immunomodulatory, antiapoptotic, and proangiogenic properties, and their paracrine profile varies according to their initial activation by various stimuli. MSCs are currently studied as treatment for inflammatory diseases such as graft-versus-host disease and Crohn's disease, but also as treatment for myocardial infarct and solid organ transplantation. In addition, MSCs are investigated for their use in tissue engineering applications, in which their differentiation plays an important role, but as we have recently demonstrated, their trophic factors may also be involved. Furthermore, a functional improvement of MSCs might be obtained after preconditioning or tailoring the cells themselves. Also, the way the cells are clinically administered may be specialized for specific therapeutic scenarios. In this review we will first discuss the HSC niche, in which MSCs were recently identified and are thought to play an instructive and supportive role. We will then evaluate therapeutic applications that currently try to utilize the trophic and/or immunomodulatory properties of MSCs, and we will also discuss new options to enhance their therapeutic effects.
Collapse
Affiliation(s)
- Joyce Doorn
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Abstract
The long-term clinical success of dental implants is related to their early osseointegration. This paper reviews the different steps of the interactions between biological fluids, cells, tissues, and surfaces of implants. Immediately following implantation, implants are in contact with proteins and platelets from blood. The differentiation of mesenchymal stem cells will then condition the peri-implant tissue healing. Direct bone-to-implant contact is desired for a biomechanical anchoring of implants to bone rather than fibrous tissue encapsulation. Surfaces properties such as chemistry and roughness play a determinant role in these biological interactions. Physicochemical features in the nanometer range may ultimately control the adsorption of proteins as well as the adhesion and differentiation of cells. Nanotechnologies are increasingly used for surface modifications of dental implants. Another approach to enhance osseointegration is the application of thin calcium phosphate (CaP) coatings. Bioactive CaP nanocrystals deposited on titanium implants are resorbable and stimulate bone apposition and healing. Future nanometer-controlled surfaces may ultimately direct the nature of peri-implant tissues and improve their clinical success rate.
Collapse
|
17
|
Agis H, Stampfl B, Watzek G, Gruber R. Activated platelets increase proliferation and protein synthesis of human dental pulpâderived cells. Int Endod J 2010; 43:115-24. [DOI: 10.1111/j.1365-2591.2009.01650.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Seybold D, Schildhauer TA, Geßmann J, Muhr G, Köller M, Roetman B. Osteogenic differentiation of human mesenchymal stromal cells is promoted by a leukocytes containing fibrin matrix. Langenbecks Arch Surg 2010; 395:719-26. [DOI: 10.1007/s00423-009-0588-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 12/14/2009] [Indexed: 01/08/2023]
|
19
|
Sumiyoshi K, Kubota S, Furuta RA, Yasui K, Aoyama E, Kawaki H, Kawata K, Ohgawara T, Yamashiro T, Takigawa M. Thrombopoietic-mesenchymal interaction that may facilitate both endochondral ossification and platelet maturation via CCN2. J Cell Commun Signal 2009; 4:5-14. [PMID: 19798594 PMCID: PMC2821475 DOI: 10.1007/s12079-009-0067-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 09/09/2009] [Indexed: 11/27/2022] Open
Abstract
CCN2 plays a central role in the development and growth of mesenchymal tissue and promotes the regeneration of bone and cartilage in vivo. Of note, abundant CCN2 is contained in platelets, which is thought to play an important role in the tissue regeneration process. In this study, we initially pursued the possible origin of the CCN2 in platelets. First, we examined if the CCN2 in platelets was produced by megakaryocyte progenitors during differentiation. Unexpectedly, neither megakaryocytic CMK cells nor megakaryocytes that had differentiated from human haemopoietic stem cells in culture showed any detectable CCN2 gene expression or protein production. Together with the fact that no appreciable CCN2 was detected in megakaryocytes in vivo, these results suggest that megakaryocytes themselves do not produce CCN2. Next, we suspected that mesenchymal cells situated around megakaryocytes in the bone marrow were stimulated by the latter to produce CCN2, which was then taken up by platelets. To evaluate this hypothesis, we cultured human chondrocytic HCS-2/8 cells with medium conditioned by differentiating megakaryocyte cultures, and then monitored the production of CCN2 by the cells. As suspected, CCN2 production by HCS-2/8 was significantly enhanced by the conditioned medium. We further confirmed that human platelets were able to absorb/uptake exogenous CCN2 in vitro. These findings indicate that megakaryocytes secrete some unknown soluble factor(s) during differentiation, which factor stimulates the mesenchymal cells to produce CCN2 for uptake by the platelets. We also consider that, during bone growth, such thrombopoietic-mesenchymal interaction may contribute to the hypertrophic chondrocyte-specific accumulation of CCN2 that conducts endochondral ossification.
Collapse
Affiliation(s)
- Kumi Sumiyoshi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525 Japan
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525 Japan
| | | | | | - Eriko Aoyama
- Biodental Research Center, Okayama University Dental School, Okayama, Japan
| | - Harumi Kawaki
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525 Japan
| | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525 Japan
| | - Toshihiro Ohgawara
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525 Japan
| | - Takashi Yamashiro
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masaharu Takigawa
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525 Japan
- Biodental Research Center, Okayama University Dental School, Okayama, Japan
| |
Collapse
|
20
|
Holmes CE, Levis JE, Ornstein DL. Activated platelets enhance ovarian cancer cell invasion in a cellular model of metastasis. Clin Exp Metastasis 2009; 26:653-61. [PMID: 19444623 DOI: 10.1007/s10585-009-9264-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 04/16/2009] [Indexed: 12/21/2022]
Abstract
Increased platelet counts and systemic coagulation activation are associated with ovarian cancer progression. Platelet activation occurs in the tumor microenvironment and may influence local invasion and metastasis. We used a cellular model of tumor invasion to investigate the effect of activated platelets on the human ovarian cancer cell line, SKOV3. SKOV3 cells were exposed to washed, thrombin receptor activating peptide (TRAP)-activated or TRAP-naïve platelets under various experimental conditions, and tumor cell invasion was assayed in Matrigel chambers. The effect of platelets on the content of urokinase plasminogen activator (uPA) and VEGF in SKOV3 cell conditioned medium was measured using an ELISA assay. TRAP-activated platelets stimulated a dose-dependent increase in SKOV3 cell invasion. Exposure to activated platelet membranes and to soluble proteins contained in activated platelet releasate both contributed to the observed increase in invasion. The inhibition of platelet activation with prostaglandin E1 (PGE(1)) attenuated the invasive capacity of SKOV3 cells. Exposure to platelets resulted in significantly increased uPA and VEGF content of SKOV3 cell conditioned medium. Activated platelets enhance SKOV3 human ovarian cancer cell invasion through Matrigel and increase the amount of uPA and VEGF secreted into SKOV3 cell conditioned medium. If generalizable to additional cell lines and human disease, this observation may partially explain the adverse prognosis associated with thrombocytosis in ovarian cancer. Platelets, therefore, may represent a potential target for therapeutic intervention in human ovarian cancer.
Collapse
Affiliation(s)
- C E Holmes
- Colchester Research Facility, University of Vermont College of Medicine, Colchester, VT 05446, USA.
| | | | | |
Collapse
|