1
|
Dilley J, Noori-Dokht H, Seetharam A, Bello M, Nanavaty A, Natoli RM, McKinley T, Bault Z, Wagner D, Sankar U. A Reproducible Cartilage Impact Model to Generate Post-Traumatic Osteoarthritis in the Rabbit. J Vis Exp 2023:10.3791/64450. [PMID: 38078617 PMCID: PMC11227251 DOI: 10.3791/64450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Post-traumatic osteoarthritis (PTOA) is responsible for 12% of all osteoarthritis cases in the United States. PTOA can be initiated by a single traumatic event, such as a high-impact load acting on articular cartilage, or by joint instability, as occurs with anterior cruciate ligament rupture. There are no effective therapeutics to prevent PTOA currently. Developing a reliable animal model of PTOA is necessary to better understand the mechanisms by which cartilage damage proceeds and to investigate novel treatment strategies to alleviate or prevent the progression of PTOA. This protocol describes an open, drop tower-based rabbit femoral condyle impact model to induce cartilage damage. This model delivered peak loads of 579.1 ± 71.1 N, and peak stresses of 81.9 ± 10.1 MPa with a time-to-peak load of 2.4 ± 0.5 ms. Articular cartilage from impacted medial femoral condyles (MFCs) had higher rates of apoptotic cells (p = 0.0058) and possessed higher Osteoarthritis Research Society International (OARSI) scores of 3.38 ± 1.43 compared to the non-impacted contralateral MFCs (0.56 ± 0.42), and other cartilage surfaces of the impacted knee (p < 0.0001). No differences in OARSI scores were detected among the non-impacted articular surfaces (p > 0.05).
Collapse
Affiliation(s)
- Julian Dilley
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine; Department of Orthopaedic Surgery, Indiana University School of Medicine; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine
| | - Hessam Noori-Dokht
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine; School of Mechanical Engineering, Purdue University; Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis
| | - Abhijit Seetharam
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine
| | - Margaret Bello
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine
| | - Aaron Nanavaty
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine
| | - Todd McKinley
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine; Department of Orthopaedic Surgery, Indiana University School of Medicine; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine
| | - Zachary Bault
- Large Animal Resource Center, Indiana University School of Medicine
| | - Diane Wagner
- Department of Orthopaedic Surgery, Indiana University School of Medicine; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine; Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis;
| | - Uma Sankar
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine;
| |
Collapse
|
2
|
Walsh SK, Shelley JC, Henak CR. Mechanobiology of Cartilage Impact Via Real-Time Metabolic Imaging. J Biomech Eng 2020; 142:100802. [PMID: 32542333 DOI: 10.1115/1.4047534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 11/08/2022]
Abstract
Cartilage loading is important in both structural and biological contexts, with overloading known to cause osteoarthritis (OA). Cellular metabolism, which can be evaluated through the relative measures of glycolysis and oxidative phosphorylation, is important in disease processes across tissues. Details of structural damage coupled with cellular metabolism in cartilage have not been evaluated. Therefore, the aim of this study was to characterize the time- and location-dependent metabolic response to traumatic impact loading in articular cartilage. Cartilage samples from porcine femoral condyles underwent a single traumatic injury that created cracks in most samples. Before and up to 30 min after loading, samples underwent optical metabolic imaging. Optical metabolic imaging measures the fluorescent intensity of byproducts of the two metabolic pathways, flavin adenine dinucleotide for oxidative phosphorylation and nicotinamide adenine dinucleotide ± phosphate for glycolysis, as well as the redox ratio between them. Images were taken at varied distances from the center of the impact. Shortly after impact, fluorescence intensity in both channels decreased, while redox ratio was unchanged. The most dramatic metabolic response was measured closest to the impact center, with suppressed fluorescence in both channels relative to baseline. Redox ratio varied nonlinearly as a function of distance from the impact. Finally, both lower and higher magnitude loading reduced flavin adenine dinucleotide fluorescence, whereas reduced nicotinamide adenine dinucleotide ± phosphate fluorescence was associated only with low strain loads and high contact pressure loads, respectively. In conclusion, this study performed novel analysis of metabolic activity following induction of cartilage damage and demonstrated time-, distance-, and load-dependent response to traumatic impact loading.
Collapse
Affiliation(s)
- Shannon K Walsh
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Joshua C Shelley
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, 3031 Mechanical Engineering Building, 1513 University Ave. Madison, WI 53706; Department of Biomedical Engineering, University of Wisconsin-Madison, 3031 Mechanical Engineering Building, 1513 University Ave. Madison, WI 53706; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 3031 Mechanical Engineering Building, 1513 University Ave. Madison, WI 53705
| |
Collapse
|
3
|
Narez GE, Fischenich KM, Donahue TLH. Experimental animal models of post-traumatic osteoarthritis of the knee. Orthop Rev (Pavia) 2020; 12:8448. [PMID: 32922696 PMCID: PMC7461640 DOI: 10.4081/or.2020.8448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/09/2020] [Indexed: 12/28/2022] Open
Abstract
Due to the complex and dynamic nature of osteoarthritis (OA) and post-traumatic osteoarthritis (PTOA), animal models have been used to investigate the progression and pathogenesis of the disease. Researchers have used different experimental models to study OA and PTOA. With an emphasis on the knee joint, this review will compare and contrast the existing body of knowledge from anterior cruciate ligament transection models, meniscectomy models, combination models, as well as impact models in large animals to see how tissues respond to these different approaches to induce experimental OA and PTOA. The tissues discussed will include articular cartilage and the meniscus, with a focus on morphological, mechanical and histological assessments. The goal of this review is to demonstrate the progressive nature of OA by indicating the strong correlation between progressive tissue degeneration, change of mechanical properties, and loss of biochemical integrity and to highlight key differences between the most commonly used experimental animal models.
Collapse
Affiliation(s)
- Gerardo E Narez
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA
| | | | | |
Collapse
|
4
|
Experimental Study on Creep Characteristics of Microdefect Articular Cartilages in the Damaged Early Stage. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:8526436. [PMID: 31827742 PMCID: PMC6885224 DOI: 10.1155/2019/8526436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/26/2019] [Accepted: 10/17/2019] [Indexed: 11/17/2022]
Abstract
Traumatic joint injury is known to cause cartilage deterioration and osteoarthritis. In order to study the mechanical mechanism of damage evolution on articular cartilage, taking the fresh porcine articular cartilage as the experimental samples, the creep experiments of the intact cartilages and the cartilages with different depth defect were carried out by using the noncontact digital image correlation technology. And then, the creep constitutive equations of cartilages were established. The results showed that the creep curves of different layers changed exponentially and were not coincident for the cartilage sample. The defect affected the strain values of the creep curves. The creep behavior of cartilage was dependent on defect depth. The deeper the defect was, the larger the strain value was. The built three-parameter viscoelastic constitutive equation had a good correlation with the experimental results and could predict the creep performance of the articular cartilage. The creep values of the microdefective cartilage in the damaged early stage were different from the diseased articular cartilage. These findings pointed out that defect could accelerate the damage of cartilage. It was helpful to study the mechanical mechanism of damage evolution.
Collapse
|
5
|
Nickien M, Heuijerjans A, Ito K, van Donkelaar CC. Comparison between in vitro and in vivo cartilage overloading studies based on a systematic literature review. J Orthop Res 2018; 36:2076-2086. [PMID: 29644716 PMCID: PMC6120482 DOI: 10.1002/jor.23910] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/27/2018] [Indexed: 02/04/2023]
Abstract
Methodological differences between in vitro and in vivo studies on cartilage overloading complicate the comparison of outcomes. The rationale of the current review was to (i) identify consistencies and inconsistencies between in vitro and in vivo studies on mechanically-induced structural damage in articular cartilage, such that variables worth interesting to further explore using either one of these approaches can be identified; and (ii) suggest how the methodologies of both approaches may be adjusted to facilitate easier comparison and therewith stimulate translation of results between in vivo and in vitro studies. This study is anticipated to enhance our understanding of the development of osteoarthritis, and to reduce the number of in vivo studies. Generally, results of in vitro and in vivo studies are not contradicting. Both show subchondral bone damage and intact cartilage above a threshold value of impact energy. At lower loading rates, excessive loads may cause cartilage fissuring, decreased cell viability, collagen network de-structuring, decreased GAG content, an overall damage increase over time, and low ability to recover. This encourages further improvement of in vitro systems, to replace, reduce, and/or refine in vivo studies. However, differences in experimental set up and analyses complicate comparison of results. Ways to bridge the gap include (i) bringing in vitro set-ups closer to in vivo, for example, by aligning loading protocols and overlapping experimental timeframes; (ii) synchronizing analytical methods; and (iii) using computational models to translate conclusions from in vitro results to the in vivo environment and vice versa. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. J Orthop Res 9999:1-11, 2018.
Collapse
Affiliation(s)
- Mieke Nickien
- Department of Biomedical Engineering, Orthopaedic BiomechanicsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Ashley Heuijerjans
- Department of Biomedical Engineering, Orthopaedic BiomechanicsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Keita Ito
- Department of Biomedical Engineering, Orthopaedic BiomechanicsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Corrinus C. van Donkelaar
- Department of Biomedical Engineering, Orthopaedic BiomechanicsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| |
Collapse
|
6
|
Henak CR, Bartell LR, Cohen I, Bonassar LJ. Multiscale Strain as a Predictor of Impact-Induced Fissuring in Articular Cartilage. J Biomech Eng 2017; 139:2571657. [PMID: 27760253 DOI: 10.1115/1.4034994] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 11/08/2022]
Abstract
Mechanical damage is central to both initiation and progression of osteoarthritis (OA). However, specific causal links between mechanics and cartilage damage are incompletely understood, which results in an inability to predict failure. The lack of understanding is primarily due to the difficulty in simultaneously resolving the high rates and small length scales relevant to the problem and in correlating such measurements to the resulting fissures. This study leveraged microscopy and high-speed imaging to resolve mechanics on the previously unexamined time and length scales of interest in cartilage damage, and used those mechanics to develop predictive models. The specific objectives of this study were to: first, quantify bulk and local mechanics during impact-induced fissuring; second, develop predictive models of fissuring based on bulk mechanics and local strain; and third, evaluate the accuracy of these models in predicting fissures. To achieve these three objectives, bovine tibial cartilage was impacted using a custom spring-loaded device mounted on an inverted microscope. The occurrence of fissures was modulated by varying impact energy. For the first objective, during impact, deformation was captured at 10,000 frames per second and bulk and local mechanics were analyzed. For the second objective, data from samples impacted with a 1.2 mm diameter rod were fit to logistic regression functions, creating models of fissure probability based on bulk and local mechanics. Finally, for the third objective, data from samples impacted with a 0.8 mm diameter rod were used to test the accuracy of model predictions. This study provides a direct comparison between bulk and local mechanical thresholds for the prediction of fissures in cartilage samples, and demonstrates that local mechanics provide more accurate predictions of local failure than bulk mechanics provide. Bulk mechanics were accurate predictors of fissure for the entire sample cohort, but poor predictors of fissure for individual samples. Local strain fields were highly heterogeneous and significant differences were determined between fissured and intact samples, indicating the presence of damage thresholds. In particular, first principal strain rate and maximum shear strain were the best predictors of local failure, as determined by concordance statistics. These data provide an important step in establishing causal links between local mechanics and cartilage damage; ultimately, data such as these can be used to link macro- and micro-scale mechanics and thereby predict mechanically mediated disease on a subject-specific basis.
Collapse
Affiliation(s)
- Corinne R Henak
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Lena R Bartell
- Department of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY 14853
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, 149 Weill Hall, Cornell University, Ithaca, NY 14853; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 e-mail:
| |
Collapse
|
7
|
Frazer LL, Santschi EM, Fischer KJ. The impact of subchondral bone cysts on local bone stresses in the medial femoral condyle of the equine stifle joint. Med Eng Phys 2017; 48:158-167. [DOI: 10.1016/j.medengphy.2017.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/06/2017] [Accepted: 06/14/2017] [Indexed: 11/24/2022]
|
8
|
|
9
|
Chappard D, Libouban H. Vector analysis of porosity evidences bone loss at the epiphysis in the BTX rat model of disuse osteoporosis. J ANAT SOC INDIA 2016. [DOI: 10.1016/j.jasi.2016.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Kuyinu EL, Narayanan G, Nair LS, Laurencin CT. Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res 2016; 11:19. [PMID: 26837951 PMCID: PMC4738796 DOI: 10.1186/s13018-016-0346-5] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/11/2016] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is one of the most commonly occurring forms of arthritis in the world today. It is a debilitating chronic illness causing pain and immense discomfort to the affected individual. Significant research is currently ongoing to understand its pathophysiology and develop successful treatment regimens based on this knowledge. Animal models have played a key role in achieving this goal. Animal models currently used to study osteoarthritis can be classified based on the etiology under investigation, primary osteoarthritis, and post-traumatic osteoarthritis, to better clarify the relationship between these models and the pathogenesis of the disease. Non-invasive animal models have shown significant promise in understanding early osteoarthritic changes. Imaging modalities play a pivotal role in understanding the pathogenesis of OA and the correlation with pain. These imaging studies would also allow in vivo surveillance of the disease as a function of time in the animal model. This review summarizes the current understanding of the disease pathogenesis, invasive and non-invasive animal models, imaging modalities, and pain assessment techniques in the animals.
Collapse
Affiliation(s)
- Emmanuel L Kuyinu
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| | - Ganesh Narayanan
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| | - Lakshmi S Nair
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA. .,Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA. .,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. .,Institute of Materials Science, University of Connecticut, Storrs, CT, USA.
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA. .,Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA. .,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. .,Institute of Materials Science, University of Connecticut, Storrs, CT, USA. .,Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA. .,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
11
|
Pauly HM, Larson BE, Coatney GA, Button KD, DeCamp CE, Fajardo RS, Haut RC, Donahue TLH. Assessment of cortical and trabecular bone changes in two models of post-traumatic osteoarthritis. J Orthop Res 2015; 33:1835-45. [PMID: 26147652 PMCID: PMC4628602 DOI: 10.1002/jor.22975] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/29/2015] [Indexed: 02/04/2023]
Abstract
Subchondral bone is thought to play a significant role in the initiation and progression of the post-traumatic osteoarthritis. The goal of this study was to document changes in tibial and femoral subchondral bone that occur as a result of two lapine models of anterior cruciate ligament injury, a modified ACL transection model and a closed-joint traumatic compressive impact model. Twelve weeks post-injury bones were scanned via micro-computed tomography. The subchondral bone of injured limbs from both models showed decreases in bone volume and bone mineral density. Surgical transection animals showed significant bone changes primarily in the medial hemijoint of femurs and tibias, while significant changes were noted in both the medial and lateral hemijoints of both bones for traumatic impact animals. It is believed that subchondral bone changes in the medial hemijoint were likely caused by compromised soft tissue structures seen in both models. Subchondral bone changes in the lateral hemijoint of traumatic impact animals are thought to be due to transmission of the compressive impact force through the joint. The joint-wide bone changes shown in the traumatic impact model were similar to clinical findings from studies investigating the progression of osteoarthritis in humans.
Collapse
Affiliation(s)
- Hannah M Pauly
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA
| | - Blair E Larson
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO USA
| | - Garrett A Coatney
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA,Department of Mechanical Engineering, Colorado State University, Fort Collins, CO USA
| | - Keith D. Button
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI USA
| | - Charlie E DeCamp
- Small Animal Clinical Sciences, College of Veterinary, Michigan State University, East Lansing, MI USA
| | - Ryan S Fajardo
- Department of Radiology, Michigan State University, East Lansing, MI USA
| | - Roger C Haut
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI USA,Department of Radiology, Michigan State University, East Lansing, MI USA
| | - Tammy L Haut Donahue
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA,Department of Mechanical Engineering, Colorado State University, Fort Collins, CO USA
| |
Collapse
|
12
|
McGann ME, Bonitsky CM, Jackson ML, Ovaert TC, Trippel SB, Wagner DR. Genipin crosslinking of cartilage enhances resistance to biochemical degradation and mechanical wear. J Orthop Res 2015; 33:1571-1579. [PMID: 25939430 PMCID: PMC4591111 DOI: 10.1002/jor.22939] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/29/2015] [Indexed: 02/04/2023]
Abstract
Collagen crosslinking enhances many beneficial properties of articular cartilage, including resistance to chemical degradation and mechanical wear, but many crosslinking agents are cytotoxic. The purpose of this study was to evaluate the effectiveness of genipin, a crosslinking agent with favorable biocompatibility and cytotoxicity, as a potential treatment to prevent the degradation and wear of articular cartilage. First, the impact of genipin concentration and treatment duration on the viscoelastic properties of bovine articular cartilage was quantified. Next, two short-term (15 min) genipin crosslinking treatments were chosen, and the change in collagenase digestion, cartilage wear, and the friction coefficient of the tissue with these treatments was measured. Finally, chondrocyte viability after exposure to these genipin treatments was assessed. Genipin treatment increased the stiffness of healthy, intact cartilage in a dose-dependent manner. The 15-min crosslinking treatments improved cartilage's resistance to both chemical degradation, particularly at the articular surface, and to damage due to mechanical wear. These enhancements were achieved without sacrificing the low coefficient of friction of the tissue and at a genipin dose that preserved chondrocyte viability. The results of this study suggest that collagen crosslinking via genipin may be a promising preventative treatment to slow the degradation of cartilage.
Collapse
Affiliation(s)
- Megan E. McGann
- Department of Aerospace and Mechanical Engineering, University of Notre Dame
| | - Craig M. Bonitsky
- Department of Aerospace and Mechanical Engineering, University of Notre Dame
| | - Mariah L. Jackson
- Department of Aerospace and Mechanical Engineering, University of Notre Dame
| | - Timothy C. Ovaert
- Department of Aerospace and Mechanical Engineering, University of Notre Dame
| | | | - Diane R. Wagner
- Department of Aerospace and Mechanical Engineering, University of Notre Dame
| |
Collapse
|
13
|
Cavalli MA, Gonçalves A, Pereira JNB, Silva JBD, Boldrini SDC, Liberti EA. Evaluation of protein undernourishment on the condylar process of the Wistar rat mandible correlation with insulin receptor expression. J Appl Oral Sci 2015; 23:135-44. [PMID: 26018304 PMCID: PMC4428457 DOI: 10.1590/1678-775720140319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/03/2014] [Indexed: 01/04/2023] Open
Abstract
The mandible condylar process cartilage (CP) of Wistar rats is a secondary cartilage and acts as a mandibular growth site. This phenomenon depends on adequate proteins intake and hormone actions, including insulin.
Collapse
Affiliation(s)
- Marcelo Arthur Cavalli
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Aline Gonçalves
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Joice Naiara Bertaglia Pereira
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Jodonai Barbosa da Silva
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | | | - Edson Aparecido Liberti
- Department of Anatomy, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
14
|
Abraham A, Pauly H, Donahue TH. Deleterious effects of osteoarthritis on the structure and function of the meniscal enthesis. Osteoarthritis Cartilage 2014; 22:275-83. [PMID: 24316288 PMCID: PMC3923977 DOI: 10.1016/j.joca.2013.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 11/23/2013] [Accepted: 11/26/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The ability of menisci to prevent osteoarthritis (OA) is dependent on the integrity of the complex meniscal entheses, the attachments of the menisci to the underlying subchondral bone (SB). The goal of this study was to determine mechanical and structural changes in meniscal entheses after the onset of OA. DESIGN Healthy and osteoarthritic meniscal entheses were evaluated for changes in histomorphological characteristics, mineralization, and mechanical properties. Glycosaminoglycans (GAG) and calcium in the insertion were evaluated with histological staining techniques. The extent of calcium deposition was assessed and tidemark (TM) integrity was quantified. Changes in the mineralized zone of the insertion were examined using micro-computed tomography (μCT) to determine bone mineral density, cortical zone thickness, and mineralization gradient. Mechanical properties of the entheses were measured using nano-indentation techniques to obtain material properties based on viscoelastic analysis. RESULTS GAG thickness in the calcified fibrocartilage (CFC) zone and calcium content were significantly greater in osteoarthritic anterior meniscal entheses. TM integrity was significantly decreased in OA tissue, particularly in the medial anterior (MA) enthesis. The mineralized zone of osteoarthritic meniscal entheses was significantly thicker than in healthy entheses and showed decreased bone mineral density. Fitting of mineralization data to a sigmoidal Gompertz function revealed a lower rate of increase in mineralization in osteoarthritic tissue. Analysis of viscoelastic mechanical properties revealed increased compliance in osteoarthritic tissue. CONCLUSIONS These data suggest that significant changes occur at meniscal enthesis sites with the onset of OA. Mechanical and structural changes in meniscal entheses may contribute to meniscal extrusion, which has been shown to increase the progression of OA.
Collapse
Affiliation(s)
- A.C. Abraham
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - H.M. Pauly
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - T.L. Haut Donahue
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA,Address correspondence and reprint requests to: T.L. Haut Donahue, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
15
|
Schenker ML, Mauck RL, Ahn J, Mehta S. Pathogenesis and prevention of posttraumatic osteoarthritis after intra-articular fracture. J Am Acad Orthop Surg 2014; 22:20-8. [PMID: 24382876 PMCID: PMC4425936 DOI: 10.5435/jaaos-22-01-20] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Posttraumatic osteoarthritis (PTOA) occurs after traumatic injury to the joint. It is most common following injuries that disrupt the articular surface or lead to joint instability. The reported risk of PTOA following significant joint trauma is as high as 75%; articular fractures can increase the risk more than 20-fold. Despite recent advances in surgical management, the incidence of PTOA following intra-articular fractures has remained relatively unchanged over the last few decades. Pathogenesis of PTOA after intra-articular fracture is likely multifactorial and may be associated with acute cartilage injury as well as chronic joint overload secondary to instability, incongruity, and malalignment. Additional studies are needed to better elucidate how these factors contribute to the development of PTOA and to develop advanced treatment algorithms that consist of both acute biologic interventions targeted to decrease inflammation and cellular death in response to injury and improved surgical methods to restore stability, congruity, and alignment.
Collapse
|
16
|
Brophy RH, Martinez M, Borrelli J, Silva MJ. Effect of combined traumatic impact and radial transection of medial meniscus on knee articular cartilage in a rabbit in vivo model. Arthroscopy 2012; 28:1490-6. [PMID: 22770708 PMCID: PMC9624128 DOI: 10.1016/j.arthro.2012.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to test the hypothesis that combined meniscectomy and traumatic impact accelerate early degeneration of articular cartilage in the knee versus meniscectomy alone. METHODS A previously published in vivo rabbit cartilage impact model was used combined with radial transection of the medial meniscus posterior horn versus meniscal transection alone. Rabbits were killed 3 months after surgery. Quantitative histologic analysis of the articular cartilage proteoglycan depth and glycosaminoglycan (GAG) fraction was performed at the site of impact on the posterior femoral condyle (PFC) and at the distal femoral condyle (DFC) overlying the meniscectomy in the surgical knee and the contralateral control knee. RESULTS The articular cartilage in the knees that underwent isolated meniscectomy did not differ significantly from the contralateral control knees for any measured value. The knees with a combined insult had a lower GAG fraction (P = .03) at the PFC and a greater depth of proteoglycan loss at both the PFC (P = .02) and the DFC (P = .04) versus contralateral controls. Compared with meniscectomy alone, the combined-insult knees had a greater depth of proteoglycan loss at the DFC (P = .005). CONCLUSIONS On the basis of early results using GAG fraction and proteoglycan depth, combined traumatic impact and meniscectomy are more damaging to articular cartilage than meniscectomy alone. CLINICAL RELEVANCE A knee with a combination of meniscal injury and articular cartilage impact may be at particularly high risk for early joint degeneration.
Collapse
Affiliation(s)
- Robert H Brophy
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | | | | | |
Collapse
|