1
|
Karsdal MA, Kraus VB, Shevell D, Bay-Jensen AC, Schattenberg J, Rambabu Surabattula R, Schuppan D. Profiling and targeting connective tissue remodeling in autoimmunity - A novel paradigm for diagnosing and treating chronic diseases. Autoimmun Rev 2020; 20:102706. [PMID: 33188918 DOI: 10.1016/j.autrev.2020.102706] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 12/14/2022]
Abstract
Connective tissue (ConT) remodeling is an essential process in tissue regeneration, where a balanced replacement of old tissue by new tissue occurs. This balance is disturbed in chronic diseases, often autoimmune diseases, usually resulting in the buld up of fibrosis and a gradual loss of organ function. During progression of liver, lung, skin, heart, joint, skeletal and kidney diseasesboth ConT formation and degradation are elevated, which is tightly linked to immune cell activation and a loss of specific cell types and extracellular matrix (ECM) structures that are required for normal organ function. Here, we address the balance of key general and organ specific components of the ECM during homeostasis and in disease, with a focus on collagens, which are emerging as both structural and signaling molecules harbouring neoepitopes and autoantigens that are released during ConT remodeling. Specific collagen molecular signatures of ConT remodeling are linked to disease activity and stage, and to prognosis across different organs. These signatures accompany and further drive disease progression, and often become detectable before clinical disease manifestation (illness). Recent advances allow to quantify and define the nature of ConT remodeling via blood-based assays that measure the levels of well-defined collagen fragments, reflecting different facets of ConT formation and degradation, and associated immunological processes. These novel serum assays are becoming important tools of precision medicine, to detect various chronic and autoimmune diseases before their clinical manifestation, and to non-invasively monitor the efficacy of a broad range of pharmacological interventions.
Collapse
Affiliation(s)
- Morten Asser Karsdal
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Metabolic Liver Research Program, Denmark
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Diane Shevell
- Clinical Biomarkers and Immunology, Bristol-Myers Squibb, Westfield, NJ, USA
| | | | | | - R Rambabu Surabattula
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Karsdal MA, Nielsen SH, Leeming DJ, Langholm LL, Nielsen MJ, Manon-Jensen T, Siebuhr A, Gudmann NS, Rønnow S, Sand JM, Daniels SJ, Mortensen JH, Schuppan D. The good and the bad collagens of fibrosis - Their role in signaling and organ function. Adv Drug Deliv Rev 2017; 121:43-56. [PMID: 28736303 DOI: 10.1016/j.addr.2017.07.014] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
Abstract
Usually the dense extracellular structure in fibrotic tissues is described as extracellular matrix (ECM) or simply as collagen. However, fibrosis is not just fibrosis, which is already exemplified by the variant morphological characteristics of fibrosis due to viral versus cholestatic, autoimmune or toxic liver injury, with reticular, chicken wire and bridging fibrosis. Importantly, the overall composition of the ECM, especially the relative amounts of the many types of collagens, which represent the most abundant ECM molecules and which centrally modulate cellular functions and physiological processes, changes dramatically during fibrosis progression. We hypothesize that there are good and bad collagens in fibrosis and that a change of location alone may change the function from good to bad. Whereas basement membrane collagen type IV anchors epithelial and other cells in a polarized manner, the interstitial fibroblast collagens type I and III do not provide directional information. In addition, feedback loops from biologically active degradation products of some collagens are examples of the importance of having the right collagen at the right place and at the right time controlling cell function, proliferation, matrix production and fate. Examples are the interstitial collagen type VI and basement membrane collagen type XVIII. Their carboxyterminal propeptides serve as an adipose tissue hormone, endotrophin, and as a regulator of angiogenesis, endostatin, respectively. We provide an overview of the 28 known collagen types and propose that the molecular composition of the ECM in fibrosis needs careful attention to assess its impact on organ function and its potential to progress or reverse. Consequently, to adequately assess fibrosis and to design optimal antifibrotic therapies, we need to dissect the molecular entity of fibrosis for the molecular composition and spatial distribution of collagens and the associated ECM.
Collapse
Affiliation(s)
- M A Karsdal
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark.
| | - S H Nielsen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - D J Leeming
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - L L Langholm
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - M J Nielsen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - T Manon-Jensen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - A Siebuhr
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - N S Gudmann
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - S Rønnow
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - J M Sand
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - S J Daniels
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - J H Mortensen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - D Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Ain NU, Makitie O, Naz S. Autosomal recessive chondrodysplasia with severe short stature caused by a biallelic COL10A1 variant. J Med Genet 2017; 55:403-407. [PMID: 28830906 DOI: 10.1136/jmedgenet-2017-104885] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Heterozygous mutations in COL10A1 underlie metaphyseal chondrodysplasia, Schmid type (MCDS), an autosomal dominant skeletal dysplasia. OBJECTIVE To identify the causative variant in a large consanguineous Pakistani family with severe skeletal dysplasia and marked lower limb deformity. METHODS Whole exome sequencing was completed followed by Sanger sequencing to verify segregation of the identified variants. In silico variant pathogenicity predictions and amino acid conservation analyses were performed. RESULTS A homozygous c.133 C>T (p.Pro45Ser) variant was identified in COL10A1 in all six severely affected individuals (adult heights 119-130 cm, mean ~-6.33 SD). The individuals heterozygous for the variant had mild phenotype of short stature (adult heights 140-162 cm, mean ~-2.15 SD) but no apparent skeletal deformities. The variant was predicted to be pathogenic by in silico prediction tools and was absent from public databases and hundred control chromosomes. Pro45 is conserved in orthologues and is located in the non-collagenous 2 domain of COL10A1, variants of which have never been associated with skeletal dysplasia. CONCLUSIONS This first report of individuals with a homozygous variant in COL10A1 defines a new type of autosomal recessive skeletal dysplasia. The observations in COL10A1 variant carriers suggest a phenotypic overlap between the mildest forms of MCDS and idiopathic short stature.
Collapse
Affiliation(s)
- Noor Ul Ain
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Outi Makitie
- Children's Hospital, University of Helsinki, Helsinki University Hospital, Helsinki, Finland.,Folkhälsan Institute of Genetics, Helsinki, Finland.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
4
|
Gawron K. Endoplasmic reticulum stress in chondrodysplasias caused by mutations in collagen types II and X. Cell Stress Chaperones 2016; 21:943-958. [PMID: 27523816 PMCID: PMC5083666 DOI: 10.1007/s12192-016-0719-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum is primarily recognized as the site of synthesis and folding of secreted, membrane-bound, and some organelle-targeted proteins. An imbalance between the load of unfolded proteins and the processing capacity in endoplasmic reticulum leads to the accumulation of unfolded or misfolded proteins and endoplasmic reticulum stress, which is a hallmark of a number of storage diseases, including neurodegenerative diseases, a number of metabolic diseases, and cancer. Moreover, its contribution as a novel mechanistic paradigm in genetic skeletal diseases associated with abnormalities of the growth plates and dwarfism is considered. In this review, I discuss the mechanistic significance of endoplasmic reticulum stress, abnormal folding, and intracellular retention of mutant collagen types II and X in certain variants of skeletal chondrodysplasia.
Collapse
Affiliation(s)
- Katarzyna Gawron
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
5
|
Affiliation(s)
| | - Jeffrey Baron
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
6
|
Karsdal MA, Manon-Jensen T, Genovese F, Kristensen JH, Nielsen MJ, Sand JMB, Hansen NUB, Bay-Jensen AC, Bager CL, Krag A, Blanchard A, Krarup H, Leeming DJ, Schuppan D. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2015; 308:G807-30. [PMID: 25767261 PMCID: PMC4437019 DOI: 10.1152/ajpgi.00447.2014] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/04/2015] [Indexed: 02/06/2023]
Abstract
Emerging evidence suggests that altered components and posttranslational modifications of proteins in the extracellular matrix (ECM) may both initiate and drive disease progression. The ECM is a complex grid consisting of multiple proteins, most of which play a vital role in containing the essential information needed for maintenance of a sophisticated structure anchoring the cells and sustaining normal function of tissues. Therefore, the matrix itself may be considered as a paracrine/endocrine entity, with more complex functions than previously appreciated. The aims of this review are to 1) explore key structural and functional components of the ECM as exemplified by monogenetic disorders leading to severe pathologies, 2) discuss selected pathological posttranslational modifications of ECM proteins resulting in altered functional (signaling) properties from the original structural proteins, and 3) discuss how these findings support the novel concept that an increasing number of components of the ECM harbor signaling functions that can modulate fibrotic liver disease. The ECM entails functions in addition to anchoring cells and modulating their migratory behavior. Key ECM components and their posttranslational modifications often harbor multiple domains with different signaling potential, in particular when modified during inflammation or wound healing. This signaling by the ECM should be considered a paracrine/endocrine function, as it affects cell phenotype, function, fate, and finally tissue homeostasis. These properties should be exploited to establish novel biochemical markers and antifibrotic treatment strategies for liver fibrosis as well as other fibrotic diseases.
Collapse
Affiliation(s)
- Morten A. Karsdal
- 1Nordic Bioscience A/S, Herlev Hovedgade, Herlev, Denmark; ,2University of Southern Denmark, SDU, Odense, Denmark;
| | | | | | | | | | | | | | | | | | - Aleksander Krag
- 3Department of Gastroenterology and Hepatology, Odense University Hospital, University of Southern Denmark, Odense, Denmark;
| | - Andy Blanchard
- 4GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom;
| | - Henrik Krarup
- 5Section of Molecular Biology, Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark;
| | | | - Detlef Schuppan
- 6Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany; ,7Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
The importance of extracellular matrix for cell function and in vivo likeness. Exp Mol Pathol 2015; 98:286-94. [DOI: 10.1016/j.yexmp.2015.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/06/2015] [Indexed: 01/07/2023]
|
8
|
Lu Y, Qiao L, Lei G, Mira RR, Gu J, Zheng Q. Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11515-014-1310-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Karsdal MA, Nielsen MJ, Sand JM, Henriksen K, Genovese F, Bay-Jensen AC, Smith V, Adamkewicz JI, Christiansen C, Leeming DJ. Extracellular matrix remodeling: the common denominator in connective tissue diseases. Possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay Drug Dev Technol 2012; 11:70-92. [PMID: 23046407 DOI: 10.1089/adt.2012.474] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increased attention is paid to the structural components of tissues. These components are mostly collagens and various proteoglycans. Emerging evidence suggests that altered components and noncoded modifications of the matrix may be both initiators and drivers of disease, exemplified by excessive tissue remodeling leading to tissue stiffness, as well as by changes in the signaling potential of both intact matrix and fragments thereof. Although tissue structure until recently was viewed as a simple architecture anchoring cells and proteins, this complex grid may contain essential information enabling the maintenance of the structure and normal functioning of tissue. The aims of this review are to (1) discuss the structural components of the matrix and the relevance of their mutations to the pathology of diseases such as fibrosis and cancer, (2) introduce the possibility that post-translational modifications (PTMs), such as protease cleavage, citrullination, cross-linking, nitrosylation, glycosylation, and isomerization, generated during pathology, may be unique, disease-specific biochemical markers, (3) list and review the range of simple enzyme-linked immunosorbent assays (ELISAs) that have been developed for assessing the extracellular matrix (ECM) and detecting abnormal ECM remodeling, and (4) discuss whether some PTMs are the cause or consequence of disease. New evidence clearly suggests that the ECM at some point in the pathogenesis becomes a driver of disease. These pathological modified ECM proteins may allow insights into complicated pathologies in which the end stage is excessive tissue remodeling, and provide unique and more pathology-specific biochemical markers.
Collapse
|