1
|
Qin S, Xu K, Nie B, Ji F, Zhang H. Approaches based on passive and active antibacterial coating on titanium to achieve antibacterial activity. J Biomed Mater Res A 2019; 106:2531-2539. [PMID: 29603857 DOI: 10.1002/jbm.a.36413] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/02/2018] [Accepted: 03/15/2018] [Indexed: 12/26/2022]
Abstract
Titanium (Ti) and its alloys are widely applied as orthopedic implants for hip and knee prosthesis, fixation, and dental implants. However, Ti and its alloys are bioinert and susceptible to bacteria and biofilm formation. Strategies for improving the antibacterial properties of Ti can be divided into two approaches, namely, passive coating and active coating on the Ti surface. Passive coating on Ti mainly kills the bacteria in contact but does not kill plankton or bacteria dwell in the bone tissue around the Ti implant. Active coating mainly involves the release of antibacterial agents to kill the bacteria, but this may result in the development of bacterial resistance. Both strategies include advantages and disadvantages. This article reviews the current and potential future approaches for improving antibacterial activity on Ti. We mainly focus on current approaches for fabricating antibacterial Ti and its limitations and countermeasures, and provide direction for further studies of biofunctionalization of Ti with antibacterial properties. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2531-2539, 2018.
Collapse
Affiliation(s)
- Sheng Qin
- Department of Orthopedics, Changhai hospital Affiliated to the Navy Military Medical University, Shanghai, People's Republic of China
| | - Kaihang Xu
- Department of Orthopedics, Changhai hospital Affiliated to the Navy Military Medical University, Shanghai, People's Republic of China
| | - Binen Nie
- Department of Bone and Joint Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Fang Ji
- Department of Orthopedics, Changhai hospital Affiliated to the Navy Military Medical University, Shanghai, People's Republic of China
| | - Hao Zhang
- Department of Orthopedics, Changhai hospital Affiliated to the Navy Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Andrés NC, Sieben JM, Baldini M, Rodríguez CH, Famiglietti Á, Messina PV. Electroactive Mg 2+-Hydroxyapatite Nanostructured Networks against Drug-Resistant Bone Infection Strains. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19534-19544. [PMID: 29799727 DOI: 10.1021/acsami.8b06055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface colonization competition between bacteria and host cells is one of the critical factors involved in tissue/implant integration. Current biomaterials are evaluated for their ability both of withstanding favorable responses of host tissue cells and of resisting bacterial contamination. In this work, the antibacterial ability of biocompatible Mg2+-substituted nanostructured hydroxyapatite (HA) was investigated. The densities of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli strains were significantly decreased after culture in the presence of Mg-substituted HA materials in direct correlation with Mg2+-Ca2+ switch in the HA lattice. It was noticed that this decrease was accompanied by a minimal alteration of bacterial environments; therefore, the Mg2+-HA antibacterial effect was associated with the material surface topography and it electroactive behavior. It was observed that 2.23 wt % Mg2+-HA samples exhibited the best antibacterial performance; it decreased 2-fold the initial population of E. coli, P. aeruginosa, and S. aureus at the intermediate concentration (50 mg mL-1 of broth). Our results reinforce the potential of Mg-HA nanostructured materials to be used in antibacterial coatings for implantable devices and/or medicinal materials to prevent bone infection and to promote wound healing.
Collapse
Affiliation(s)
| | | | - Mónica Baldini
- Department of Biology, Biochemistry and Pharmacy , Universidad Nacional del Sur , B8000ICN Bahía Blanca , Argentina
| | - Carlos H Rodríguez
- Laboratory of Bacteriology, Department of Clinical Biochemistry, Hospital de Clínicas "José de San Martín", Faculty of Pharmacy and Biochemistry , Universidad de Buenos Aires , C1113AAD CABA, Buenos Aires , Argentina
| | - Ángela Famiglietti
- Laboratory of Bacteriology, Department of Clinical Biochemistry, Hospital de Clínicas "José de San Martín", Faculty of Pharmacy and Biochemistry , Universidad de Buenos Aires , C1113AAD CABA, Buenos Aires , Argentina
| | | |
Collapse
|
3
|
Li B, Webster TJ. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J Orthop Res 2018; 36:22-32. [PMID: 28722231 PMCID: PMC5775060 DOI: 10.1002/jor.23656] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/21/2017] [Indexed: 02/04/2023]
Abstract
There has been a dramatic increase in the emergence of antibiotic-resistant bacterial strains, which has made antibiotic choices for infection control increasingly limited and more expensive. In the U.S. alone, antibiotic-resistant bacteria cause at least 2 million infections and 23,000 deaths a year resulting in a $55-70 billion per year economic impact. Antibiotics are critical to the success of surgical procedures including orthopedic prosthetic surgeries, and antibiotic resistance is occurring in nearly all bacteria that infect people, including the most common bacteria that cause orthopedic infections, such as Staphylococcus aureus (S. aureus). Most clinical cases of orthopedic surgeries have shown that patients infected with antibiotic-resistant bacteria, such as methicillin-resistant S. aureus (MRSA), are associated with increased morbidity and mortality. This paper reviews the severity of antibiotic resistance at the global scale, the consequences of antibiotic resistance, and the pathways bacteria used to develop antibiotic resistance. It highlights the opportunities and challenges in limiting antibiotic resistance through approaches like the development of novel, non-drug approaches to reduce bacteria functions related to orthopedic implant-associated infections. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:22-32, 2018.
Collapse
Affiliation(s)
- Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA,Mary Babb Randolph Cancer Center, Morgantown, WV 26506, USA,Correspondence to: Bingyun Li, PhD, Department of Orthopaedics, School of Medicine, West Virginia University, 1 Medical Center Drive, Morgantown, WV 26506-9196, USA, Tel: 1-304-293-1075, Fax: 1-304-293-7070, , URL: http://medicine.hsc.wvu.edu/ortho-bli/. Thomas J. Webster, PhD, Department of Chemical Engineering, 313 Snell Engineering Center, 360 Huntington Avenue, Northeastern University, Boston, MA 02115, USA, Tel: 1- 617-373-2989, , URL: http://www.che.neu.edu/people/webster-thomas
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA,Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia,Correspondence to: Bingyun Li, PhD, Department of Orthopaedics, School of Medicine, West Virginia University, 1 Medical Center Drive, Morgantown, WV 26506-9196, USA, Tel: 1-304-293-1075, Fax: 1-304-293-7070, , URL: http://medicine.hsc.wvu.edu/ortho-bli/. Thomas J. Webster, PhD, Department of Chemical Engineering, 313 Snell Engineering Center, 360 Huntington Avenue, Northeastern University, Boston, MA 02115, USA, Tel: 1- 617-373-2989, , URL: http://www.che.neu.edu/people/webster-thomas
| |
Collapse
|
4
|
A therapeutic polyelectrolyte–vitamin C nanoparticulate system in polyvinyl alcohol–alginate hydrogel: An approach to treat skin and soft tissue infections caused by Staphylococcus aureus. Colloids Surf B Biointerfaces 2017; 160:315-324. [DOI: 10.1016/j.colsurfb.2017.09.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 11/17/2022]
|
5
|
Willy C, Stichling M, Müller M, Gatzer R, Kramer A, Back DA, Vogt D. [Acute therapeutic measures for limb salvage Part 2 : Debridement, lavage techniques and anti-infectious strategies]. Unfallchirurg 2017; 119:388-99. [PMID: 27160730 DOI: 10.1007/s00113-016-0178-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The quality of the primary care of Gustilo-Anderson (GA) type IIIB and IIIC extremity injuries is crucial to the success of the limb salvage procedure. This article provides a compilation of consistent, but often controversially discussed aspects of initial debridement, modern techniques of lavage and wound closure, in addition to current issues on the application of antibiotics and antiseptics, based on our own experiences and the latest literature. The following points should be stressed. Severe extremity injuries with gross contamination (GA IIIA, B, and C) will still be associated with an infection rate of up to 60 %. The initial debridement should be performed as soon as an experienced trauma surgeon is available. Tissue that is definitely avital will have to be removed, whereas traumatized but potentially surviving tissue will have to be re-evaluated during a second-look operation after 36-48 h. Given a high enough level of contamination, biofilms will form after as few as 6 h. The perioperative antibiotic prophylaxis has to be initiated early and should be continued for at least 24 h (GA I/II) or up to 5 days (GA III). In cases of bacterial contamination, wound irrigation will be useful with additives such as polyhexanide, octenidine or superoxidized water. Rinsing of the wound should be performed with 3-9 L and only slight manual pressure (no jet lavage). The definitive primary closure of a wound should be achieved in the initial operation, but only in the case of certain "decontamination" and overall vitality of the wound (GA I and II). In the presence of high-grade injuries, a temporary vacuum sealing technique can be used until the earliest possible definitive plastic surgical wound closure.
Collapse
Affiliation(s)
- C Willy
- Abteilung Unfallchirurgie und Orthopädie, Septisch-Rekonstruktive Chirurgie, Forschungs- und Behandlungszentrum Rekonstruktion von Defektwunden, Exzellenz-Zentrum zur Versorgung von Verwundeten aus Kriegs- und Krisengebieten, Bundeswehrkrankenhaus Berlin, Scharnhorststr. 13, 10115, Berlin, Deutschland.
| | - M Stichling
- Sektion Gefäß- und Thoraxchirurgie der Abteilung Unfallchirurgie und Orthopädie, Septisch-Rekonstruktive Chirurgie, Bundeswehrkrankenhaus Berlin, Scharnhorststr. 13, 10115, Berlin, Deutschland
| | - M Müller
- Abteilung I/Laborgruppe Med. Mikrobiologie, Zentrales Institut des Sanitätsdienstes, der Bundeswehr Kiel/Berlin, Berlin, Deutschland
| | - R Gatzer
- Abteilung I/Laborgruppe Med. Mikrobiologie, Zentrales Institut des Sanitätsdienstes, der Bundeswehr Kiel/Berlin, Berlin, Deutschland
| | - A Kramer
- Institut für Hygiene und Umweltmedizin, Universitätsmedizin Greifswald, Greifswald, Deutschland
| | - D A Back
- Abteilung Allgemein- und Viszeralchirurgie, Bundeswehrkrankenhaus Berlin, Scharnhorststr. 13, 10115, Berlin, Deutschland
| | - D Vogt
- Abteilung Unfallchirurgie und Orthopädie, Septisch-Rekonstruktive Chirurgie, Forschungs- und Behandlungszentrum Rekonstruktion von Defektwunden, Exzellenz-Zentrum zur Versorgung von Verwundeten aus Kriegs- und Krisengebieten, Bundeswehrkrankenhaus Berlin, Scharnhorststr. 13, 10115, Berlin, Deutschland
| |
Collapse
|
6
|
Armstead AL, Simoes TA, Wang X, Brydson R, Brown A, Jiang BH, Rojanasakul Y, Li B. Toxicity and oxidative stress responses induced by nano- and micro-CoCrMo particles. J Mater Chem B 2017. [DOI: 10.1039/c7tb01372h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Particles on the nano- and micro-meter scales present unique cell-specific cellular effects (i.e.cytotoxicity and oxidative stress).
Collapse
Affiliation(s)
- Andrea L. Armstead
- Department of Orthopaedics
- School of Medicine
- West Virginia University
- Morgantown
- USA
| | - Thiago A. Simoes
- Institute for Materials Research
- School of Chemical and Process Engineering
- University of Leeds
- UK
| | - Xianfeng Wang
- Department of Orthopaedics
- School of Medicine
- West Virginia University
- Morgantown
- USA
| | - Rik Brydson
- Institute for Materials Research
- School of Chemical and Process Engineering
- University of Leeds
- UK
| | - Andy Brown
- Institute for Materials Research
- School of Chemical and Process Engineering
- University of Leeds
- UK
| | - Bing-Hua Jiang
- Department of Pathology
- Anatomy and Cell Biology
- Thomas Jefferson University
- Philadelphia
- USA
| | - Yon Rojanasakul
- School of Pharmacy
- West Virginia University
- Morgantown
- USA
- Mary Babb Randolph Cancer Center
| | - Bingyun Li
- Department of Orthopaedics
- School of Medicine
- West Virginia University
- Morgantown
- USA
| |
Collapse
|
7
|
Rajivgandhi G, Vijayan R, Kannan M, Santhanakrishnan M, Manoharan N. Molecular characterization and antibacterial effect of endophytic actinomycetes Nocardiopsis sp. GRG1 (KT235640) from brown algae against MDR strains of uropathogens. Bioact Mater 2016; 1:140-150. [PMID: 29744403 PMCID: PMC5883993 DOI: 10.1016/j.bioactmat.2016.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/10/2016] [Indexed: 01/20/2023] Open
Abstract
Our study is to evaluate the potential bioactive compound of Nocardiopsis sp. GRG1 (KT235640) and its antibacterial activity against multi drug resistant strains (MDRS) on urinary tract infections (UTIs). Two brown algae samples were collected and were subjected to isolation of endophytic actinomycetes. 100 strains of actinomycetes were isolated from algal samples based on observation of morphology and physiological characters. 40 strains were active in antagonistic activity against various clinical pathogens. Among the strains, 10 showed better antimicrobial activity against MDRS on UTIs. The secondary metabolite of Nocardiopsis sp. GRG1 (KT235640) has showed tremendous antibacterial activity against UTI pathogens compared to other strains. Influence of various growth parameters were used for synthesis of secondary metabolites, such as optimum pH 7, incubation time 5-7 days, temperature (30 °C), salinity (5%), fructose and mannitol as the suitable carbon and nitrogen sources. At 100 μg/ml concentration MIC of Nocardiopsis sp. GRG1 (KT235640) showed highest percentage of inhibition against Proteus mirabilis (85%), and E.coli, Staphylococcus auerues, Psuedomonas aeroginasa, Enterobactor sp and Coagulinase negative staphylococci 78-85% respectively.
Collapse
Affiliation(s)
- Govindan Rajivgandhi
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 24, Tamil Nadu, India
| | - Ramachandran Vijayan
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 24, Tamil Nadu, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 67, India
| | - Marikani Kannan
- Department of Microbiology, VHNSN College, Virudunagar 01, Tamil Nadu, India
| | | | - Natesan Manoharan
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 24, Tamil Nadu, India
| |
Collapse
|
8
|
Armstead AL, Li B. In vitro inflammatory effects of hard metal (WC-Co) nanoparticle exposure. Int J Nanomedicine 2016; 11:6195-6206. [PMID: 27920526 PMCID: PMC5123731 DOI: 10.2147/ijn.s121141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Identifying the toxicity of nanoparticles (NPs) is an important area of research as the number of nanomaterial-based consumer and industrial products continually rises. In addition, the potential inflammatory effects resulting from pulmonary NP exposure are emerging as an important aspect of nanotoxicity. In this study, the toxicity and inflammatory state resulting from tungsten carbide–cobalt (WC–Co) NP exposure in macrophages and a coculture (CC) of lung epithelial cells (BEAS-2B) and macrophages (THP-1) at a 3:1 ratio were examined. It was found that the toxicity of nano-WC–Co was cell dependent; significantly less toxicity was observed in THP-1 cells compared to BEAS-2B cells. It was demonstrated that nano-WC–Co caused reduced toxicity in the CC model compared to lung epithelial cell monoculture, which suggested that macrophages may play a protective role against nano-WC–Co-mediated toxicity in CCs. Nano-WC–Co exposure in macrophages resulted in increased levels of interleukin (IL)-1β and IL-12 secretion and decreased levels of tumor necrosis factor alpha (TNFα). In addition, the polarizing effects of nano-WC–Co exposure toward the M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophage phenotypes were investigated. The results of this study indicated that nano-WC–Co exposure stimulated the M1 phenotype, marked by high expression of CD40 M1 macrophage surface markers.
Collapse
Affiliation(s)
- Andrea L Armstead
- Department of Orthopaedics, School of Medicine; School of Pharmacy, West Virginia University
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine; School of Pharmacy, West Virginia University; Mary Babb Randolph Cancer Center, Morgantown, WV, USA
| |
Collapse
|
9
|
Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P. Biofilm, pathogenesis and prevention--a journey to break the wall: a review. Arch Microbiol 2015; 198:1-15. [PMID: 26377585 DOI: 10.1007/s00203-015-1148-6] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 01/31/2023]
Abstract
Biofilms contain group(s) of microorganisms that are found to be associated with the biotic and abiotic surfaces. Biofilms contain either homogenous or heterogeneous populations of bacteria which remain in the matrix made up of extracellular polymeric substances secreted by constituent population of the biofilm. Biofilms can be either single or multilayered. Biofilms are an increasing issue of concern that is gaining importance with each passing day. Due to the ubiquitous nature of biofilms, it is difficult to eradicate them. It has been seen that many infectious diseases harbour biofilms of bacterial pathogens as the reservoir of persisting infections which can prove fatal at times. The presence of biofilms can be seen in diseases like endocarditis, cystic fibrosis, periodontitis, rhinosinusitis and osteomyelitis. The presence of biofilms has been mostly seen in medical implants and urinary catheters. Various signalling events including two-component signalling, extra cytoplasmic function and quorum sensing are involved in the formation of biofilms. The presence of an extracellular polymeric matrix in biofilms makes it difficult for the antimicrobials to act on them and make the bacteria tolerant to antibiotics and other drugs. The aim of this review was to discuss about the basic formation of a biofilm, various signalling cascades involved in biofilm formation, possible mechanisms of drug resistance in biofilms and recent therapeutic approaches involved in successful eradication of biofilms.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India.
| | - Subhasis Sarkar
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India.
| | - Bannhi Das
- Department of Biotechnology, Mount Carmel College, Bangalore, 560 052, India.
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India.
| | - Prosun Tribedi
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India.
| |
Collapse
|
10
|
Role of Interleukin-12 in Protection against Pulmonary Infection with Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2015; 59:6308-16. [PMID: 26248370 DOI: 10.1128/aac.00968-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/21/2015] [Indexed: 11/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common pathogen associated with nosocomial pneumonia and is an increasing threat for severe community-acquired pneumonia. We have now investigated the role of interleukin-12 (IL-12) in protective immunity against lung infection with MRSA. The importance of IL-12 in protection from pulmonary MRSA infection was demonstrated by the finding that IL-12p35-deficient mice had a lower survival rate, higher bacterial burdens in lung and spleen, and decreased expression of interferon gamma (IFN-γ) in the lung compared to wild-type mice. These effects were completely reversed by replacement intranasal therapy with recombinant IL-12. Furthermore, exogenous IL-12 treatment of wild-type mice 24 h before pulmonary challenge with a lethal dose of MRSA significantly improved bacterial clearance and resulted in protection from death. The IL-12-treated mice had increased numbers of lung natural killer (NK) cells and neutrophils and higher levels of IFN-γ in the lung and serum compared to untreated mice. The major source of IL-12-driven IFN-γ expression in the lung was the NK cell, and the direct target of pulmonary IFN-γ was the lung macrophage, as shown using mice with a macrophage-specific defect in interferon gamma (IFN-γ) signaling (MIIG mice). Importantly, combination therapy with linezolid and IL-12 following intranasal MRSA infection significantly increased survival compared to that of mice receiving linezolid or IL-12 alone. These results indicate that IL-12-based immunotherapy may hold promise for treatment of MRSA pneumonia.
Collapse
|
11
|
Sampath Kumar TS, Madhumathi K, Rubaiya Y, Doble M. Dual mode antibacterial activity of ion substituted calcium phosphate nanocarriers for bone infections. Front Bioeng Biotechnol 2015; 3:59. [PMID: 25984512 PMCID: PMC4416447 DOI: 10.3389/fbioe.2015.00059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/17/2015] [Indexed: 12/02/2022] Open
Abstract
Nanotechnology has tremendous potential for the management of infectious diseases caused by multi-drug resistant bacteria, through the development of newer antibacterial materials and efficient modes of antibiotic delivery. Calcium phosphate (CaP) bioceramics are commonly used as bone substitutes due to their similarity to bone mineral and are widely researched upon for the treatment of bone infections associated with bone loss. CaPs can be used as local antibiotic delivery agents for bone infections and can be substituted with antibacterial ions in their crystal structure to have a wide spectrum, sustained antibacterial activity even against drug resistant bacteria. In the present work, a dual mode antibiotic delivery system with antibacterial ion substituted calcium deficient hydroxyapatite (CDHA) nanoparticles has been developed. Antibacterial ions such as zinc, silver, and strontium have been incorporated into CDHA at concentrations of 6, 0.25–0.75, and 2.5–7.5 at. %, respectively. The samples were found to be phase pure, acicular nanoparticles of length 40–50 nm and width 5–6 nm approximately. The loading and release profile of doxycycline, a commonly used antibiotic, was studied from the nanocarriers. The drug release was studied for 5 days and the release profile was influenced by the ion concentrations. The release of antibacterial ions was studied over a period of 21 days. The ion substituted CDHA samples were tested for antibacterial efficacy on Staphylococcus aureus and Escherichia coli by MIC/MBC studies and time-kill assay. AgCDHA and ZnCDHA showed high antibacterial activity against both bacteria, while SrCDHA was weakly active against S. aureus. Present study shows that the antibiotic release can provide the initial high antibacterial activity, and the sustained ion release can provide a long-term antibacterial activity. Such dual mode antibiotic and antibacterial ion release offers an efficient and potent way to treat an incumbent drug resistant infection.
Collapse
Affiliation(s)
- T S Sampath Kumar
- Medical Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras , Chennai , India
| | - K Madhumathi
- Medical Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras , Chennai , India
| | - Y Rubaiya
- Department of Biotechnology, Indian Institute of Technology Madras , Chennai , India
| | - Mukesh Doble
- Department of Biotechnology, Indian Institute of Technology Madras , Chennai , India
| |
Collapse
|
12
|
Hannigan GD, Pulos N, Grice EA, Mehta S. Current Concepts and Ongoing Research in the Prevention and Treatment of Open Fracture Infections. Adv Wound Care (New Rochelle) 2015; 4:59-74. [PMID: 25566415 DOI: 10.1089/wound.2014.0531] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/19/2014] [Indexed: 12/25/2022] Open
Abstract
Significance: Open fractures are fractures in which the bone has violated the skin and soft tissue. Because of their severity, open fractures are associated with complications that can result in increased lengths of hospital stays, multiple operative interventions, and even amputation. One of the factors thought to influence the extent of these complications is exposure and contamination of the open fracture with environmental microorganisms, potentially those that are pathogenic in nature. Recent Advances: Current open fracture care aims to prevent infection by wound classification, prophylactic antibiotic administration, debridement and irrigation, and stable fracture fixation. Critical Issues: Despite these established treatment paradigms, infections and infection-related complications remain a significant clinical burden. To address this, improvements need to be made in our ability to detect bacterial infections, effectively remove wound contamination, eradicate infections, and treat and prevent biofilm formation associated with fracture fixation hardware. Future Directions: Current research is addressing these critical issues. While culture methods are of limited value, culture-independent molecular techniques are being developed to provide informative detection of bacterial contamination and infection. Other advanced contamination- and infection-detecting techniques are also being investigated. New hardware-coating methods are being developed to minimize the risk of biofilm formation in wounds, and immune stimulation techniques are being developed to prevent open fracture infections.
Collapse
Affiliation(s)
- Geoffrey D. Hannigan
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicholas Pulos
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth A. Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samir Mehta
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Hamza T, Li B. Differential responses of osteoblasts and macrophages upon Staphylococcus aureus infection. BMC Microbiol 2014; 14:207. [PMID: 25059520 PMCID: PMC4116603 DOI: 10.1186/s12866-014-0207-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/18/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is one of the primary causes of bone infections which are often chronic and difficult to eradicate. Bacteria like S. aureus may survive upon internalization in cells and may be responsible for chronic and recurrent infections. In this study, we compared the responses of a phagocytic cell (i.e. macrophage) to a non-phagocytic cell (i.e. osteoblast) upon S. aureus internalization. RESULTS We found that upon internalization, S. aureus could survive for up to 5 and 7 days within macrophages and osteoblasts, respectively. Significantly more S. aureus was internalized in macrophages compared to osteoblasts and a significantly higher (100 fold) level of live intracellular S. aureus was detected in macrophages compared to osteoblasts. However, the percentage of S. aureus survival after infection was significantly lower in macrophages compared to osteoblasts at post-infection days 1-6. Interestingly, macrophages had relatively lower viability in shorter infection time periods (i.e. 0.5-4 h; significant at 2 h) but higher viability in longer infection time periods (i.e. 6-8 h; significant at 8 h) compared to osteoblasts. In addition, S. aureus infection led to significant changes in reactive oxygen species production in both macrophages and osteoblasts. Moreover, infected osteoblasts had significantly lower alkaline phosphatase activity at post-infection day 7 and infected macrophages had higher phagocytosis activity compared to non-infected cells. CONCLUSIONS S. aureus was found to internalize and survive within osteoblasts and macrophages and led to differential responses between osteoblasts and macrophages. These findings may assist in evaluation of the pathogenesis of chronic and recurrent infections which may be related to the intracellular persistence of bacteria within host cells.
Collapse
Affiliation(s)
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown 26506, WV, USA.
| |
Collapse
|
14
|
Li H, Hamza T, Tidwell JE, Clovis N, Li B. Unique antimicrobial effects of platelet-rich plasma and its efficacy as a prophylaxis to prevent implant-associated spinal infection. Adv Healthc Mater 2013; 2:1277-84. [PMID: 23447088 DOI: 10.1002/adhm.201200465] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/16/2013] [Indexed: 11/10/2022]
Abstract
Platelet-rich-plasma (PRP) has attracted great attention and has been increasingly used for a variety of clinical applications including orthopedic surgeries, periodontal and oral surgeries, maxillofacial surgeries, plastic surgeries, and sports medicine. However, very little is known about the antimicrobial activities of PRP. PRP is found to have antimicrobial properties both in vitro and in vivo. In vitro, the antimicrobial properties of PRP are bacterial-strain-specific and time-specific: PRP significantly (80-100 fold reduction in colony-forming units) inhibits the growth of methicillin-sensitive and methicillin-resistant Staphylococcus aureus, Group A streptococcus, and Neisseria gonorrhoeae within the first few hours but it has no significant antimicrobial properties against E. coli and Pseudomonas. The antimicrobial properties of PRP also depend on the concentration of thrombin. In vivo, an implant-associated spinal infection rabbit model is established and used to evaluate the antimicrobial and wound-healing properties of PRP. Compared to the infection controls, PRP treatment results in significant reduction in bacterial colonies in bone samples at all time points studied (i.e. 1, 2, and 3 weeks) and significant increase in mineralized tissues (thereby better bone healing) at postoperative weeks 2 and 3. PRP therefore may be a useful adjunct strategy against postoperative implant-associated infections.
Collapse
Affiliation(s)
- Hongshuai Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; Department of Orthopaedics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | |
Collapse
|
15
|
Hamza T, Dietz M, Pham D, Clovis N, Danley S, Li B, Li B. Intra-cellular Staphylococcus aureus alone causes infection in vivo. Eur Cell Mater 2013; 25:341-50; discussion 350. [PMID: 23832687 PMCID: PMC3830899 DOI: 10.22203/ecm.v025a24] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Chronic and recurrent bone infections occur frequently but have not been explained. Staphylococcus aureus (S. aureus) is often found among chronic and recurrent infections and may be responsible for such infections. One possible reason is that S. aureus can internalize and survive within host cells and by doing so, S. aureus can evade both host defense mechanisms and most conventional antibiotic treatments. In this study, we hypothesized that intra-cellular S. aureus could induce infections in vivo. Osteoblasts were infected with S. aureus and, after eliminating extra-cellular S. aureus, inoculated into an open fracture rat model. Bacterial cultures and radiographic observations at post-operative day 21 confirmed local bone infections in animals inoculated with intra-cellular S. aureus within osteoblasts alone. We present direct in vivo evidence that intra-cellular S. aureus could be sufficient to induce bone infection in animals; we found that intra-cellular S. aureus inoculation of as low as 102 colony forming units could induce severe bone infections. Our data may suggest that intra-cellular S. aureus can "hide" in host cells during symptom-free periods and, under certain conditions, they may escape and lead to infection recurrence. Intra-cellular S. aureus therefore could play an important role in the pathogenesis of S. aureus infections, especially those chronic and recurrent infections in which disease episodes may be separated by weeks, months, or even years.
Collapse
Affiliation(s)
- Therwa Hamza
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506,Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506
| | - Matthew Dietz
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506
| | - Danh Pham
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506
| | - Nina Clovis
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506
| | - Suzanne Danley
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506,Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506,WVNano Initiative, Morgantown, WV 26506,Mary Babb Randolph Cancer Center, Morgantown, WV 26506,Correspondence to: Bingyun Li, PhD, Associate Professor, Director, Nanomedicine Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506-9196, USA, Tel: 1-304-293-1075, Fax: 1-304-293-7070,
| | | |
Collapse
|
16
|
Central venous catheter-related biofilm infections: An up-to-date focus on meticillin-resistant Staphylococcus aureus. J Glob Antimicrob Resist 2013; 1:71-78. [DOI: 10.1016/j.jgar.2013.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/25/2013] [Accepted: 03/05/2013] [Indexed: 11/17/2022] Open
|
17
|
Li H, Li B. PRP as a new approach to prevent infection: preparation and in vitro antimicrobial properties of PRP. J Vis Exp 2013. [PMID: 23609458 DOI: 10.3791/50351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Implant-associated infection is becoming more and more challenging to the healthcare industry worldwide due to increasing antibiotic resistance, transmission of antibiotic resistant bacteria between animals and humans, and the high cost of treating infections. In this study, we disclose a new strategy that may be effective in preventing implant-associated infection based on the potential antimicrobial properties of platelet-rich plasma (PRP). Due to its well-studied properties for promoting healing, PRP (a biological product) has been increasingly used for clinical applications including orthopaedic surgeries, periodontal and oral surgeries, maxillofacial surgeries, plastic surgeries, sports medicine, etc. PRP could be an advanced alternative to conventional antibiotic treatments in preventing implant-associated infections. The use of PRP may be advantageous compared to conventional antibiotic treatments since PRP is less likely to induce antibiotic resistance and PRP's antimicrobial and healing-promoting properties may have a synergistic effect on infection prevention. It is well known that pathogens and human cells are racing for implant surfaces, and PRP's properties of promoting healing could improve human cell attachment thereby reducing the odds for infection. In addition, PRP is inherently biocompatible, and safe and free from the risk of transmissible diseases. For our study, we have selected several clinical bacterial strains that are commonly found in orthopaedic infections and examined whether PRP has in vitro antimicrobial properties against these bacteria. We have prepared PRP using a twice centrifugation approach which allows the same platelet concentration to be obtained for all samples. We have achieved consistent antimicrobial findings and found that PRP has strong in vitro antimicrobial properties against bacteria like methicillin-sensitive and methicillin-resistant Staphylococcus aureus, Group A Streptococcus, and Neisseria gonorrhoeae. Therefore, the use of PRP may have the potential to prevent infection and to reduce the need for costly post-operative treatment of implant-associated infections.
Collapse
Affiliation(s)
- Hongshuai Li
- Department of Orthopaedics, School of Medicine, West Virginia University, USA
| | | |
Collapse
|
18
|
Cationic antimicrobial peptide LL-37 is effective against both extra- and intracellular Staphylococcus aureus. Antimicrob Agents Chemother 2012; 57:1283-90. [PMID: 23274662 DOI: 10.1128/aac.01650-12] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The increasing resistance of bacteria to conventional antibiotics and the challenges posed by intracellular bacteria, which may be responsible for chronic and recurrent infections, have driven the need for advanced antimicrobial drugs for effective elimination of both extra- and intracellular pathogens. The purpose of this study was to determine the killing efficacy of cationic antimicrobial peptide LL-37 compared to conventional antibiotics against extra- and intracellular Staphylococcus aureus. Bacterial killing assays and an infection model of osteoblasts and S. aureus were studied to determine the bacterial killing efficacy of LL-37 and conventional antibiotics against extra- and intracellular S. aureus. We found that LL-37 was effective in killing extracellular S. aureus at nanomolar concentrations, while lactoferricin B was effective at micromolar concentrations and doxycycline and cefazolin at millimolar concentrations. LL-37 was surprisingly more effective in killing the clinical strain than in killing an ATCC strain of S. aureus. Moreover, LL-37 was superior to conventional antibiotics in eliminating intracellular S. aureus. The kinetic studies further revealed that LL-37 was fast in eliminating both extra- and intracellular S. aureus. Therefore, LL-37 was shown to be very potent and prompt in eliminating both extra- and intracellular S. aureus and was more effective in killing extra- and intracellular S. aureus than commonly used conventional antibiotics. LL-37 could potentially be used to treat chronic and recurrent infections due to its effectiveness in eliminating not only extracellular but also intracellular pathogens.
Collapse
|
19
|
Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2011; 2:445-59. [PMID: 21921685 DOI: 10.4161/viru.2.5.17724] [Citation(s) in RCA: 659] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increasing attention has been focused on understanding bacterial biofilms and this growth modality's relation to human disease. In this review we explore the genetic regulation and molecular components involved in biofilm formation and maturation in the context of the Gram-positive cocci, Staphylococcus aureus. In addition, we discuss diseases and host immune responses, along with current therapies associated with S. aureus biofilm infections and prevention strategies.
Collapse
Affiliation(s)
- Nathan K Archer
- Department of Microbial Pathogenesis, Dental School, University of Maryland, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|