1
|
Kapat K, Kumbhakarn S, Sable R, Gondane P, Takle S, Maity P. Peptide-Based Biomaterials for Bone and Cartilage Regeneration. Biomedicines 2024; 12:313. [PMID: 38397915 PMCID: PMC10887361 DOI: 10.3390/biomedicines12020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The healing of osteochondral defects (OCDs) that result from injury, osteochondritis, or osteoarthritis and bear lesions in the cartilage and bone, pain, and loss of joint function in middle- and old-age individuals presents challenges to clinical practitioners because of non-regenerative cartilage and the limitations of current therapies. Bioactive peptide-based osteochondral (OC) tissue regeneration is becoming more popular because it does not have the immunogenicity, misfolding, or denaturation problems associated with original proteins. Periodically, reviews are published on the regeneration of bone and cartilage separately; however, none of them addressed the simultaneous healing of these tissues in the complicated heterogeneous environment of the osteochondral (OC) interface. As regulators of cell adhesion, proliferation, differentiation, angiogenesis, immunomodulation, and antibacterial activity, potential therapeutic strategies for OCDs utilizing bone and cartilage-specific peptides should be examined and investigated. The main goal of this review was to study how they contribute to the healing of OCDs, either alone or in conjunction with other peptides and biomaterials.
Collapse
Affiliation(s)
- Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Sakshi Kumbhakarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Rahul Sable
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Prashil Gondane
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Shruti Takle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Pritiprasanna Maity
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Kiselevskiy MV, Anisimova NY, Kapustin AV, Ryzhkin AA, Kuznetsova DN, Polyakova VV, Enikeev NA. Development of Bioactive Scaffolds for Orthopedic Applications by Designing Additively Manufactured Titanium Porous Structures: A Critical Review. Biomimetics (Basel) 2023; 8:546. [PMID: 37999187 PMCID: PMC10669447 DOI: 10.3390/biomimetics8070546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
We overview recent findings achieved in the field of model-driven development of additively manufactured porous materials for the development of a new generation of bioactive implants for orthopedic applications. Porous structures produced from biocompatible titanium alloys using selective laser melting can present a promising material to design scaffolds with regulated mechanical properties and with the capacity to be loaded with pharmaceutical products. Adjusting pore geometry, one could control elastic modulus and strength/fatigue properties of the engineered structures to be compatible with bone tissues, thus preventing the stress shield effect when replacing a diseased bone fragment. Adsorption of medicals by internal spaces would make it possible to emit the antibiotic and anti-tumor agents into surrounding tissues. The developed internal porosity and surface roughness can provide the desired vascularization and osteointegration. We critically analyze the recent advances in the field featuring model design approaches, virtual testing of the designed structures, capabilities of additive printing of porous structures, biomedical issues of the engineered scaffolds, and so on. Special attention is paid to highlighting the actual problems in the field and the ways of their solutions.
Collapse
Affiliation(s)
- Mikhail V. Kiselevskiy
- N.N. Blokhin National Medical Research Center of Oncology (N.N. Blokhin NMRCO), Ministry of Health of the Russian Federation, 115478 Moscow, Russia;
- Department of Casting Technologies and Artistic Processing of Materials, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Natalia Yu. Anisimova
- N.N. Blokhin National Medical Research Center of Oncology (N.N. Blokhin NMRCO), Ministry of Health of the Russian Federation, 115478 Moscow, Russia;
- Department of Casting Technologies and Artistic Processing of Materials, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Alexei V. Kapustin
- Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia (A.A.R.); (D.N.K.); (V.V.P.); (N.A.E.)
| | - Alexander A. Ryzhkin
- Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia (A.A.R.); (D.N.K.); (V.V.P.); (N.A.E.)
| | - Daria N. Kuznetsova
- Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia (A.A.R.); (D.N.K.); (V.V.P.); (N.A.E.)
| | - Veronika V. Polyakova
- Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia (A.A.R.); (D.N.K.); (V.V.P.); (N.A.E.)
| | - Nariman A. Enikeev
- Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia (A.A.R.); (D.N.K.); (V.V.P.); (N.A.E.)
- Laboratory for Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Age-Related Low Bone Mineral Density in C57BL/6 Mice Is Reflective of Aberrant Bone Morphogenetic Protein-2 Signaling Observed in Human Patients Diagnosed with Osteoporosis. Int J Mol Sci 2022; 23:ijms231911205. [PMID: 36232525 PMCID: PMC9570292 DOI: 10.3390/ijms231911205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/11/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Osteoporosis (OP) is a bone disorder characterized by decreased bone mineral density (BMD). Bone Morphogenetic Protein-2 (BMP-2) injections are used to promote bone formation in OP patients. However, patients are unresponsive to BMP-2 while displaying an upregulation of BMP Receptor Type 1a (BMPRIa) and protein kinase CK2α (CK2α). A synthetically produced peptide named casein kinase 2.3 (CK2.3) utilizes the BMP-signaling pathway as it enhances osteogenesis of primary osteoblasts isolated from OP patients, whereas BMP-2 does not. Although shown in OP patients, there is currently no reliable mouse model to study BMP-2 and CK2.3 signaling. In this publication, we show that BMPRIa was required for CK2.3-mediated osteogenesis in C2C12 cells with a CRISPR-Cas9-mediated gene knockout for BMPRIa. We utilized the C57BL/6 (B6) mouse strain as an aging-model to study aberrant BMP-2 signaling, demonstrating that, like OP patients, in 15 and 20-month mice, BMP-2 did not increase bone growth and displayed upregulated BMPRIa and CK2α protein expression. Furthermore, CK2.3 enhanced osteogenesis and decreased osteoclastogenesis in all age groups, whereas BMP-2 only increased mineralization in 6-month mice while increasing osteoclast formation in all age groups. These data demonstrated that aging B6 mice were a reliable model and mimicked data obtained from OP patients.
Collapse
|
4
|
The Role of Protein Kinase CK2 in Development and Disease Progression: A Critical Review. J Dev Biol 2022; 10:jdb10030031. [PMID: 35997395 PMCID: PMC9397010 DOI: 10.3390/jdb10030031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Protein kinase CK2 (CK2) is a ubiquitous holoenzyme involved in a wide array of developmental processes. The involvement of CK2 in events such as neurogenesis, cardiogenesis, skeletogenesis, and spermatogenesis is essential for the viability of almost all organisms, and its role has been conserved throughout evolution. Further into adulthood, CK2 continues to function as a key regulator of pathways affecting crucial processes such as osteogenesis, adipogenesis, chondrogenesis, neuron differentiation, and the immune response. Due to its vast role in a multitude of pathways, aberrant functioning of this kinase leads to embryonic lethality and numerous diseases and disorders, including cancer and neurological disorders. As a result, CK2 is a popular target for interventions aiming to treat the aforementioned diseases. Specifically, two CK2 inhibitors, namely CX-4945 and CIBG-300, are in the early stages of clinical testing and exhibit promise for treating cancer and other disorders. Further, other researchers around the world are focusing on CK2 to treat bone disorders. This review summarizes the current understanding of CK2 in development, the structure of CK2, the targets and signaling pathways of CK2, the implication of CK2 in disease progression, and the recent therapeutics developed to inhibit the dysregulation of CK2 function in various diseases.
Collapse
|
5
|
Gupta A, Tripathi L, Pandey S, Dwivedi D. Biology of Bone Morphogenetic Proteins in Skeleton Disease: Osteonecrosis
in Sickle Cell Disease Patients. Curr Protein Pept Sci 2022; 23:264-270. [DOI: 10.2174/1389203723666220530104442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Sickle cell disease (SCD) is an autosomal recessive trait of genetic hemoglobin disorder whose prevalence is varied from 5 to 25 % of the world population. It is characterized by the presence of hemoglobin (HbS) instead of normal hemoglobin (HbA). An individual suffering from sickle cell disease is likely to be at risk of osteonecrosis which is a form of ischemic bone infarction which causes intolerable degenerative joint problems and can affect 30-50% of people with sickle cell disease. The femoral head is the most frequent epiphyseal location in osteonecrosis with sickle cell disease. In this review, the Bone morphogenetic protein (BMP)-a subfamily of transforming growth factor-β (TGF-β) characteristics, outlined the osteoblastogenesis potentiality via using combinatorial or advanced treatment approaches. In this review, we aim to describe the Bone morphogenetic proteins' role in Skeleton diseases and discuss the potent osteogenic BMPs (majorly BMP-2, BMP-6, and BMP-7) with therapeutic benefits.
Collapse
Affiliation(s)
- Ankita Gupta
- Shyam Shah Medical College, Multidisciplinary Research Unit, Rewa, M.P., India
| | - Lokesh Tripathi
- Department of Pathology, Shyam Shah Medical College, Rewa, M.P., India
| | - Sanjay Pandey
- Multidisciplinary Research Unit, Shyam Shah Medical College, Rewa, India
| | - Deepak Dwivedi
- Department of Pediatrics, Shyam Shah Medical College, Rewa, India
| |
Collapse
|
6
|
Heubel B, Nohe A. The Role of BMP Signaling in Osteoclast Regulation. J Dev Biol 2021; 9:24. [PMID: 34203252 PMCID: PMC8293073 DOI: 10.3390/jdb9030024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
The osteogenic effects of Bone Morphogenetic Proteins (BMPs) were delineated in 1965 when Urist et al. showed that BMPs could induce ectopic bone formation. In subsequent decades, the effects of BMPs on bone formation and maintenance were established. BMPs induce proliferation in osteoprogenitor cells and increase mineralization activity in osteoblasts. The role of BMPs in bone homeostasis and repair led to the approval of BMP2 by the Federal Drug Administration (FDA) for anterior lumbar interbody fusion (ALIF) to increase the bone formation in the treated area. However, the use of BMP2 for treatment of degenerative bone diseases such as osteoporosis is still uncertain as patients treated with BMP2 results in the stimulation of not only osteoblast mineralization, but also osteoclast absorption, leading to early bone graft subsidence. The increase in absorption activity is the result of direct stimulation of osteoclasts by BMP2 working synergistically with the RANK signaling pathway. The dual effect of BMPs on bone resorption and mineralization highlights the essential role of BMP-signaling in bone homeostasis, making it a putative therapeutic target for diseases like osteoporosis. Before the BMP pathway can be utilized in the treatment of osteoporosis a better understanding of how BMP-signaling regulates osteoclasts must be established.
Collapse
Affiliation(s)
- Brian Heubel
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
7
|
Durbano HW, Halloran D, Nguyen J, Stone V, McTague S, Eskander M, Nohe A. Aberrant BMP2 Signaling in Patients Diagnosed with Osteoporosis. Int J Mol Sci 2020; 21:ijms21186909. [PMID: 32967078 PMCID: PMC7555210 DOI: 10.3390/ijms21186909] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
The most common bone disease in humans is osteoporosis (OP). Current therapeutics targeting OP have several negative side effects. Bone morphogenetic protein 2 (BMP2) is a potent growth factor that is known to activate both osteoblasts and osteoclasts. It completes these actions through both SMAD-dependent and SMAD-independent signaling. A novel interaction between the BMP type Ia receptor (BMPRIa) and casein kinase II (CK2) was discovered, and several CK2 phosphorylation sites were identified. A corresponding blocking peptide (named CK2.3) was designed to further elucidate the phosphorylation site’s function. Previously, CK2.3 demonstrated an increased osteoblast activity and decreased osteoclast activity in a variety of animal models, cell lines, and isolated human osteoblasts. It is hypothesized that CK2.3 completes these actions through the BMP signaling pathway. Furthermore, it was recently discovered that BMP2 did not elicit an osteogenic response in osteoblasts from patients diagnosed with OP, while CK2.3 did. In this study, we explore where in the BMP pathway the signaling disparity or defect lies in those diagnosed with OP. We found that osteoblasts isolated from patients diagnosed with OP did not activate SMAD or ERK signaling after BMP2 stimulation. When OP osteoblasts were stimulated with BMP2, both BMPRIa and CK2 expression significantly decreased. This indicates a major disparity within the BMP signaling pathway in patients diagnosed with osteoporosis.
Collapse
Affiliation(s)
- Hilary W. Durbano
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (H.W.D.); (D.H.); (J.N.); (V.S.)
| | - Daniel Halloran
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (H.W.D.); (D.H.); (J.N.); (V.S.)
| | - John Nguyen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (H.W.D.); (D.H.); (J.N.); (V.S.)
| | - Victoria Stone
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (H.W.D.); (D.H.); (J.N.); (V.S.)
| | - Sean McTague
- Christiana Care Hospital, Newark, DE 19716, USA; (S.M.); (M.E.)
| | - Mark Eskander
- Christiana Care Hospital, Newark, DE 19716, USA; (S.M.); (M.E.)
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (H.W.D.); (D.H.); (J.N.); (V.S.)
- Correspondence: ; Tel.: +1-302-831-2959
| |
Collapse
|
8
|
Halloran D, Durbano HW, Nohe A. Bone Morphogenetic Protein-2 in Development and Bone Homeostasis. J Dev Biol 2020; 8:E19. [PMID: 32933207 PMCID: PMC7557435 DOI: 10.3390/jdb8030019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the Transforming Growth Factor-Beta (TGF-β) superfamily. These proteins are essential to many developmental processes, including cardiogenesis, neurogenesis, and osteogenesis. Specifically, within the BMP family, Bone Morphogenetic Protein-2 (BMP-2) was the first BMP to be characterized and has been well-studied. BMP-2 has important roles during embryonic development, as well as bone remodeling and homeostasis in adulthood. Some of its specific functions include digit formation and activating osteogenic genes, such as Runt-Related Transcription Factor 2 (RUNX2). Because of its diverse functions and osteogenic potential, the Food and Drug Administration (FDA) approved usage of recombinant human BMP-2 (rhBMP-2) during spinal fusion surgery, tibial shaft repair, and maxillary sinus reconstructive surgery. However, shortly after initial injections of rhBMP-2, several adverse complications were reported, and alternative therapeutics have been developed to limit these side-effects. As the clinical application of BMP-2 is largely implicated in bone, we focus primarily on its role in bone. However, we also describe briefly the role of BMP-2 in development. We then focus on the structure of BMP-2, its activation and regulation signaling pathways, BMP-2 clinical applications, and limitations of using BMP-2 as a therapeutic. Further, this review explores other potential treatments that may be useful in treating bone disorders.
Collapse
Affiliation(s)
| | | | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (D.H.); (H.W.D.)
| |
Collapse
|
9
|
A Novel Peptide, CK2.3, Improved Bone Formation in Ovariectomized Sprague Dawley Rats. Int J Mol Sci 2020; 21:ijms21144874. [PMID: 32664215 PMCID: PMC7402306 DOI: 10.3390/ijms21144874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/29/2022] Open
Abstract
Osteoporosis is a bone disease that has no definite cure. Current treatments for osteoporosis are divided into two categories: anti-resorptive and anabolic. However, these treatments are not perfect and have considerable risks. In addition, bone quality often declines over time with these treatments. We designed a peptide, CK2.3, that has both anabolic and anti-resorptive effects on bone. We reported that CK2.3 induced osteoblastic mineralization, promoted bone formation, and suppressed osteoclastogenesis in vivo. The effect of CK2.3 to rescue an osteoporosis phenotype model has never been shown. In this study, we demonstrated the effect of CK2.3 in ovariectomized rats, a standard model of osteoporosis. We systemically injected CK2.3 at 2.3 µg/kg each day for five consecutive days. Micro-computed tomography indicated that CK2.3 increased bone mineral density, (bone volume/tissue volume) BV/TV and (trabecular number) TbN, and decreased (trabecular space) TbSp in the femoral head. Similarly, single photon absorptiometry showed that treatment with CK2.3 increased bone mineral density in the lumbar spine and the pelvis. Additionally, we observed increased femoral shaft stiffness with ovariectomized rats treated with CK2.3. We also detected no significant changes in the weight of organs such as the heart, lung, liver, kidney, and spleen. An advantage of CK2.3 over current treatments was that it not only promoted bone formation but also improved fracture resistance. In conclusion, we demonstrated CK2.3 as a new anabolic treatment for osteoporosis.
Collapse
|
10
|
A Synthetic Peptide, CK2.3, Inhibits RANKL-Induced Osteoclastogenesis through BMPRIa and ERK Signaling Pathway. J Dev Biol 2020; 8:jdb8030012. [PMID: 32660129 PMCID: PMC7557985 DOI: 10.3390/jdb8030012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/23/2022] Open
Abstract
The skeletal system plays an important role in the development and maturation process. Through the bone remodeling process, 10% of the skeletal system is renewed every year. Osteoblasts and osteoclasts are two major bone cells that are involved in the development of the skeletal system, and their activity is kept in balance. An imbalance between their activities can lead to diseases such as osteoporosis that are characterized by significant bone loss due to the overactivity of bone-resorbing osteoclasts. Our laboratory has developed a novel peptide, CK2.3, which works as both an anabolic and anti-resorptive agent to induce bone formation and prevent bone loss. We previously reported that CK2.3 mediated mineralization and osteoblast development through the SMAD, ERK, and AKT signaling pathways. In this study, we demonstrated the mechanism by which CK2.3 inhibits osteoclast development. We showed that the inhibition of MEK by the U0126 inhibitor rescued the osteoclast development of RAW264.7 induced by RANKL in a co-culture system with CK2.3. We observed that CK2.3 induced ERK activation and BMPRIa expression on Day 1 after stimulation with CK2.3. While CK2.3 was previously reported to induce the SMAD signaling pathway in osteoblast development, we did not observe any changes in SMAD activation in osteoclast development with CK2.3 stimulation. Understanding the mechanism by which CK2.3 inhibits osteoclast development will allow CK2.3 to be developed as a new treatment for osteoporosis.
Collapse
|
11
|
Weidner H, Yuan Gao V, Dibert D, McTague S, Eskander M, Duncan R, Wang L, Nohe A. CK2.3, a Mimetic Peptide of the BMP Type I Receptor, Increases Activity in Osteoblasts over BMP2. Int J Mol Sci 2019; 20:ijms20235877. [PMID: 31771161 PMCID: PMC6929093 DOI: 10.3390/ijms20235877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Bone is one of the most important organs in the human body. It provides structure, function, and protection for other vital organs; therefore, bone maintenance and homeostasis are critical processes. As humans age, their bone mineral density decreases, which leads to diseases like osteoporosis. This disease affects one in two women and one in five men aged 50 and over. As the aging population increases, the interest and significance of studying this debilitating bone disease becomes more relevant. Current therapeutic products for osteoporosis have many side effects and can be taken for a limited number of years. Most therapeutic products only focus on decreasing bone resorption, not increasing bone formation. Bone morphogenetic protein 2 is an essential growth factor that drives osteoblast differentiation and activity and is essential for bone formation. However, usage in the clinic is unsuccessful due to several side effects. Recently, a signaling disparity in bone marrow stromal cells within the bone morphogenetic protein pathway that led to decreased bone morphogenetic protein 2 responsiveness was identified in patients diagnosed with osteoporosis. However, it is unclear how other cell populations, especially osteoblasts, which are key players in bone remodeling, are affected and whether the bone morphogenetic protein pathway is affected during osteoporosis. Our research group designed a novel peptide, casein kinase 2.3, that acts downstream of the bone morphogenetic receptor type Ia and increases bone mineralization in murine cells and primary bovine osteoblasts. The aim of the study presented here was to compare the responsiveness of osteoblasts to bone morphogenetic protein 2 and casein kinase 2.3, especially in patients diagnosed with osteoporosis. Mature osteoblasts were extracted from patients diagnosed with osteoporosis or osteoarthritis from Christiana Care Hospital in Newark, Delaware. They were stimulated with either bone morphogenetic protein 2 or casein kinase 2.3, and their effect on osteoblast activity was determined. The osteoporotic patients showed no mineralization response to bone morphogenetic protein 2 stimulation, while the osteoarthritis patients significantly responded to bone morphogenetic protein 2 stimulation. Furthermore, markers for osteoblast activity were increased by casein kinase 2.3, which was in sharp contrast to bone morphogenetic protein 2. This further supports a major bone morphogenetic protein signaling disparity in both the elderly and those suffering with osteoporosis. Both patient types did significantly respond to casein kinase 2.3. Further analysis of the bone morphogenetic protein pathway could lead to new therapeutic products for osteoporosis.
Collapse
Affiliation(s)
- Hilary Weidner
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Correspondence:
| | - Victor Yuan Gao
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA; (V.Y.G.); (L.W.)
| | - Debra Dibert
- Christiana Care Hospital, Newark, DE 19716, USA; (D.D.); (S.M.); (M.E.)
| | - Sean McTague
- Christiana Care Hospital, Newark, DE 19716, USA; (D.D.); (S.M.); (M.E.)
| | - Mark Eskander
- Christiana Care Hospital, Newark, DE 19716, USA; (D.D.); (S.M.); (M.E.)
| | - Randall Duncan
- Department of Biology, University of Michigan, Flint, MI 48502, USA;
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA; (V.Y.G.); (L.W.)
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
12
|
Vrathasha V, Weidner H, Nohe A. Mechanism of CK2.3, a Novel Mimetic Peptide of Bone Morphogenetic Protein Receptor Type IA, Mediated Osteogenesis. Int J Mol Sci 2019; 20:E2500. [PMID: 31117181 PMCID: PMC6567251 DOI: 10.3390/ijms20102500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Osteoporosis is a degenerative skeletal disease with a limited number of treatment options. CK2.3, a novel peptide, may be a potential therapeutic. It induces osteogenesis and bone formation in vitro and in vivo by acting downstream of BMPRIA through releasing CK2 from the receptor. However, the detailed signaling pathways, the time frame of signaling, and genes activated remain largely unknown. METHODS Using a newly developed fluorescent CK2.3 analog, specific inhibitors for the BMP signaling pathways, Western blot, and RT-qPCR, we determined the mechanism of CK2.3 in C2C12 cells. We then confirmed the results in primary BMSCs. RESULTS Using these methods, we showed that CK2.3 stimulation activated OSX, ALP, and OCN. CK2.3 stimulation induced time dependent release of CK2β from BMPRIA and concurrently CK2.3 colocalized with CK2α. Furthermore, CK2.3 induced BMP signaling depends on ERK1/2 and Smad1/5/8 signaling pathways. CONCLUSION CK2.3 is a novel peptide that drives osteogenesis, and we detailed the molecular sequence of events that are triggered from the stimulation of CK2.3 until the induction of mineralization. This knowledge can be applied in the development of future therapeutics for osteoporosis.
Collapse
Affiliation(s)
- Vrathasha Vrathasha
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Hilary Weidner
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
13
|
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the transforming growth factor-β family of ligands. BMPs exhibit widespread utility and pleiotropic, context-dependent effects, and the strength and duration of BMP pathway signaling is tightly regulated at numerous levels via mechanisms operating both inside and outside the cell. Defects in the BMP pathway or its regulation underlie multiple human diseases of different organ systems. Yet much remains to be discovered about the BMP pathway in its original context, i.e., the skeleton. In this review, we provide a comprehensive overview of the intricacies of the BMP pathway and its inhibitors in bone development, homeostasis, and disease. We frame the content of the review around major unanswered questions for which incomplete evidence is available. First, we consider the gene regulatory network downstream of BMP signaling in osteoblastogenesis. Next, we examine why some BMP ligands are more osteogenic than others and what factors limit BMP signaling during osteoblastogenesis. Then we consider whether specific BMP pathway components are required for normal skeletal development, and if the pathway exerts endogenous effects in the aging skeleton. Finally, we propose two major areas of need of future study by the field: greater resolution of the gene regulatory network downstream of BMP signaling in the skeleton, and an expanded repertoire of reagents to reliably and specifically inhibit individual BMP pathway components.
Collapse
Affiliation(s)
- Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine , Indianapolis, Indiana ; and Department of Developmental Biology, Harvard School of Dental Medicine , Boston, Massachusetts
| | - Vicki Rosen
- Division of Biomedical Science, Marian University College of Osteopathic Medicine , Indianapolis, Indiana ; and Department of Developmental Biology, Harvard School of Dental Medicine , Boston, Massachusetts
| |
Collapse
|
14
|
Vrathasha V, Booksh K, Duncan RL, Nohe A. Mechanisms of Cellular Internalization of Quantum Dot® Conjugated Bone Formation Mimetic Peptide CK2.3. NANOMATERIALS 2018; 8:nano8070513. [PMID: 29987256 PMCID: PMC6071089 DOI: 10.3390/nano8070513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 11/17/2022]
Abstract
Osteoporosis is a debilitating skeletal disorder that is characterized by loss of bone density over time. It affects one in two women and one in four men, age 50 and older. New treatments that specifically drive bone formation are desperately needed. We developed a peptide, CK2.3, that acts downstream of the bone morphogenetic protein receptor type Ia and it induces osteogenesis in-vitro and in-vivo. However, its mechanism of action, especially its mode of uptake by cells remains unknown. To demonstrate CK2.3 internalization within a cell, we conjugated CK2.3 to Quantum Dot®s (Qdot®s), semiconductor nanoparticles. We purified CK2.3-Qdot®s by size exclusion chromatography and verified the conjugation and stability using UV/VIS and Fourier transform infrared spectroscopy. Our results show that CK2.3 was conjugated to the Qdot®s and the conjugate was stable for at least 4 days at 37 °C. Moreover, CK2.3-Qdot®s exerted biological response similar to CK2.3. Addition of CK2.3-Qdot®s to cells followed by confocal imaging revealed that CK2.3-Qdot®s were internalized at 6 h post stimulation. Furthermore, using pharmacological inhibitors against endocytic pathways, we demonstrated that CK2.3-Qdot®s were internalized by caveolae. These results show for the first time that the novel peptide CK2.3 is taken up by the cell through caveolae mediated endocytosis.
Collapse
Affiliation(s)
- Vrathasha Vrathasha
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Karl Booksh
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | - Randall L Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
15
|
Nguyen J, Weidner H, Schell LM, Sequeira L, Kabrick R, Dharmadhikari S, Coombs H, Duncan RL, Wang L, Nohe A. Synthetic Peptide CK2.3 Enhances Bone Mineral Density in Senile Mice. ACTA ACUST UNITED AC 2018; 6. [PMID: 30294717 PMCID: PMC6173331 DOI: 10.4172/2572-4916.1000190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background: Osteoporosis is a silent disease caused by low bone mineral density that results in bone fractures in 1 out of 2 women and 1 in 4 men over the age of 50. Although several treatments for osteopenia and osteoporosis are available, they have severe side effects and new treatments are desperately needed. Current treatments usually target osteoclasts and inhibit their activity or differentiation. Treatments that decrease osteoclast differentiation and activity but enhance osteogenesis and osteoblast activity are not available. We recently developed a peptide, CK2.3, that induces bone formation and increases bone mineral density as demonstrated by injection over the calvaria of 6 to 9-day-old mice and tail vein injection of 8-week-old mice. CK2.3 also decreased osteoclast formation and activity. However, these studies raise questions: does CK2.3 induce similar results in old mice and if so, what is the effective CK2.3 concentration and, is the bone mineral density of vertebrae of the spinal column increased as well? Methods: CK2.3 was systematically injected into the tail vein of female 6-month old mice with various concentrations of CK2.3: 0.76 μg/kg, 2.3 μg/kg, or 6.9 μg/kg per mice. Mice were sacrificed one week, two weeks, and four weeks after the first injection. Their spines and femurs were collected and analyzed for bone formation. Results: Femur and lumbar spine analyses found increased bone mineral density (BMD) and mineral apposition rate, with greater stiffness observed in femoral samples four weeks after the first injection. Histochemistry showed that osteoclastogenesis was suppressed in CK2.3 treated senile mice. Conclusions: For the first time, this study showed the increase of lumbar spine BMD by CK2.3. Moreover, it showed that enhancement of femur BMD was accompanied by increased femur stiffness only at medium concentration of CK2.3 four weeks after the first injection indicating the maintenance of bone’s structural integrity by CK2.3.
Collapse
Affiliation(s)
- John Nguyen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Hilary Weidner
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Lora M Schell
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Linda Sequeira
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Ryan Kabrick
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | - Randall L Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
16
|
Swarup A, Weidner H, Duncan R, Nohe A. The Preservation of Bone Cell Viability in a Human Femoral Head through a Perfusion Bioreactor. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1070. [PMID: 29941780 PMCID: PMC6073554 DOI: 10.3390/ma11071070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/10/2018] [Accepted: 06/20/2018] [Indexed: 01/04/2023]
Abstract
Current methods for drug development and discovery involve pre-clinical analyses that are extremely expensive and time consuming. Animal models are not the best precedent to use, when comparing to human models as they are not synonymous with the human response, thus, alternative methods for drug development are needed. One of which could be the use of an ex vivo human organ where drugs could be tested and the effects of those drugs could be observed. Finding a viable human organ to use in these preliminary ex vivo studies is difficult due to the availability, cost, and viability. Bone tissue and marrow contain a plethora of both bone and stem cells, however, these cells need constant perfusion to be viable over a longer time range. Here we maintain bone cell sustainability in an ex vivo model, through the use of human femoral heads in a novel bioreactor. This bioreactor was designed to directly perfuse cell culture media (DMEM) through the vasculature of a femoral head, providing ideal nutrients and conditions required for maintaining organ viability. We show, for the first time, that cells within a femoral head can stay alive up to 12 h. Further development could be used to determine the effects of drugs on a human organ system and could aid in the understanding of the progression of bone diseases and pathologies.
Collapse
Affiliation(s)
- Aparna Swarup
- Department of Biological Sciences, University of Delaware, 105 The Green, Newark, DE 19716, USA.
| | - Hilary Weidner
- Department of Biological Sciences, University of Delaware, 105 The Green, Newark, DE 19716, USA.
| | - Randall Duncan
- Department of Biological Sciences, University of Delaware, 105 The Green, Newark, DE 19716, USA.
- Department of Biomedical Engineering, University of Delaware, 105 The Green, Newark, DE 19716, USA.
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, 105 The Green, Newark, DE 19716, USA.
| |
Collapse
|
17
|
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the transforming growth factor (TGF)-β family of ligands and exert most of their effects through the canonical effectors Smad1, 5, and 8. Appropriate regulation of BMP signaling is critical for the development and homeostasis of numerous human organ systems. Aberrations in BMP pathways or their regulation are increasingly associated with diverse human pathologies, and there is an urgent and growing need to develop effective approaches to modulate BMP signaling in the clinic. In this review, we provide a wide perspective on diseases and/or conditions associated with dysregulated BMP signal transduction, outline the current strategies available to modulate BMP pathways, highlight emerging second-generation technologies, and postulate prospective avenues for future investigation.
Collapse
Affiliation(s)
- Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, Indiana 46222
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| |
Collapse
|
18
|
Sandell LJ. JOR Virtual Issue on stem cells in orthopaedics. J Orthop Res 2017; 35:2593-2594. [PMID: 29228506 DOI: 10.1002/jor.23803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Linda J Sandell
- Editor in Chief, Journal of Orthopaedic Research, Mildred B. Simon Professor, Department of Orthopaedic Surgery, Professor, Departments of Cell Biology and Physiology and Biomedical Engineering, Musculoskeletal Research Center, Washington University School of Medicine
| |
Collapse
|
19
|
Akkiraju H, Bonor J, Nohe A. CK2.1, a novel peptide, induces articular cartilage formation in vivo. J Orthop Res 2017; 35:876-885. [PMID: 27312334 PMCID: PMC5522739 DOI: 10.1002/jor.23342] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
Bone morphogenetic protein 2 regulates chondrogenesis and cartilage formation. However, it also induces chondrocyte hypertrophy and cartilage matrix degradation. We recently designed three peptides CK2.1, CK2.2, and CK2.3 that activate the BMP signaling pathways by releasing casein kinase II (CK2) from distinct sites at the bone morphogenetic protein receptor type Ia (BMPRIa). Since BMP2 is a major regulator of chondrogenesis and the peptides activated BMP signaling in a similar way, we evaluated the effect of these peptides on chondrogenesis and cartilage formation. C3H10T1/2 cells were stimulated with CK2.1, CK2.2, and CK2.3 and evaluated for the chondrogenic and osteogenic potential. For chondrogenesis, Alcian blue staining was performed. Additionally, collagen types II and X expression was measured. For osteogenesis, osteocalcin and von Kossa staining were performed. From the three peptides, CK2.1 was the most promising peptide to induce chondrogenesis but not osteogenesis. To investigate the effect of CK2.1 on articular cartilage formation in vivo, we injected CK2.1 into the tail vein of mice. Injection of CK2.1 into the tail vein of mice led to increased articular cartilage formation but not BMD. In sharp contrast, injection of BMP2 led to increased BMD and expression of collagen type X, a marker of chondrocyte hypertrophy. MMP13 expression was unchanged. Our study demonstrates that CK2.1 drives chondrogenesis and cartilage formation without induction of chondrocyte hypertrophy. Peptide CK2.1 may, therefore, be a valuable therapeutic for cartilage degenerative diseases. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:876-885, 2017.
Collapse
Affiliation(s)
- Hemanth Akkiraju
- Department of Biological Sciences; University of Delaware; Newark Delaware 19716
| | - Jeremy Bonor
- Department of Biological Sciences; University of Delaware; Newark Delaware 19716
| | - Anja Nohe
- Department of Biological Sciences; University of Delaware; Newark Delaware 19716
| |
Collapse
|
20
|
Nuñez de Villavicencio-Diaz T, Rabalski AJ, Litchfield DW. Protein Kinase CK2: Intricate Relationships within Regulatory Cellular Networks. Pharmaceuticals (Basel) 2017; 10:ph10010027. [PMID: 28273877 PMCID: PMC5374431 DOI: 10.3390/ph10010027] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/25/2017] [Accepted: 03/02/2017] [Indexed: 01/20/2023] Open
Abstract
Protein kinase CK2 is a small family of protein kinases that has been implicated in an expanding array of biological processes. While it is widely accepted that CK2 is a regulatory participant in a multitude of fundamental cellular processes, CK2 is often considered to be a constitutively active enzyme which raises questions about how it can be a regulatory participant in intricately controlled cellular processes. To resolve this apparent paradox, we have performed a systematic analysis of the published literature using text mining as well as mining of proteomic databases together with computational assembly of networks that involve CK2. These analyses reinforce the notion that CK2 is involved in a broad variety of biological processes and also reveal an extensive interplay between CK2 phosphorylation and other post-translational modifications. The interplay between CK2 and other post-translational modifications suggests that CK2 does have intricate roles in orchestrating cellular events. In this respect, phosphorylation of specific substrates by CK2 could be regulated by other post-translational modifications and CK2 could also have roles in modulating other post-translational modifications. Collectively, these observations suggest that the actions of CK2 are precisely coordinated with other constituents of regulatory cellular networks.
Collapse
Affiliation(s)
| | - Adam J Rabalski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - David W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
- Department of Oncology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
21
|
Lisberg A, Ellis R, Nicholson K, Moku P, Swarup A, Dhurjati P, Nohe A. Mathematical modeling of the effects of CK2.3 on mineralization in osteoporotic bone. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 6:208-215. [PMID: 28181418 PMCID: PMC5351412 DOI: 10.1002/psp4.12154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 12/17/2022]
Abstract
Osteoporosis is caused by decreased bone mineral density (BMD) and new treatments for this disease are desperately needed. Bone morphogenetic protein 2 (BMP2) is crucial for bone formation. The mimetic peptide CK2.3 acts downstream of BMP2 and increases BMD when injected systemically into the tail vein of mice. However, the most effective dosage needed to induce BMD in humans is unknown. We developed a mathematical model for CK2.3‐dependent bone mineralization. We used a physiologically based pharmacokinetic (PBPK) model to derive the CK2.3 concentration needed to increase BMD. Based on our results, the ideal dose of CK2.3 for a healthy individual to achieve the maximum increase of mineralization was about 409 µM injected in 500 µL volume, while dosage for osteoporosis patients was about 990 µM. This model showed that CK2.3 could increase the average area of bone mineralization in patients and in healthy adults.
Collapse
Affiliation(s)
- A Lisberg
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - R Ellis
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
| | - K Nicholson
- Department of Mathematical SciencesUniversity of DelawareNewarkDelewareUSA
| | - P Moku
- Department of Biological SciencesUniversity of DelawareNewarkDelawareUSA
| | - A Swarup
- Department of Biological SciencesUniversity of DelawareNewarkDelawareUSA
| | - P Dhurjati
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Mathematical SciencesUniversity of DelawareNewarkDelewareUSA
- Department of Biological SciencesUniversity of DelawareNewarkDelawareUSA
| | - A Nohe
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Biological SciencesUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
22
|
Götz C, Montenarh M. Protein kinase CK2 in development and differentiation. Biomed Rep 2016; 6:127-133. [PMID: 28357063 DOI: 10.3892/br.2016.829] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/06/2016] [Indexed: 12/15/2022] Open
Abstract
Among the human kinomes, protein kinase CK2 (formerly termed casein kinase II) is considered to be essential, as it is implicated in the regulation of various cellular processes. Experiments with pharmacological inhibitors of the kinase activity of CK2 provide evidence that CK2 is essential for development and differentiation. Therefore, the present review addresses the role of CK2 during embryogenesis, neuronal, adipogenic, osteogenic and myogenic differentiation in established model cell lines, and in embryonic, neural and mesenchymal stem cells. CK2 kinase activity appears to be essential in the early stages of differentiation, as CK2 inhibition at early time points generally prevents differentiation. In addition, the present review reports on target proteins of CK2 in embryogenesis and differentiation.
Collapse
Affiliation(s)
- Claudia Götz
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Germany
| | - Mathias Montenarh
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Germany
| |
Collapse
|
23
|
A Survey of Strategies to Modulate the Bone Morphogenetic Protein Signaling Pathway: Current and Future Perspectives. Stem Cells Int 2016; 2016:7290686. [PMID: 27433166 PMCID: PMC4940573 DOI: 10.1155/2016/7290686] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/24/2016] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the TGF-β family of ligands and are unequivocally involved in regulating stem cell behavior. Appropriate regulation of canonical BMP signaling is critical for the development and homeostasis of numerous human organ systems, as aberrations in the BMP pathway or its regulation are increasingly associated with diverse human pathologies. In this review, we provide a wide-perspective on strategies that increase or decrease BMP signaling. We briefly outline the current FDA-approved approaches, highlight emerging next-generation technologies, and postulate prospective avenues for future investigation. We also detail how activating other pathways may indirectly modulate BMP signaling, with a particular emphasis on the relationship between the BMP and Activin/TGF-β pathways.
Collapse
|
24
|
Akkiraju H, Bonor J, Nohe A. An Improved Immunostaining and Imaging Methodology to Determine Cell and Protein Distributions within the Bone Environment. J Histochem Cytochem 2015; 64:168-78. [PMID: 26718242 DOI: 10.1369/0022155415626765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/16/2015] [Indexed: 11/22/2022] Open
Abstract
Bone is a dynamic tissue that undergoes multiple changes throughout its lifetime. Its maintenance requires a tight regulation between the cells embedded within the bone matrix, and an imbalance among these cells may lead to bone diseases such as osteoporosis. Identifying cell populations and their proteins within bone is necessary for understanding bone biology. Immunolabeling is one approach used to visualize proteins in tissues. Efficient immunolabeling of bone samples often requires decalcification, which may lead to changes in the structural morphology of the bone. Recently, methyl-methacrylate embedding of non-decalcified tissue followed by heat-induced antigen retrieval has been used to process bone sections for immunolabeling. However, this technique is applicable for bone slices below 50-µm thickness while fixed on slides. Additionally, enhancing epitope exposure for immunolabeling is still a challenge. Moreover, imaging bone cells within the bone environment using standard confocal microscopy is difficult. Here we demonstrate for the first time an improved methodology for immunolabeling non-decalcified bone using a testicular hyaluronidase enzyme-based antigen retrieval technique followed by two-photon fluorescence laser microscopy (TPLM) imaging. This procedure allowed us to image key intracellular proteins in bone cells while preserving the structural morphology of the cells and the bone.
Collapse
Affiliation(s)
- Hemanth Akkiraju
- Department of Biological Sciences, University of Delaware, Newark, Delaware (HA, JB, AN)
| | - Jeremy Bonor
- Department of Biological Sciences, University of Delaware, Newark, Delaware (HA, JB, AN)
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, Delaware (HA, JB, AN)
| |
Collapse
|