1
|
Puiggalí-Jou A, Hui I, Baldi L, Frischknecht R, Asadikorayem M, Janiak J, Chansoria P, McCabe MC, Stoddart MJ, Hansen KC, Christman KL, Zenobi-Wong M. Biofabrication of anisotropic articular cartilage based on decellularized extracellular matrix. Biofabrication 2025; 17:015044. [PMID: 39757574 DOI: 10.1088/1758-5090/ad9cc2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025]
Abstract
Tissue-engineered grafts that mimic articular cartilage show promise for treating cartilage injuries. However, engineering cartilage cell-based therapies to match zonal architecture and biochemical composition remains challenging. Decellularized articular cartilage extracellular matrix (dECM) has gained attention for its chondro-inductive properties, yet dECM-based bioinks have limitations in mechanical stability and printability. This study proposes a rapid light-based bioprinting method using a tyrosine-based crosslinking mechanism, which does not require chemical modifications of dECM and thereby preserves its structure and bioactivity. Combining this resin with Filamented Light (FLight) biofabrication enables the creation of cellular, porous, and anisotropic dECM scaffolds composed of aligned microfilaments. Specifically, we focus on the effects of various biopolymer compositions (i.e. hyaluronic acid, collagen I, and dECM) and inner architecture (i.e. bulk light vs FLight) on immune response and cell morphology, and we investigate their influence on nascent ECM production and long-term tissue maturation. Our findings highlight the importance of FLight scaffolds in directing collagen deposition resembling articular cartilage structure and promoting construct maturation, and they emphasize the superiority of biological-rich dECM over single-component materials for engineering articular cartilage, thereby offering new avenues for the development of effective cartilage tissue engineering strategies.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Isabel Hui
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Lucrezia Baldi
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Rea Frischknecht
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Maryam Asadikorayem
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Jakub Janiak
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Parth Chansoria
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Maxwell C McCabe
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, United States of America
| | - Martin J Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz 7270, Switzerland
- Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, United States of America
| | - Karen L Christman
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California at San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, United States of America
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
2
|
Muthu S, Viswanathan VK, Chellamuthu G, Thabrez M. Clinical effectiveness of various treatments for cartilage defects compared with microfracture: a network meta-analysis of randomized controlled trials. JOURNAL OF CARTILAGE & JOINT PRESERVATION 2024; 4:100163. [DOI: 10.1016/j.jcjp.2023.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
3
|
Nordberg RC, Bielajew BJ, Takahashi T, Dai S, Hu JC, Athanasiou KA. Recent advancements in cartilage tissue engineering innovation and translation. Nat Rev Rheumatol 2024; 20:323-346. [PMID: 38740860 PMCID: PMC11524031 DOI: 10.1038/s41584-024-01118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 05/16/2024]
Abstract
Articular cartilage was expected to be one of the first successfully engineered tissues, but today, cartilage repair products are few and they exhibit considerable limitations. For example, of the cell-based products that are available globally, only one is marketed for non-knee indications, none are indicated for severe osteoarthritis or rheumatoid arthritis, and only one is approved for marketing in the USA. However, advances in cartilage tissue engineering might now finally lead to the development of new cartilage repair products. To understand the potential in this field, it helps to consider the current landscape of tissue-engineered products for articular cartilage repair and particularly cell-based therapies. Advances relating to cell sources, bioactive stimuli and scaffold or scaffold-free approaches should now contribute to progress in therapeutic development. Engineering for an inflammatory environment is required because of the need for implants to withstand immune challenge within joints affected by osteoarthritis or rheumatoid arthritis. Bringing additional cartilage repair products to the market will require an understanding of the translational vector for their commercialization. Advances thus far can facilitate the future translation of engineered cartilage products to benefit the millions of patients who suffer from cartilage injuries and arthritides.
Collapse
Affiliation(s)
- Rachel C Nordberg
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Benjamin J Bielajew
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Takumi Takahashi
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Shuyan Dai
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
4
|
Muthu S, Viswanathan VK, Sakthivel M, Thabrez M. Does progress in microfracture techniques necessarily translate into clinical effectiveness? World J Orthop 2024; 15:266-284. [PMID: 38596189 PMCID: PMC10999967 DOI: 10.5312/wjo.v15.i3.266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 03/15/2024] Open
Abstract
BACKGROUND Multitudinous advancements have been made to the traditional microfracture (MFx) technique, which have involved delivery of various acellular 2nd generation MFx and cellular MFx-III components to the area of cartilage defect. The relative benefits and pitfalls of these diverse modifications of MFx technique are still not widely understood. AIM To comparatively analyze the functional, radiological, and histological outcomes, and complications of various generations of MFx available for the treatment of cartilage defects. METHODS A systematic review was performed using PubMed, EMBASE, Web of Science, Cochrane, and Scopus. Patients of any age and sex with cartilage defects undergoing any form of MFx were considered for analysis. We included only randomized controlled trials (RCTs) reporting functional, radiological, histological outcomes or complications of various generations of MFx for the management of cartilage defects. Network meta-analysis (NMA) was conducted in Stata and Cochrane's Confidence in NMA approach was utilized for appraisal of evidence. RESULTS Forty-four RCTs were included in the analysis with patients of mean age of 39.40 (± 9.46) years. Upon comparing the results of the other generations with MFX-I as a constant comparator, we noted a trend towards better pain control and functional outcome (KOOS, IKDC, and Cincinnati scores) at the end of 1-, 2-, and 5-year time points with MFx-III, although the differences were not statistically significant (P > 0.05). We also noted statistically significant Magnetic resonance observation of cartilage repair tissue score in the higher generations of microfracture (weighted mean difference: 17.44, 95% confidence interval: 0.72, 34.16, P = 0.025; without significant heterogeneity) at 1 year. However, the difference was not maintained at 2 years. There was a trend towards better defect filling on MRI with the second and third generation MFx, although the difference was not statistically significant (P > 0.05). CONCLUSION The higher generations of traditional MFx technique utilizing acellular and cellular components to augment its potential in the management of cartilage defects has shown only marginal improvement in the clinical and radiological outcomes.
Collapse
Affiliation(s)
- Sathish Muthu
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
- Department of Orthopaedics, Government Medical College, Karur 639004, Tamil Nadu, India
| | | | - Manoharan Sakthivel
- Department of Orthopaedics, Government Medical College, Karur 639004, Tamil Nadu, India
| | - Mohammed Thabrez
- Department of Medical Oncology, Aster Medcity Hospital, Kochi 682034, India
| |
Collapse
|
5
|
Tang S, Zhang R, Bai H, Shu R, Chen D, He L, Zhou L, Liao Z, Chen M, Pei F, Mao JJ, Shi X. Endogenus chondrocytes immobilized by G-CSF in nanoporous gels enable repair of critical-size osteochondral defects. Mater Today Bio 2024; 24:100933. [PMID: 38283982 PMCID: PMC10819721 DOI: 10.1016/j.mtbio.2023.100933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Injured articular cartilage is a leading cause for osteoarthritis. We recently discovered that endogenous stem/progenitor cells not only reside in the superficial zone of mouse articular cartilage, but also regenerated heterotopic bone and cartilage in vivo. However, whether critical-size osteochondral defects can be repaired by pure induced chemotatic cell homing of these endogenous stem/progenitor cells remains elusive. Here, we first found that cells in the superficial zone of articular cartilage surrounding surgically created 3 × 1 mm defects in explant culture of adult goat and rabbit knee joints migrated into defect-filled fibrin/hylaro1nate gel, and this migration was significantly more robust upon delivery of exogenous granulocyte-colony stimulating factor (G-CSF). Remarkably, G-CSF-recruited chondrogenic progenitor cells (CPCs) showed significantly stronger migration ability than donor-matched chondrocytes and osteoblasts. G-CSF-recruited CPCs robustly differentiated into chondrocytes, modestly into osteoblasts, and barely into adipocytes. In vivo, critical-size osteochondral defects were repaired by G-CSF-recruited endogenous cells postoperatively at 6 and 12 weeks in comparison to poor healing by gel-only group or defect-only group. ICRS and O'Driscoll scores of articular cartilage were significantly higher for both 6- and 12-week G-CSF samples than corresponding gel-only and defect-only groups. Thus, endogenous stem/progenitor cells may be activated by G-CSF, a Food and Drug Administration (FDA)-cleared bone-marrow stimulating factor, to repair osteochondral defects.
Collapse
Affiliation(s)
- Shangkun Tang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruinian Zhang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hanying Bai
- Center for Craniofacial Regeneration, Columbia University, New York, NY, 10032, USA
| | - Rui Shu
- Center for Craniofacial Regeneration, Columbia University, New York, NY, 10032, USA
- West China School/Hospital of Stomatology, Sichuan University, Chengdu,610041, China
| | - Danying Chen
- Center for Craniofacial Regeneration, Columbia University, New York, NY, 10032, USA
| | - Ling He
- Center for Craniofacial Regeneration, Columbia University, New York, NY, 10032, USA
| | - Ling Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China
| | - Zheting Liao
- Center for Craniofacial Regeneration, Columbia University, New York, NY, 10032, USA
| | - Mo Chen
- Center for Craniofacial Regeneration, Columbia University, New York, NY, 10032, USA
| | - Fuxing Pei
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jeremy J. Mao
- Center for Craniofacial Regeneration, Columbia University, New York, NY, 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Xiaojun Shi
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
6
|
Snow M, Mandalia V, Custers R, Emans PJ, Kon E, Niemeyer P, Verdonk R, Gaissmaier C, Roeder A, Weinand S, Zöllner Y, Schubert T. Cost-effectiveness of a new ACI technique for the treatment of articular cartilage defects of the knee compared to regularly used ACI technique and microfracture. J Med Econ 2023; 26:537-546. [PMID: 36974460 DOI: 10.1080/13696998.2023.2194805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
AIMS For patients with cartilage defects of the knee, a new biocompatible and in situ cross-linkable albumin-hyaluronan-based hydrogel has been developed for matrix-associated autologous chondrocyte implantation (M-ACI) - NOVOCART® Inject plus (NInject)1. We aimed to estimate the potential cost-effectiveness of NInject, that is not available on the market, yet compared to spheroids of human autologous matrix-associated chondrocytes (Spherox®)2 and microfracture. MATERIALS AND METHODS An early Markov model was developed to estimate the cost-effectiveness in the United Kingdom (UK) from the payer perspective. Transition probabilities, response rates, utility values and costs were derived from literature. Since NInject has not yet been launched and no prices are available, its costs were assumed equal to those of Spherox®. Cycle length was set at one year and the time horizon chosen was notional patients' remaining lifetime. Model robustness was evaluated with deterministic and probabilistic sensitivity analyses (DSA; PSA) and value of information (VOI) analysis. The Markov model was built using TreeAge Pro Healthcare. RESULTS NInject was cost-effective compared to microfracture (ICER: ₤5,147) while Spherox® was extendedly dominated. In sensitivity analyses, the ICER exceeded conventional WTP threshold of ₤20,000 only when the utility value after successful first treatment with NInject was decreased by 20% (ICER: ₤69,620). PSA corroborated the cost-effectiveness findings of NInject, compared to both alternatives, with probabilities of 60% of NInject undercutting the aforementioned WTP threshold and being the most cost-effective alternative. The VOIA revealed that obtaining additional evidence on the new technology will likely not be cost-effective for the UK National Health Service. LIMITATIONS AND CONCLUSION This early Markov model showed that NInject is cost-effective for the treatment of articular cartilage defects in the knee, compared to Spherox and microfracture. However, as the final price of NInject has yet to be determined, the cost-effectiveness analysis performed in this study is provisional, assuming equal prices for NInject and Spherox.
Collapse
Affiliation(s)
- Martyn Snow
- The Royal Orthopaedic Hospital, Birmingham, UK
- The Robert Jones and Agnes Hunt, Oswestry, UK
| | | | - Roel Custers
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter J Emans
- Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Elizaveta Kon
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Casa di Cura Toniolo, Bologna, Italy
| | | | | | | | | | | | - York Zöllner
- Hamburg University of Applied Sciences, Hamburg, Germany
| | | |
Collapse
|
7
|
Trofa DP, Hong IS, Lopez CD, Rao AJ, Yu Z, Odum SM, Moorman CT, Piasecki DP, Fleischli JE, Saltzman BM. Isolated Osteochondral Autograft Versus Allograft Transplantation for the Treatment of Symptomatic Cartilage Lesions of the Knee: A Systematic Review and Meta-analysis. Am J Sports Med 2023; 51:812-824. [PMID: 35139311 DOI: 10.1177/03635465211053594] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Focal cartilage lesions of the knee remain a difficult entity to treat. Current treatment options include arthroscopic debridement, microfracture, autograft or allograft osteochondral transplantation, and cell-based therapies such as autologous chondrocyte transplantation. Osteochondral transplantation techniques restore the normal topography of the condyles and provide mature hyaline cartilage in a single-stage procedure. However, clinical outcomes comparing autograft versus allograft techniques are scarce. PURPOSE To perform a comprehensive systematic review and meta-analysis of high-quality studies to evaluate the results of osteochondral autograft and allograft transplantation for the treatment of symptomatic cartilage defects of the knee. STUDY DESIGN Systematic review and meta-analysis; Level of evidence, 2. METHODS A comprehensive search of the literature was conducted using various databases. Inclusion criteria were level 1 or 2 original studies, studies with patients reporting knee cartilage injuries and chondral defects, mean follow-up ≥2 years, and studies focusing on osteochondral transplant techniques. Exclusion criteria were studies with nonknee chondral defects, studies reporting clinical outcomes of osteochondral autograft or allograft combined with other procedures, animal studies, cadaveric studies, non-English language studies, case reports, and reviews or editorials. Primary outcomes included patient-reported outcomes and failure rates associated with both techniques, and factors such as lesion size, age, sex, and the number of plugs transplanted were assessed. Metaregression using a mixed-effects model was utilized for meta-analyses. RESULTS The search resulted in 20 included studies with 364 cases of osteochondral autograft and 272 cases of osteochondral allograft. Mean postoperative survival was 88.2% in the osteochondral autograft cohort as compared with 87.2% in the osteochondral allograft cohort at 5.4 and 5.2 years, respectively (P = .6605). Patient-reported outcomes improved by an average of 65.1% and 81.1% after osteochondral autograft and allograft, respectively (P = .0001). However, meta-analysis revealed no significant difference in patient-reported outcome percentage change between osteochondral autograft and allograft (P = .97) and a coefficient of 0.033 (95% CI, -1.91 to 1.98). Meta-analysis of the relative risk of graft failure after osteochondral autograft versus allograft showed no significant differences (P = .66) and a coefficient of 0.114 (95% CI, -0.46 to 0.69). Furthermore, the regression did not find other predictors (mean age, percentage of female patients, lesion size, number of plugs/grafts used, and treatment location) that may have significantly affected patient-reported outcome percentage change or postoperative failure between osteochondral autograft versus allograft. CONCLUSION Osteochondral autograft and allograft result in favorable patient-reported outcomes and graft survival rates at medium-term follow-up. While predictors for outcomes such as mean age, percentage of female patients, lesion size, number of plugs/grafts used, and treatment location did not affect the comparison of the 2 cohorts, proper patient selection for either procedure remains paramount to the success and potentially long-term viability of the graft.
Collapse
Affiliation(s)
- David P Trofa
- Department of Orthopaedics, New York Presbyterian, Columbia University Medical Center, New York, New York, USA
| | - Ian S Hong
- OrthoCarolina Sports Medicine Center, Charlotte, North Carolina, USA
- Musculoskeletal Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Cesar D Lopez
- Department of Orthopaedics, New York Presbyterian, Columbia University Medical Center, New York, New York, USA
| | - Allison J Rao
- OrthoCarolina Sports Medicine Center, Charlotte, North Carolina, USA
| | - Ziqing Yu
- Musculoskeletal Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Susan M Odum
- Musculoskeletal Institute, Atrium Health, Charlotte, North Carolina, USA
- OrthoCarolina Research Institute, Charlotte, North Carolina, USA
| | - Claude T Moorman
- OrthoCarolina Sports Medicine Center, Charlotte, North Carolina, USA
- Musculoskeletal Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Dana P Piasecki
- OrthoCarolina Sports Medicine Center, Charlotte, North Carolina, USA
- Musculoskeletal Institute, Atrium Health, Charlotte, North Carolina, USA
| | - James E Fleischli
- OrthoCarolina Sports Medicine Center, Charlotte, North Carolina, USA
- Musculoskeletal Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Bryan M Saltzman
- OrthoCarolina Sports Medicine Center, Charlotte, North Carolina, USA
- Musculoskeletal Institute, Atrium Health, Charlotte, North Carolina, USA
| |
Collapse
|
8
|
Guo X, Ma Y, Min Y, Sun J, Shi X, Gao G, Sun L, Wang J. Progress and prospect of technical and regulatory challenges on tissue-engineered cartilage as therapeutic combination product. Bioact Mater 2023; 20:501-518. [PMID: 35846847 PMCID: PMC9253051 DOI: 10.1016/j.bioactmat.2022.06.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 12/18/2022] Open
Abstract
Hyaline cartilage plays a critical role in maintaining joint function and pain. However, the lack of blood supply, nerves, and lymphatic vessels greatly limited the self-repair and regeneration of damaged cartilage, giving rise to various tricky issues in medicine. In the past 30 years, numerous treatment techniques and commercial products have been developed and practiced in the clinic for promoting defected cartilage repair and regeneration. Here, the current therapies and their relevant advantages and disadvantages will be summarized, particularly the tissue engineering strategies. Furthermore, the fabrication of tissue-engineered cartilage under research or in the clinic was discussed based on the traid of tissue engineering, that is the materials, seed cells, and bioactive factors. Finally, the commercialized cartilage repair products were listed and the regulatory issues and challenges of tissue-engineered cartilage repair products and clinical application would be reviewed. Tissue engineered cartilage, a promising strategy for articular cartilage repair. Nearly 20 engineered cartilage repair products in clinic based on clinical techniques. Combination product, the classification of tissue-engineered cartilage. Key regulatory compliance issues for combination products.
Collapse
Affiliation(s)
- Xiaolei Guo
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
- Corresponding author.
| | - Yuan Ma
- State Key Laboratory of Tribology, Tsinghua University, Beijing, PR China
| | - Yue Min
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Jiayi Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Xinli Shi
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
- Corresponding author. Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Guobiao Gao
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Lei Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Jiadao Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing, PR China
- Corresponding author. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Wu H, Shang Y, Sun W, Ouyang X, Zhou W, Lu J, Yang S, Wei W, Yao X, Wang X, Zhang X, Chen Y, He Q, Yang Z, Ouyang H. Seamless and early gap healing of osteochondral defects by autologous mosaicplasty combined with bioactive supramolecular nanofiber-enabled gelatin methacryloyl (BSN-GelMA) hydrogel. Bioact Mater 2023; 19:88-102. [PMID: 35441114 PMCID: PMC9005961 DOI: 10.1016/j.bioactmat.2022.03.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/04/2022] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
Autologous mosaicplasty is a common approach used to treat osteochondral defects in clinical practice. Gap integration between host and transplanted plugs requires bone tissue reservation and hyaline cartilage regeneration without uneven surface, graft necrosis and sclerosis. However, poor gap integration is a serious concern, which eventually leads to deterioration of joint function. To deal with such complications, this study has developed a strategy to effectively enhance integration of the gap region following mosaicplasty by applying injectable bioactive supramolecular nanofiber-enabled gelatin methacryloyl (GelMA) hydrogel (BSN-GelMA). A rabbit osteochondral defect model demonstrated that BSN-GelMA achieved seamless osteochondral healing in the gap region between plugs of osteochondral defects following mosaicplasty, as early as six weeks. Moreover, the International Cartilage Repair Society score, histology score, glycosaminoglycan content, subchondral bone volume, and collagen II expression were observed to be the highest in the gap region of BSN-GelMA treated group. This improved outcome was due to bio-interactive materials, which acted as tissue fillers to bridge the gap, prevent cartilage degeneration, and promote graft survival and migration of bone marrow mesenchymal stem cells by releasing bioactive supramolecular nanofibers from the GelMA hydrogel. This study provides a powerful and applicable approach to improve gap integration after autologous mosaicplasty. It is also a promising off-the-shelf bioactive material for cell-free in situ tissue regeneration. A novel strategy that can effectively enhance post-mosaicplasty interstitial integration was developed. The bioactive supramolecular nanofibers (BSN) exhibited comparable bioactivity to insulin-like growth factor-1 (IGF-1). The BSN-GelMA hydrogel is a promising off-the-shelf bioactive material for cell-free in situ tissue regeneration.
Collapse
|
10
|
Dhillon J, Fasulo SM, Kraeutler MJ, Belk JW, McCulloch PC, Scillia AJ. The Most Common Rehabilitation Protocol After Matrix-Assisted Autologous Chondrocyte Implantation Is Immediate Partial Weight-Bearing and Continuous Passive Motion. Arthrosc Sports Med Rehabil 2022; 4:e2115-e2123. [PMID: 36579035 PMCID: PMC9791827 DOI: 10.1016/j.asmr.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose To perform a systematic review of postoperative rehabilitation protocols for third-generation autologous chondrocyte implantation (ACI) of the knee joint. Methods A systematic review was performed by searching PubMed, Cochrane Library, and EMBASE to locate randomized controlled trials that described a rehabilitation protocol following third-generation ACI of the knee joint. The search terms used were: "autologous" AND "chondrocyte" AND "randomized". Data extracted from each study included various components of postoperative rehabilitation, such as initial weight-bearing (WB) status and time to full WB, the use of continuous passive motion (CPM), the time to return to sports, and physical therapy (PT) modalities used and the timing of their initiation. Results Twenty-five studies (22 Level I, 3 Level II) met inclusion criteria, including a total of 905 patients undergoing treatment with ACI. The average patient age ranged from 29.1 to 54.8 years, and the mean follow-up time ranged from 3 months to 10.0 years. The average lesion size ranged from 1.9 to 5.8 cm2, and the most common lesion location was the medial femoral condyle (n = 494). Twenty studies allowed partial WB postoperatively with all studies permitting full WB within 12 weeks. Twenty studies used CPM in their rehabilitation protocols and initiated its use within 24 hours postoperatively. Among 10 studies that reported time to return to sport, 9 (90%) allowed return by 12 months. While most protocols used strength training as well as the inclusion of proprioceptive training, there was disagreement on the timing and inclusion of specific PT modalities used during the rehabilitation process. Conclusions Based on the included studies, most rehabilitation protocols for third-generation ACI initiate CPM within 24 hours postoperatively and allow partial WB immediately following surgery with progression to full WB within 12 weeks. There is variation of the PT modalities used as well as the timing of their initiation. Level of Evidence Level II, systematic review of Level I-II studies.
Collapse
Affiliation(s)
- Jaydeep Dhillon
- Rocky Vista University College of Osteopathic Medicine, Parker, Colorado U.S.A
| | - Sydney M. Fasulo
- Department of Orthopaedic Surgery, St. Joseph’s University Medical Center, Paterson, New Jersey U.S.A
| | - Matthew J. Kraeutler
- Department of Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, Texas U.S.A.,Address correspondence to Matthew J. Kraeutler, M.D., Department of Orthopedics & Sports Medicine, Houston Methodist Hospital, 6445 Main St., Suite 2300, Houston, TX 77030.
| | - John W. Belk
- University of Colorado School of Medicine, Aurora, Colorado U.S.A
| | - Patrick C. McCulloch
- Department of Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, Texas U.S.A
| | - Anthony J. Scillia
- Department of Orthopaedic Surgery, St. Joseph’s University Medical Center, Paterson, New Jersey U.S.A.,Academy Orthopaedics, Wayne, New Jersey, U.S.A
| |
Collapse
|
11
|
Kumagai K, Yamada S, Nejima S, Sotozawa M, Inaba Y. Minimum 5-Year Outcomes of Osteochondral Autograft Transplantation with a Concomitant High Tibial Osteotomy for Spontaneous Osteonecrosis of the Knee with a Large Lesion. Cartilage 2022; 13:19476035221126341. [PMID: 36117434 PMCID: PMC9634997 DOI: 10.1177/19476035221126341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the mid-term clinical outcomes of osteochondral autograft transplantation (OAT) with concomitant high tibial osteotomy (HTO) in spontaneous osteonecrosis of the knee (SONK) with a large lesion. DESIGN A total of 48 knees of 48 consecutive patients with SONK (lesion size ≥4 cm2, no age criteria) who underwent opening wedge HTO and concomitant OAT were retrospectively investigated, and those who were followed up postoperatively for at least 5 years were included in this case series study. Clinical outcomes were evaluated using knee and function scores of Knee Society Score, radiographic outcomes were evaluated using the anatomical femorotibial angle (FTA), and these outcomes were compared between patients aged ≥70 years and <70 years. RESULTS Of the 48 cases, a total of 43 cases were available for review at a minimum of 5 years, and 5 cases were excluded from the analysis. Overall, the mean knee score improved from preoperative 48.8 ± 13.3 to postoperative 87.9 ± 8.6 at 1 year (P < 0.05) and 85.0 ± 10.4 at final follow-up (P < 0.05 vs. preop., N.S. vs. 1 year). The mean function score also improved from preoperative 60.1 ± 10.9 to postoperative 87.3 ± 12.2 at 1 year (P < 0.05) and 84.2 ± 12.4 at final follow-up (P < 0.05 vs. preop., N.S. vs. 1 year). The mean standing FTA was corrected significantly from 181.1° ± 2.7° preoperatively to 169.7° ± 2.4° at 1 year (P < 0.05) and 169.4° ± 3.1° at final follow-up (P < 0.05 vs. preop., N.S. vs. 1 year). There were no significant differences in clinical and radiographic outcomes between patients aged ≥70 years and <70 years. There were 4 cases of lateral hinge fracture around the osteotomy site and 1 case of delayed union. None of the patients underwent revision surgery during the follow-up period (survival rate of 100%). CONCLUSIONS Mid-term clinical outcomes of patients with SONK who underwent HTO and OAT with a relatively large lesion were good.
Collapse
Affiliation(s)
- Ken Kumagai
- Department of Orthopaedic Surgery,
Graduate School of Medicine, Yokohama City University, Yokohama, Japan,Ken Kumagai, Department of Orthopaedic
Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura,
Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Shunsuke Yamada
- Department of Orthopaedic Surgery,
Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Shuntaro Nejima
- Department of Orthopaedic Surgery,
Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Masaichi Sotozawa
- Department of Orthopaedic Surgery,
Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yutaka Inaba
- Department of Orthopaedic Surgery,
Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
12
|
Chen M, Jiang R, Deng N, Zhao X, Li X, Guo C. Natural polymer-based scaffolds for soft tissue repair. Front Bioeng Biotechnol 2022; 10:954699. [PMID: 35928962 PMCID: PMC9343850 DOI: 10.3389/fbioe.2022.954699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Soft tissues such as skin, muscle, and tendon are easily damaged due to injury from physical activity and pathological lesions. For soft tissue repair and regeneration, biomaterials are often used to build scaffolds with appropriate structures and tailored functionalities that can support cell growth and new tissue formation. Among all types of scaffolds, natural polymer-based scaffolds attract much attention due to their excellent biocompatibility and tunable mechanical properties. In this comprehensive mini-review, we summarize recent progress on natural polymer-based scaffolds for soft tissue repair, focusing on clinical translations and materials design. Furthermore, the limitations and challenges, such as unsatisfied mechanical properties and unfavorable biological responses, are discussed to advance the development of novel scaffolds for soft tissue repair and regeneration toward clinical translation.
Collapse
Affiliation(s)
- Meiwen Chen
- Hangzhou Women’s Hospital, Hangzhou, Zhejiang
| | - Rui Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang
| | - Niping Deng
- School of Engineering, Westlake University, Hangzhou, Zhejiang
| | - Xiumin Zhao
- Hangzhou Women’s Hospital, Hangzhou, Zhejiang
| | - Xiangjuan Li
- Hangzhou Women’s Hospital, Hangzhou, Zhejiang
- *Correspondence: Xiangjuan Li, ; Chengchen Guo,
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, Zhejiang
- *Correspondence: Xiangjuan Li, ; Chengchen Guo,
| |
Collapse
|
13
|
Zhang Z, Schon L. The Current Status of Clinical Trials on Biologics for Cartilage Repair and Osteoarthritis Treatment: An Analysis of ClinicalTrials.gov Data. Cartilage 2022; 13:19476035221093065. [PMID: 35546280 PMCID: PMC9152205 DOI: 10.1177/19476035221093065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Biologics are increasingly used for cartilage repair and osteoarthritis (OA) treatment. This study aimed to provide an overview of the clinical trials conducted on this subject. DESIGN Two-word combinations of two sets of key words "cartilage"; "joint"; "osteoarthritis" and "biologics"; "stem cells"; "cell implantation" were used to search the database of ClinicalTrials.gov and supplemented with searches of PubMed and EMbase. The registered trials were analyzed for clinical conditions, completion status, phases, and investigated biologics. Recently completed trials with posted/published results were summarized. RESULTS From 2000 to 2022, a total of 365 clinical trials were registered at ClinicalTrials.gov to use biologics for cartilage repair and OA treatment. Since 2006, the number of registered trials accelerated at an annual rate of 16.4%. Of the 265 trials designated with a phase, 72% were early Phase 1, Phase 1, and Phase 2. Chondrocytes and platelet-rich plasma (PRP) were studied in nearly equal number of early- and late-stage trials. Mesenchymal stem/stromal cells (MSCs) were the most commonly investigated biologics (38%) and mostly derived from bone marrow and adipose tissue (70%). In last 5 years, 32 of the 72 completed trials posted/published results, among which seven Phase 3 trials investigated chondrocytes, PRP, bone marrow aspirate concentrate, hyaluronic acid, collagen membrane, and albumin. CONCLUSIONS There was a rapid increase in the number of registered clinical trials in recent years, using a variety of biologics for cartilage repair and OA treatment. Majority of the biologics still require late-stage trials to validate their clinical effectiveness.
Collapse
Affiliation(s)
- Zijun Zhang
- Center for Orthopaedic Innovation, Mercy Medical Center, Baltimore, MD, USA,Zijun Zhang, Center for Orthopaedic Innovation, Mercy Medical Center, 301 Saint Paul Place, Baltimore, MD 21202, USA.
| | - Lew Schon
- Center for Orthopaedic Innovation, Mercy Medical Center, Baltimore, MD, USA,Institute for Foot and Ankle Reconstruction, Mercy Medical Center, Baltimore, MD, USA
| |
Collapse
|
14
|
Bordes M, Sappey-Marinier E, Batailler C, Lustig S, Servien E. Autologous osteochondral transplantation for focal femoral condyle defects: Comparison of mosaicplasty by arthrotomy vs. arthroscopy. Orthop Traumatol Surg Res 2022; 108:103102. [PMID: 34628086 DOI: 10.1016/j.otsr.2021.103102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/15/2021] [Accepted: 03/10/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND While many studies have reported the outcomes of open mosaicplasty, data on arthroscopic mosaicplasty are scarce. Only two cadaver studies have compared arthrotomy and arthroscopy. Moreover, the patello-femoral joint, which is the main donor site, has never been assessed using a specific functional score. The objective of this in vivo study was to compare arthrotomy and arthroscopy for mosaicplasty using both a global functional knee score and a specific score of the patello-femoral joint. HYPOTHESIS The arthroscopic technique results in better functional patello-femoral outcomes. MATERIAL AND METHODS We retrospectively compared two groups of 17 patients who underwent mosaicplasty for focal condylar cartilage defects, at our department between 2009 and 2019. Functional outcomes were assessed using the Kujala score and the Lysholm score, at least 1 year after surgery. The return to sports was assessed using the Tegner score. RESULTS Mean follow-up was 67.4±15.9 months in the arthrotomy group and 45.2±35.1 months in the arthroscopy group (p<0.01). Cartilage defect size was similar in the two groups (arthrotomy: 1.21±0.91cm2; arthroscopy: 0.92±1.23cm2; p=0.052). The mean Kujala score was 85±21.3 in the arthrotomy group and 91.9±13.7 in the arthroscopy group (p=0.064). The mean Lysholm score was 83.9±19.8 with arthrotomy and 89.5±14.9 with arthroscopy (p=0.1). The Kujala score was greater than 95 in 4 (26%) arthrotomy patients and 13 (81%) arthroscopy patients (p=0.003). The Lysholm score was higher than 95 in 4 (26%) arthrotomy patients and 12 (75%) arthroscopy patients (p=0.012). No patient underwent surgical revision for autograft failure. DISCUSSION This is the first clinical study comparing arthrotomy and arthroscopy for mosaicplasty. Clinical outcomes were good with both techniques. The proportion of patients with excellent Lysholm and Kujala functional scores was significantly higher in the arthroscopy group than in the arthrotomy group. This result may be ascribable to decreased donor-site morbidity obtained with arthroscopy. LEVEL OF EVIDENCE IV, retrospective observational comparative study.
Collapse
Affiliation(s)
- Maxence Bordes
- Orthopaedics surgery and sports medicine department, FIFA Medical Centre of Excellence, Croix-Rousse hospital, Lyon university hospital, 69004 Lyon, France
| | - Elliot Sappey-Marinier
- Orthopaedics surgery and sports medicine department, FIFA Medical Centre of Excellence, Croix-Rousse hospital, Lyon university hospital, 69004 Lyon, France.
| | - Cécile Batailler
- Orthopaedics surgery and sports medicine department, FIFA Medical Centre of Excellence, Croix-Rousse hospital, Lyon university hospital, 69004 Lyon, France
| | - Sébastien Lustig
- Orthopaedics surgery and sports medicine department, FIFA Medical Centre of Excellence, Croix-Rousse hospital, Lyon university hospital, 69004 Lyon, France; IFSTTAR, LBMC UMR_T9406, Lyon university, Claude Bernard Lyon 1 university, 69622 Lyon, France
| | - Elvire Servien
- Orthopaedics surgery and sports medicine department, FIFA Medical Centre of Excellence, Croix-Rousse hospital, Lyon university hospital, 69004 Lyon, France; LIBM - EA 7424, interuniversity laboratory of biology of mobility, Claude Bernard Lyon 1 university, Lyon, France
| |
Collapse
|
15
|
Li M, Yin H, Yan Z, Li H, Wu J, Wang Y, Wei F, Tian G, Ning C, Li H, Gao C, Fu L, Jiang S, Chen M, Sui X, Liu S, Chen Z, Guo Q. The immune microenvironment in cartilage injury and repair. Acta Biomater 2022; 140:23-42. [PMID: 34896634 DOI: 10.1016/j.actbio.2021.12.006] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023]
Abstract
The ability of articular cartilage to repair itself is limited because it lacks blood vessels, nerves, and lymph tissue. Once damaged, it can lead to joint swelling and pain, accelerating the progression of osteoarthritis. To date, complete regeneration of hyaline cartilage exhibiting mechanical properties remains an elusive goal, despite the many available technologies. The inflammatory milieu created by cartilage damage is critical for chondrocyte death and hypertrophy, extracellular matrix breakdown, ectopic bone formation, and progression of cartilage injury to osteoarthritis. In the inflammatory microenvironment, mesenchymal stem cells (MSCs) undergo aberrant differentiation, and chondrocytes begin to convert or dedifferentiate into cells with a fibroblast phenotype, thereby resulting in fibrocartilage with poor mechanical qualities. All these factors suggest that inflammatory problems may be a major stumbling block to cartilage repair. To produce a milieu conducive to cartilage repair, multi-dimensional management of the joint inflammatory microenvironment in place and time is required. Therefore, this calls for elucidation of the immune microenvironment of cartilage repair after injury. This review provides a brief overview of: (1) the pathogenesis of cartilage injury; (2) immune cells in cartilage injury and repair; (3) effects of inflammatory cytokines on cartilage repair; (4) clinical strategies for treating cartilage defects; and (5) strategies for targeted immunoregulation in cartilage repair. STATEMENT OF SIGNIFICANCE: Immune response is increasingly considered the key factor affecting cartilage repair. It has both negative and positive regulatory effects on the process of regeneration and repair. Proinflammatory factors are secreted in large numbers, and necrotic cartilage is removed. During the repair period, immune cells can secrete anti-inflammatory factors and chondrogenic cytokines, which can inhibit inflammation and promote cartilage repair. However, inflammatory factors persist, which accelerate the degradation of the cartilage matrix. Furthermore, in an inflammatory microenvironment, MSCs undergo abnormal differentiation, and chondrocytes begin to transform or dedifferentiate into fibroblast-like cells, forming fibrocartilage with poor mechanical properties. Consequently, cartilage regeneration requires multi-dimensional regulation of the joint inflammatory microenvironment in space and time to make it conducive to cartilage regeneration.
Collapse
|
16
|
Everhart JS, Jiang EX, Poland SG, Du A, Flanigan DC. Failures, Reoperations, and Improvement in Knee Symptoms Following Matrix-Assisted Autologous Chondrocyte Transplantation: A Meta-Analysis of Prospective Comparative Trials. Cartilage 2021; 13:1022S-1035S. [PMID: 31508998 PMCID: PMC8808777 DOI: 10.1177/1947603519870861] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE Though multiple high-level comparative studies have been performed for matrix-assisted autologous chondrocyte transplantation (MACT), quantitative reviews synthesizing best-available clinical evidence on the topic are lacking. DESIGN A meta-analysis was performed of prospective randomized or nonrandomized comparative studies utilizing MACT. A total of 13 studies reporting 13 prospective trials (9 randomized, 5 nonrandomized) were included (658 total study participants at weighted mean 3.1 years follow-up, range 1-7.5 years). RESULTS Reporting and methodological quality was moderate according to mean Coleman (59.4 SD 7.6), Delphi (3.0 SD 2.1), and MINORS (Methodological Index For Non-Randomized Studies) scores (20.2 SD 1.6). There was no evidence of small study or reporting bias. Effect sizes were not correlated with reporting quality, financial conflict of interest, sample size, year of publication, or length of follow-up (P > 0.05). Compared to microfracture, MACT had greater improvement in International Knee Documentation Committee (IKDC)-subjective and Knee Injury and Osteoarthritis Outcome Pain Subscale Score (KOOS)-pain scores in randomized studies (P < 0.05). Accelerated weight-bearing protocols (6 or 8 weeks) resulted in greater improvements in IKDC-subjective and KOOS-pain scores than standard protocols (8 or 11 weeks) for MACT in randomized studies (P < 0.05) with insufficient nonrandomized studies for pooled analysis. CONCLUSIONS Compared to microfracture, MACT has no increased risk of clinical failure and superior improvement in patient-reported outcome scores. Compared to MACT with standardized postoperative weight-bearing protocols, accelerated weight-bearing protocols have no increased risk of clinical failure and show superior improvement in patient-reported outcome scores. There is limited evidence regarding MACT compared to first-generation autologous chondrocyte implantation, mosaicplasty, and mesenchymal stem cell therapy without compelling differences in outcomes.
Collapse
Affiliation(s)
- Joshua S. Everhart
- Department of Orthopaedics, The Ohio
State University Wexner Medical Center, Columbus, OH, USA
| | - Eric X. Jiang
- Department of Orthopaedics, The Ohio
State University Wexner Medical Center, Columbus, OH, USA
| | - Sarah G. Poland
- Department of Orthopaedics, The Ohio
State University Wexner Medical Center, Columbus, OH, USA
| | - Amy Du
- Department of Orthopaedics, The Ohio
State University Wexner Medical Center, Columbus, OH, USA
| | - David C. Flanigan
- Department of Orthopaedics, The Ohio
State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
17
|
Hulme CH, Perry J, McCarthy HS, Wright KT, Snow M, Mennan C, Roberts S. Cell therapy for cartilage repair. Emerg Top Life Sci 2021; 5:575-589. [PMID: 34423830 PMCID: PMC8589441 DOI: 10.1042/etls20210015] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Regenerative medicine, using cells as therapeutic agents for the repair or regeneration of tissues and organs, offers great hope for the future of medicine. Cell therapy for treating defects in articular cartilage has been an exemplar of translating this technology to the clinic, but it is not without its challenges. These include applying regulations, which were designed for pharmaceutical agents, to living cells. In addition, using autologous cells as the therapeutic agent brings additional costs and logistical challenges compared with using allogeneic cells. The main cell types used in treating chondral or osteochondral defects in joints to date are chondrocytes and mesenchymal stromal cells derived from various sources such as bone marrow, adipose tissue or umbilical cord. This review discusses some of their biology and pre-clinical studies before describing the most pertinent clinical trials in this area.
Collapse
Affiliation(s)
- Charlotte H. Hulme
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, U.K
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, U.K
| | - Jade Perry
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, U.K
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, U.K
| | - Helen S. McCarthy
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, U.K
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, U.K
| | - Karina T. Wright
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, U.K
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, U.K
| | - Martyn Snow
- The Royal Orthopaedic Hospital, Birmingham, U.K
| | - Claire Mennan
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, U.K
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, U.K
| | - Sally Roberts
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, U.K
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, U.K
| |
Collapse
|
18
|
Oliver-Ferrándiz M, Milián L, Sancho-Tello M, Martín de Llano JJ, Gisbert Roca F, Martínez-Ramos C, Carda C, Mata M. Alginate-Agarose Hydrogels Improve the In Vitro Differentiation of Human Dental Pulp Stem Cells in Chondrocytes. A Histological Study. Biomedicines 2021; 9:834. [PMID: 34356898 PMCID: PMC8301309 DOI: 10.3390/biomedicines9070834] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Matrix-assisted autologous chondrocyte implantation (MACI) has shown promising results for cartilage repair, combining cultured chondrocytes and hydrogels, including alginate. The ability of chondrocytes for MACI is limited by different factors including donor site morbidity, dedifferentiation, limited lifespan or poor proliferation in vitro. Mesenchymal stem cells could represent an alternative for cartilage regeneration. In this study, we propose a MACI scaffold consisting of a mixed alginate-agarose hydrogel in combination with human dental pulp stem cells (hDPSCs), suitable for cartilage regeneration. Scaffolds were characterized according to their rheological properties, and their histomorphometric and molecular biology results. Agarose significantly improved the biomechanical behavior of the alginate scaffolds. Large scaffolds were manufactured, and a homogeneous distribution of cells was observed within them. Although primary chondrocytes showed a greater capacity for chondrogenic differentiation, hDPSCs cultured in the scaffolds formed large aggregates of cells, acquired a rounded morphology and expressed high amounts of type II collagen and aggrecan. Cells cultured in the scaffolds expressed not only chondral matrix-related genes, but also remodeling proteins and chondrocyte differentiation factors. The degree of differentiation of cells was proportional to the number and size of the cell aggregates that were formed in the hydrogels.
Collapse
Affiliation(s)
- María Oliver-Ferrándiz
- Department of Pathology, Faculty of Medicine and Odontology, University of Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain; (M.O.-F.); (L.M.); (J.J.M.d.L.); (C.C.); (M.M.)
| | - Lara Milián
- Department of Pathology, Faculty of Medicine and Odontology, University of Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain; (M.O.-F.); (L.M.); (J.J.M.d.L.); (C.C.); (M.M.)
- Health Research Institute Foundation (INCLIVA), Menéndez y Pelayo St., 4, 46010 Valencia, Spain
| | - María Sancho-Tello
- Department of Pathology, Faculty of Medicine and Odontology, University of Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain; (M.O.-F.); (L.M.); (J.J.M.d.L.); (C.C.); (M.M.)
- Health Research Institute Foundation (INCLIVA), Menéndez y Pelayo St., 4, 46010 Valencia, Spain
| | - José Javier Martín de Llano
- Department of Pathology, Faculty of Medicine and Odontology, University of Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain; (M.O.-F.); (L.M.); (J.J.M.d.L.); (C.C.); (M.M.)
- Health Research Institute Foundation (INCLIVA), Menéndez y Pelayo St., 4, 46010 Valencia, Spain
| | - Fernando Gisbert Roca
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera, s/n, 46022 Valencia, Spain;
| | - Cristina Martínez-Ramos
- Unit Predepartamental of Medicine, Jaime I University, Avda. Sos Baynat, s/n, 12071 Castellón de la Plana, Spain;
| | - Carmen Carda
- Department of Pathology, Faculty of Medicine and Odontology, University of Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain; (M.O.-F.); (L.M.); (J.J.M.d.L.); (C.C.); (M.M.)
- Health Research Institute Foundation (INCLIVA), Menéndez y Pelayo St., 4, 46010 Valencia, Spain
- Center for Biomedical Research Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Melchor Fernández Almagro St., 3, 28029 Madrid, Spain
| | - Manuel Mata
- Department of Pathology, Faculty of Medicine and Odontology, University of Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain; (M.O.-F.); (L.M.); (J.J.M.d.L.); (C.C.); (M.M.)
- Health Research Institute Foundation (INCLIVA), Menéndez y Pelayo St., 4, 46010 Valencia, Spain
- Center for Biomedical Research Network in Respiratory Diseases (CIBER-ES), Melchor Fernández Almagro St., 3, 28029 Madrid, Spain
| |
Collapse
|
19
|
Paternoster JL, Vranckx JJ. State of the art of clinical applications of Tissue Engineering in 2021. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:592-612. [PMID: 34082599 DOI: 10.1089/ten.teb.2021.0017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tissue engineering (TE) was introduced almost 30 years ago as a potential technique for regenerating human tissues. However, despite promising laboratory findings, the complexity of the human body, scientific hurdles, and lack of persistent long-term funding still hamper its translation towards clinical applications. In this report, we compile an inventory of clinically applied TE medical products relevant to surgery. A review of the literature, including articles published within the period from 1991 to 2020, was performed according to the PRISMA protocol, using databanks PubMed, Cochrane Library, Web of Science, and Clinicaltrials.gov. We identified 1039 full-length articles as eligible; due to the scarcity of clinical, randomised, controlled trials and case studies, we extended our search towards a broad surgical spectrum. Forty papers involved clinical TE studies. Amongst these, 7 were related to TE protocols for cartilage applied in the reconstruction of nose, ear, and trachea. Nine papers reported TE protocols for articular cartilage, 9 for urological purposes, 7 described TE strategies for cardiovascular aims, and 8 for dermal applications. However, only two clinical studies reported on three-dimensional (3D) and functional long-lasting TE constructs. The concept of generating 3D TE constructs and organs based on autologous molecules and cells is intriguing and promising. The first translational tissue-engineered products and techniques have been clinically implemented. However, despite the 30 years of research and development in this field, TE is still in its clinical infancy. Multiple experimental, ethical, budgetary, and regulatory difficulties hinder its rapid translation. Nevertheless, the first clinical applications show great promise and indicate that the translation towards clinical medical implementation has finally started.
Collapse
Affiliation(s)
- Julie Lien Paternoster
- UZ Leuven Campus Gasthuisberg Hospital Pharmacy, 574134, Plastic Surgery , Herestraat 49, Leuven, Belgium, 3000;
| | - Jan Jeroen Vranckx
- Universitaire Ziekenhuizen Leuven, 60182, Plastic and Reconstructive Surgery, Leuven, Belgium;
| |
Collapse
|
20
|
Zhao X, Chen X, Yuk H, Lin S, Liu X, Parada G. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chem Rev 2021; 121:4309-4372. [PMID: 33844906 DOI: 10.1021/acs.chemrev.0c01088] [Citation(s) in RCA: 418] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?
Collapse
Affiliation(s)
- Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - German Parada
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
21
|
Theodoridis K, Manthou ME, Aggelidou E, Kritis A. In Vivo Cartilage Regeneration with Cell-Seeded Natural Biomaterial Scaffold Implants: 15-Year Study. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:206-245. [PMID: 33470169 DOI: 10.1089/ten.teb.2020.0295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Articular cartilage can be easily damaged from human's daily activities, leading to inflammation and to osteoarthritis, a situation that can diminish the patients' quality of life. For larger cartilage defects, scaffolds are employed to provide cells the appropriate three-dimensional environment to proliferate and differentiate into healthy cartilage tissue. Natural biomaterials used as scaffolds, attract researchers' interest because of their relative nontoxic nature, their abundance as natural products, their easy combination with other materials, and the relative easiness to establish Marketing Authorization. The last 15 years were chosen to review, document, and elucidate the developments on cell-seeded natural biomaterials for articular cartilage treatment in vivo. The parameters of the experimental designs and their results were all documented and presented. Considerations about the newly formed cartilage and the treatment of cartilage defects were discussed, along with difficulties arising when applying natural materials, research limitations, and tissue engineering approaches for hyaline cartilage regeneration.
Collapse
Affiliation(s)
- Konstantinos Theodoridis
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology, Embryology, and Anthropology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Eleni Aggelidou
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| |
Collapse
|
22
|
Saltzman BM, Redondo ML, Beer A, Cotter EJ, Frank RM, Yanke AB, Cole BJ. Wide Variation in Methodology in Level I and II Studies on Cartilage Repair: A Systematic Review of Available Clinical Trials Comparing Patient Demographics, Treatment Means, and Outcomes Reporting. Cartilage 2021; 12:7-23. [PMID: 30378453 PMCID: PMC7755973 DOI: 10.1177/1947603518809398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The management of complex cartilage pathology in young, otherwise healthy patients can be difficult. PURPOSE To determine the nature of the design, endpoints chosen, and rate at which the endpoints were met in published studies and ongoing clinical trials that investigate cartilage repair and restoration procedures. STUDY DESIGN Systematic review. METHODS A systematic review of the publicly available level I/II literature and of the publicly listed clinical trials regarding cartilage repair and restoration procedures for the knee was conducted adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Seventeen published studies and 52 clinical trials were included. Within the 17 published studies, the most common procedure studied was microfracture (MFX) + augmentation (N = 5; 29.4%) and the most common comparison/control group was MFX (N = 10; 58.8%). In total, 13 different cartilage procedure groups were evaluated. For published studies, the most common patient-reported outcome (PRO) measures assessed is the Knee Injury and Osteoarthritis Outcome Score (KOOS) and Visual Analog Scale-Pain (VAS) (N = 10 studies, 58.8% each, respectively). Overall, there are 10 different PROs used among the included studies. Ten studies demonstrate superiority, 5 demonstrate noninferiority, and 2 demonstrate inferiority to the comparison or control groups. For the clinical trials included, the most common procedure studied is MFX + augmentation (N = 16; 30.8%). The most common PRO assessed is KOOS (N = 36 trials; 69.2%), and overall there are 24 different PROs used among the included studies. CONCLUSIONS Recently published studies and clinical trials evaluate a variety of cartilage repair and restoration strategies for the knee, most commonly MFX + augmentation, at various time points of outcome evaluation, with KOOS and VAS scores being used most commonly. MFX remains the most common comparison group for these therapeutic investigations. Most studies demonstrate superiority versus comparison or control groups. Understanding the nature of published and ongoing clinical trials will be helpful in the investigation of emerging technologies required to navigate the regulatory process while studying a relatively narrow population of patients.
Collapse
Affiliation(s)
| | | | - Adam Beer
- Rush University Medical Center, Chicago, IL, USA
| | - Eric J. Cotter
- University of Wisconsin Madison School of Medicine and Public Health, Madison, WI, USA
| | | | | | - Brian J. Cole
- Rush University Medical Center, Chicago, IL, USA,Brian J. Cole, Rush University Medical Center, 1611 West Harrison Street, Suite 300, Chicago, IL 60612-3833, USA.
| |
Collapse
|
23
|
Kizaki K, El-Khechen HA, Yamashita F, Duong A, Simunovic N, Musahl V, Ayeni OR. Arthroscopic versus Open Osteochondral Autograft Transplantation (Mosaicplasty) for Cartilage Damage of the Knee: A Systematic Review. J Knee Surg 2021; 34:94-107. [PMID: 31288271 DOI: 10.1055/s-0039-1692999] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteochondral autograft transplantation (OAT) is a surgical option for repairing cartilage damage in knees, and can be performed using open or arthroscopic procedures. The aim of this review was to report clinical outcomes, postoperative complications, defect location, and defect size between open and arthroscopic OATs. Three electronic databases (EMBASE, PUBMED, and MEDLINE) were searched for relevant articles. In regard to eligibility criteria, knee articular damage cases solely treated with OAT were included and cases concomitant with ligament reconstruction, limb realignment, and meniscus repair were excluded. The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and descriptive statistics are presented. A total of 24 studies were included with a total sample of 1,139 patients (532 in open OAT vs. 607 in arthroscopic OAT). Defect size in open OAT was three times larger than that of arthroscopic OAT (2.96 ± 0.76 vs. 0.97 ± 0.48 cm2). In terms of defect location, the medial femoral condyle (MFC) was the most common (75.4%), followed by the lateral femoral condyle (LFC; 12.1%), patella (6.7%), and trochlea (5.7%). All of these defect locations were treated with open OAT, whereas arthroscopic OAT treatments were restricted to the MFC and LFC. The clinical outcomes were overall favorable with the modified Hospital for Special Surgery knee scores being 89.6 ± 8.0 (36.1-month follow-up) versus 90.4 ± 6.0 (89.5-month follow-up) and the Lysholm scores being 81.6 ± 8.9 (44.2-month follow-up) and 83.3 ± 7.4 (12.0-month follow-up) between open and arthroscopic OATs, respectively. Fifty-three postoperative complications were observed (39/279 vs. 14/594) and the most common complication was hemarthrosis (13/39 in open, vs. 1/14 in arthroscopic OAT). The overall clinical outcomes were favorable in open and arthroscopic OATs, whereas open OAT allowed for treatment of lesions approximately three times greater in dimension than in arthroscopic OAT. Also, defect location was restricted to MFC and LFC in arthroscopic OAT. The most common complication was hemarthrosis.
Collapse
Affiliation(s)
- Kazuha Kizaki
- McMaster University, Department of Health Research Methods, Evidence, and Impact, Hamilton, Ontario, Canada
| | - Hussein Ali El-Khechen
- McMaster University, Department of Health Research Methods, Evidence, and Impact, Hamilton, Ontario, Canada
| | - Fumiharu Yamashita
- Kyoto Shimogamo Hospital, Department of Orthopaedic Surgery, Kyoto, Japan
| | - Andrew Duong
- McMaster University, Division of Orthopaedic Surgery, Hamilton, Ontario, Canada
| | - Nicole Simunovic
- McMaster University, Division of Orthopaedic Surgery, Hamilton, Ontario, Canada
| | - Volker Musahl
- University of Pittsburgh, Department of Orthopaedic Surgery, Pittsburgh, Pennsylvania
| | - Olufemi R Ayeni
- McMaster University, Division of Orthopaedic Surgery, Hamilton, Ontario, Canada
| |
Collapse
|
24
|
Ngadimin KD, Stokes A, Gentile P, Ferreira AM. Biomimetic hydrogels designed for cartilage tissue engineering. Biomater Sci 2021; 9:4246-4259. [DOI: 10.1039/d0bm01852j] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cartilage-like hydrogels based on materials like gelatin, chondroitin sulfate, hyaluronic acid and polyethylene glycol are reviewed and contrasted, revealing existing limitations and challenges on biomimetic hydrogels for cartilage regeneration.
Collapse
Affiliation(s)
- Kresanti D. Ngadimin
- Faculty of Medical Sciences
- Newcastle University
- Newcastle upon Tyne
- UK
- Faculty of Medicine
| | - Alexander Stokes
- Faculty of Science
- Agriculture & Engineering
- Newcastle University
- Newcastle upon Tyne
- UK
| | - Piergiorgio Gentile
- Faculty of Science
- Agriculture & Engineering
- Newcastle University
- Newcastle upon Tyne
- UK
| | - Ana M. Ferreira
- Faculty of Science
- Agriculture & Engineering
- Newcastle University
- Newcastle upon Tyne
- UK
| |
Collapse
|
25
|
Pan Z, Yin H, Wang S, Xiong G, Yin Z. Bcl-xL expression following articular cartilage injury and its effects on the biological function of chondrocytes. Eng Life Sci 2020; 20:571-579. [PMID: 33304230 PMCID: PMC7708954 DOI: 10.1002/elsc.202000039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to investigate the expression of B-cell lymphoma-extra large (Bcl-xL) in cartilage tissues following articular cartilage injury and to determine its effects on the biological function of chondrocytes. A total of 25 necrotic cartilage tissue samples and 25 normal tissue samples were collected from patients diagnosed with osteoarthritis at our hospital from December 2015 to December 2018. The mRNA expression levels of Bcl-xL, caspase-3, and matrix metalloproteinase-3 (MMP-3) in the normal and necrotic tissues were examined via quantitative polymerase chain reaction, and their protein expression levels were detected via western blotting. The expression levels of Bcl-xL, insulin-like growth factor-1 (IGF-1), and bone morphogenetic protein (BMP) were significantly lower but those of caspase-3, MMP-3, interleukin-1β (IL-1β), and chemokine-like factor 1 (CKLF1) levels were markedly higher in necrotic cartilage tissues than in normal tissues. Following cell transfection, the expression levels of Bcl-xL, IGF-1, and BMP were remarkably higher but those of caspase-3, MMP-3, IL-1β, and CKLF1 were notably lower in the Si-Bcl-xL group than in the NC group. The Si-Bcl-xL group showed significantly lower cell growth and noticeably higher apoptosis rate than the NC group (normal control group). The expression of Bcl-xL is reduced following articular cartilage injury, and this reduction promotes the proliferation and inhibits the apoptosis of chondrocytes. Therefore, Bcl-xL could serve as a relevant molecular target in the clinical practice of osteoarthritis and other diseases causing cartilage damage.
Collapse
Affiliation(s)
- Zhengjun Pan
- Orthopedics DepartmentThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
- Orthopedics DepartmentThe First People's Hospital of HefeiHefeiAnhuiP. R. China
| | - Hao Yin
- Orthopedics DepartmentThe First People's Hospital of HefeiHefeiAnhuiP. R. China
| | - Shuangli Wang
- Orthopedics DepartmentThe First People's Hospital of HefeiHefeiAnhuiP. R. China
| | - Gaoxin Xiong
- Orthopedics DepartmentThe First People's Hospital of HefeiHefeiAnhuiP. R. China
| | - Zongsheng Yin
- Orthopedics DepartmentThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| |
Collapse
|
26
|
Evolution of hydrogels for cartilage tissue engineering of the knee: A systematic review and meta-analysis of clinical studies. Joint Bone Spine 2020; 88:105096. [PMID: 33157230 DOI: 10.1016/j.jbspin.2020.105096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION In recent years, studies have boosted our knowledge about the biology and disorders of articular cartilage. In this regard, the design of hydrogel-based scaffolds has advanced to improve cartilage repair. However, the efficacy of knee cartilage repair using hydrogels remains unclear. The aim of systematic review and meta-analysis was to scrutinize the efficiency of hydrogel-based therapy in correcting cartilage defects of knee (femoral condyle, patella, tibia plateau and trochlea). METHODS The search was conducted in PubMed to gather articles published from 2004/1/1 to 2019/10/01, addressing the effects of implant of hydrogel on knee joint cartilage regeneration. The Cochrane Collaboration's tool for estimating the risk of bias was applied to check the quality of articles. The clinical data for meta-analysis was recorded using the visual analog scale (VAS), Lysholm score, WOMAC, and IKDC. The guidelines of Cochrane Handbook for Systematic Reviews of Interventions were utilized to conduct the review and meta-analysis in the RevMan 5.3 software. RESULTS The search resulted in 50 clinical trials that included 2846 patients, 986 of whom received cell-based hydrogel implants while 1860 patients used hydrogel without cell. There were significant differences comparing the pain scores based on the VAS (MD: -2.97; 95% CI: -3.15 to -2.79, P<0.00001) and WOMAC (MD: -25.22; 95% CI: -31.22 to -19.22, P<0.00001) between pre- and post-treatment with hydrogels. Furthermore, there were significant improvements in the functional scores based on the IKDC total score (MD: 30.67; P<0.00001) and the Lysholm knee scale (MD: 29.26; 95% CI: 26.74 to 31.78, P<0.00001). According to the Lysholm and IKDC score and after cumulative functional analysis, there was a significant improvement in this parameter (MD: 29.25; 95% CI: 27.26 to 31.25, P<0.00001). CONCLUSIONS This meta-analysis indicated clinically and statistically significant improvements in the pain score (VAS and WOMAC) and the functional score (IKDC and Lysholm) after the administration of hydrogel compared to pretreatment status. So, the current evidence shows the efficiency of hydrogel-based therapy in correcting and repairing knee cartilage defects.
Collapse
|
27
|
A tri-component knee plug for the 3rd generation of autologous chondrocyte implantation. Sci Rep 2020; 10:17048. [PMID: 33046760 PMCID: PMC7550599 DOI: 10.1038/s41598-020-73863-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 09/10/2020] [Indexed: 02/01/2023] Open
Abstract
Here, we report a newly designed knee plug to be used in the 3rd generation of Autologous Chondrocyte Implantation (ACI) in order to heal the damaged knee cartilage. It is composed of three components: The first component (Bone Portion) is a 3D printed hard scaffold with large pores (~ 850 µm), made by hydroxyapatite and β-tricalcium phosphate to accommodate the bony parts underneath the knee cartilage. It is a cylinder with a diameter of 20 mm and height of 7.5 mm, with a slight dome shape on top. The plug also comprises a Cartilage Portion (component 2) which is a 3D printed gelatin/elastin/sodium-hyaluronate soft thick porous membrane with large pores to accommodate chondrocytes. Cartilage Portion is secured on top of the Bone Portion using mechanical interlocking by designing specific knobs in the 3D printed construct of the Cartilage Portion. The third component of the plug (Film) is a stitchable permeable membrane consisting of polycaprolactone (PCL) on top of the Cartilage Portion to facilitate sliding of the knee joint and to hold the entire plug in place while allowing nutrients delivery to the Cartilage Portion. The PCL Film is prepared using a combination of film casting and sacrificial material leaching with a pore size of 10 µm. It is surface modified to have specific affinity with the Cartilage Portion. The detailed design criteria and production process of this plug is presented in this report. Full in vitro analyses have been performed, which indicate the compatibility of the different components of the plug relative to their expected functions.
Collapse
|
28
|
Gress K, Charipova K, An D, Hasoon J, Kaye AD, Paladini A, Varrassi G, Viswanath O, Abd-Elsayed A, Urits I. Treatment recommendations for chronic knee osteoarthritis. Best Pract Res Clin Anaesthesiol 2020; 34:369-382. [PMID: 33004154 DOI: 10.1016/j.bpa.2020.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022]
Abstract
Primary osteoarthritis (OA) hinders an aging global population as one of the leading causes of years-lost-to-disability (YLD). OA in most patients is considered to be an overuse injury that results in degenerative inflammation of the joints with the associated formation of bony outgrowths. Due to the escalating nature of this chronic pain disease, treatment management for OA can initially begin with a more conservative approach. It can eventually lead to more invasive surgical procedures. At present, the standard of care remains initial conservative management with lifestyle changes, including weight loss with concurrent anti-inflammatory regimens. Injections are frequently used for the escalation of care, but a significant number of patients ultimately resort to total knee arthroplasty. This review will focus specifically on knee OA, providing a brief overview of risk factors and early management and in-depth exploration of the invasive interventions that can offer symptomatic relief and return of function.
Collapse
Affiliation(s)
- Kyle Gress
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Daniel An
- Georgetown University School of Medicine, Washington, DC, USA
| | - Jamal Hasoon
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Alan D Kaye
- Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA
| | | | | | - Omar Viswanath
- Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA; Valley Pain Consultants, Envision Physician Services, Phoenix, AZ, USA; University of Arizona College of Medicine-Phoenix, Department of Anesthesiology, Phoenix, AZ, USA; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, USA
| | - Alaa Abd-Elsayed
- Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ivan Urits
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Hamamoto S, Chijimatsu R, Shimomura K, Kobayashi M, Jacob G, Yano F, Saito T, Chung UI, Tanaka S, Nakamura N. Enhancement of chondrogenic differentiation supplemented by a novel small compound for chondrocyte-based tissue engineering. J Exp Orthop 2020; 7:10. [PMID: 32146609 PMCID: PMC7060980 DOI: 10.1186/s40634-020-00228-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose Chondrocyte -based tissue engineering has been a promising option for the treatment of cartilage lesions. In previous literature, TD198946 has been shown to promote chondrogenic differentiation which could prove useful in cartilage regeneration therapies. Our study aimed to investigate the effects of TD198946 in generating engineered cartilage using dedifferentiated chondrocyte-seeded collagen scaffolds treated with TD198946. Methods Articular chondrocytes were isolated from mini pig knees and expanded in 2-dimensional cell culture and subsequently used in the experiments. 3-D pellets were then cultured for two weeks. Cells were also cultured in a type I collagen scaffolds for four weeks. Specimens were cultured with TD198946, BMP-2, or both in combination. Outcomes were determined by gene expression levels of RUNX1, SOX9, ACAN, COL1A1, COL2A1 and COL10A1, the glycosaminoglycan content, and characteristics of histology and immunohistochemistry. Furthermore, the maturity of the engineered cartilage cultured for two weeks was evaluated through subcutaneous implantation in nude mice for four weeks. Results Addition of TD198946 demonstrated the upregulation of gene expression level except for ACAN, type II collagen and glycosaminoglycan synthesis in both pellet and 3D scaffold cultures. TD198946 and BMP-2 combination cultures showed higher chondrogenic differentiation than TD198946 or BMP-2 alone. The engineered cartilage maintained its extracellular matrices for four weeks post implantation. In contrast, engineered cartilage treated with either TD198946 or BMP-2 alone was mostly absorbed. Conclusions Our results indicate that TD198946 could improve quality of engineered cartilage by redifferentiation of dedifferentiated chondrocytes pre-implantation and promoting collagen and glycosaminoglycan synthesis.
Collapse
Affiliation(s)
- Shuichi Hamamoto
- Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryota Chijimatsu
- Bone and Cartilage Regenerative Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunori Shimomura
- Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masato Kobayashi
- Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - George Jacob
- Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Fumiko Yano
- Bone and Cartilage Regenerative Medicine, The University of Tokyo, Tokyo, Japan.,Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo, Japan
| | - Taku Saito
- Sensory and Motor System Medicine, The University of Tokyo, Tokyo, Japan
| | - Ung-Il Chung
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo, Japan
| | - Sakae Tanaka
- Sensory and Motor System Medicine, The University of Tokyo, Tokyo, Japan
| | - Norimasa Nakamura
- Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan. .,Global Center of Medical Engineering and Informatics, Osaka University, Suita, Japan. .,Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan.
| |
Collapse
|
30
|
Jones KJ, Kelley BV, Arshi A, McAllister DR, Fabricant PD. Comparative Effectiveness of Cartilage Repair With Respect to the Minimal Clinically Important Difference. Am J Sports Med 2019; 47:3284-3293. [PMID: 31082325 DOI: 10.1177/0363546518824552] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Recent studies demonstrated a 5% increase in cartilage repair procedures annually in the United States. There is currently no consensus regarding a superior technique, nor has there been a comprehensive evaluation of postoperative clinical outcomes with respect to a minimal clinically important difference (MCID). PURPOSE To determine the proportion of available cartilage repair studies that meet or exceed MCID values for clinical outcomes improvement over short-, mid-, and long-term follow-up. STUDY DESIGN Systematic review and meta-analysis. METHODS A systematic review was performed via the Medline, Scopus, and Cochrane Library databases. Available studies were included that investigated clinical outcomes for microfracture (MFX), osteoarticular transfer system (OATS), osteochondral allograft transplantation, and autologous chondrocyte implantation/matrix-induced autologous chondrocyte implantation (ACI/MACI) for the treatment of symptomatic knee chondral defects. Cohorts were combined on the basis of surgical intervention by performing a meta-analysis that utilized inverse-variance weighting in a DerSimonian-Laird random effects model. Weighted mean improvements in International Knee Documentation Committee (IKDC), Lysholm, and visual analog scale for pain (VAS pain) scores were calculated from preoperative to short- (1-4 years), mid- (5-9 years), and long-term (≥10 years) postoperative follow-up. Mean values were compared with established MCID values per 2-tailed 1-sample Student t tests. RESULTS A total of 89 studies with 3894 unique patients were analyzed after full-text review. MFX met MCID values for all outcome scores at short- and midterm follow-up with the exception of VAS pain in the midterm. OATS met MCID values for all outcome scores at all available time points; however, long-term data were not available for VAS pain. Osteochondral allograft transplantation met MCID values for IKDC at short- and midterm follow-up and for Lysholm at short-term follow-up, although data were not available for other time points or for VAS pain. ACI/MACI met MCID values for all outcome scores (IKDC, Lysholm, and VAS pain) at all time points. CONCLUSION In the age of informed consent, it is important to critically evaluate the clinical outcomes and durability of cartilage surgery with respect to well-established standards of clinical improvement. MFX failed to maintain VAS pain improvements above MCID thresholds with follow-up from 5 to 9 years. All cartilage repair procedures met MCID values at short- and midterm follow-up for IKDC and Lysholm scores; ACI/MACI and OATS additionally met MCID values in the long term, demonstrating extended maintenance of clinical benefits for patients undergoing these surgical interventions as compared with MFX.
Collapse
Affiliation(s)
- Kristofer J Jones
- Department of Orthopaedic Surgery, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Benjamin V Kelley
- Department of Orthopaedic Surgery, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Armin Arshi
- Department of Orthopaedic Surgery, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - David R McAllister
- Department of Orthopaedic Surgery, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | | |
Collapse
|
31
|
Kwon H, Brown WE, Lee CA, Wang D, Paschos N, Hu JC, Athanasiou KA. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol 2019; 15:550-570. [PMID: 31296933 PMCID: PMC7192556 DOI: 10.1038/s41584-019-0255-1] [Citation(s) in RCA: 432] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 12/30/2022]
Abstract
Injuries to articular cartilage and menisci can lead to cartilage degeneration that ultimately results in arthritis. Different forms of arthritis affect ~50 million people in the USA alone, and it is therefore crucial to identify methods that will halt or slow the progression to arthritis, starting with the initiating events of cartilage and meniscus defects. The surgical approaches in current use have a limited capacity for tissue regeneration and yield only short-term relief of symptoms. Tissue engineering approaches are emerging as alternatives to current surgical methods for cartilage and meniscus repair. Several cell-based and tissue-engineered products are currently in clinical trials for cartilage lesions and meniscal tears, opening new avenues for cartilage and meniscus regeneration. This Review provides a summary of surgical techniques, including tissue-engineered products, that are currently in clinical use, as well as a discussion of state-of-the-art tissue engineering strategies and technologies that are being developed for use in articular cartilage and meniscus repair and regeneration. The obstacles to clinical translation of these strategies are also included to inform the development of innovative tissue engineering approaches.
Collapse
Affiliation(s)
- Heenam Kwon
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Wendy E Brown
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Cassandra A Lee
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, USA
| | - Dean Wang
- Department of Orthopaedic Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Nikolaos Paschos
- Division of Sports Medicine, Department of Orthopaedic Surgery, New England Baptist Hospital, Tufts University School of Medicine, Boston, MA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
32
|
Martinčič D, Mekač J, Drobnič M. Survival Rates of Various Autologous Chondrocyte Grafts and Concomitant Procedures. A Prospective Single-Center Study over 18 Years. Cell Transplant 2019; 28:1439-1444. [PMID: 31373214 PMCID: PMC6802147 DOI: 10.1177/0963689719861922] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Seven different autologous chondrocyte implantation (ACI) grafts were used consecutively over a period of 18 years for the treatment of cartilage lesions in the knees. The aim was to evaluate this entire ACI patient series for graft-related or unrelated serious adverse events (SAE), graft failures, and to reveal potential risk factors for these incidents. The study group comprised 151 operated patients: classical periosteum-ACI (n = 45); ACI-seeded fibrin-collagen patch, fixed by either periosteum (n = 59), collagen membrane (n = 15), or fibrin glue (n = 6); ACI seeded alginate-agarose hydrogel (n = 14); and biomimetic collagen-hydroxyapatite scaffold injected with the ACI suspension (n = 12). The covariates analyzed as possible predicting factors were: age, gender, BMI, lesion depth, lesion size, lesion location, previous surgeries, and concomitant procedures. The Kaplan-Meier method for estimating survival curves, and Cox's proportional hazards model to test for covariates, were used in the statistical analysis. The patients in this series, follow-up 10.1 (2.1-18.3) years, encountered 11% of graft-related SAE (risk factors: previous cartilage surgery, age over 40 years, BMI over 25 kg/m2, and meniscus surgery) and 10% of graft unrelated SAE (risk factors: meniscus surgery and osteotomy). None of these factors was a risk for definitive graft failure. The 10-year graft survival rate was 86%. Females had 2.8 times higher incidence of graft failures than males. There was a tendency toward higher graft failures after a previous cartilage surgery. Different ACI graft types offered safe and durable cartilage repair. Female gender, age over 40 years, increased weight, previous cartilage surgery, and meniscus loss showed increased risk for revision surgery or graft failures.
Collapse
Affiliation(s)
- David Martinčič
- Department of Orthopedic Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jakob Mekač
- Orthopedic Hospital Valdoltra, Ankaran, Slovenia
| | - Matej Drobnič
- Department of Orthopedic Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
33
|
Everhart JS, Abouljoud MM, Poland SG, Flanigan DC. Medial compartment defects progress at a more rapid rate than lateral cartilage defects in older adults with minimal to moderate knee osteoarthritis (OA): data from the OA initiative. Knee Surg Sports Traumatol Arthrosc 2019; 27:2401-2409. [PMID: 30324396 DOI: 10.1007/s00167-018-5202-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/04/2018] [Indexed: 12/01/2022]
Abstract
PURPOSE To determine: (1) rates and risk factors for progression of lateral and medial full-thickness cartilage defect size in older adults without severe knee osteoarthritis (OA), and (2) whether risk factors for defect progression differ for knees with Kellgren-Lawrence OA grade 3 (moderate) OA versus grades 0-2 (none to mild) OA. METHODS Three-hundred and eighty adults enrolled in the Osteoarthritis Initiative were included (43% male, mean age 63.0 SD 9.2 years). Ethical approval was obtained at all study sites prior to enrollment. All participants had full-thickness tibial or weight-bearing femoral condylar cartilage defects on baseline knee MRIs. Baseline OA grade was KL grade 3 in 71.3% and grades 0-2 in 21.7% of participants. Repeat MRIs were obtained at a minimum 2-year follow-up. Independent risk of progression in defect size due to demographic factors, knee alignment, OA grade, knee injury and surgery history, and baseline knee symptoms was determined by multivariate Cox proportional hazards and linear regression modeling. RESULTS The average increase in defect size over 2 years for lateral defects was 0.18 cm2 (SD 0.60) and for medial defects was 0.49 cm2 (SD 1.09). Independent predictors of medical defect size progression were bipolar defects (beta 0.47 SE 0.08; p < 0.001), knee varus (per degree, beta 0.08 SE 0.03; p = 0.02) and increased weight (per kg, beta = 0.01 SE 0.004; p = 0.01). Independent predictors for lateral defect progression were larger baseline defect size (per 1.0 cm2, beta 0.14 SE 0.03; p < 0.001) and tibial sided defects (beta 0.12 SE 0.04) and degrees valgus (per degree, beta 0.04 SE 0.01; p = 0.001). CONCLUSIONS Medial compartment full-thickness defects progress at a more rapid rate than lateral defects in older adults with minimal to moderate OA. Medial defect progression was greatest for bipolar defects in heavier adults with varus knees. Lateral defect progression was greatest for large tibial-sided defects in adults with valgus knees. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Joshua S Everhart
- Division of Sports Medicine, Department of Orthopaedics, Cartilage Repair Center, The Ohio State University, Columbus, OH, USA
| | - Moneer M Abouljoud
- Division of Sports Medicine, Department of Orthopaedics, Cartilage Repair Center, The Ohio State University, Columbus, OH, USA
| | - Sarah G Poland
- Division of Sports Medicine, Department of Orthopaedics, Cartilage Repair Center, The Ohio State University, Columbus, OH, USA
| | - David C Flanigan
- Division of Sports Medicine, Department of Orthopaedics, Cartilage Repair Center, The Ohio State University, Columbus, OH, USA. .,Jameson Crane Sports Medicine Institute, 2835 Fred Taylor Drive, Columbus, OH, 43202, USA.
| |
Collapse
|
34
|
Changing trends in the use of cartilage restoration techniques for the patellofemoral joint: a systematic review. Knee Surg Sports Traumatol Arthrosc 2019; 27:854-867. [PMID: 30232541 DOI: 10.1007/s00167-018-5139-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE The patellofemoral (PF) joint contains the thickest articular cartilage in the human body. Chondral lesions to this area are often misdiagnosed and can predispose to secondary osteoarthritis if left untreated. Treatment options range from arthroscopic debridement to cartilage restoration techniques such as microfracture (MFx), autologous chondrocyte implantation (ACI), and osteochondral autograft transplantation. The purpose of this study was to systematically assess the trends in surgical techniques, outcomes, and complications of cartilage restoration of the PF joint. METHODS This review has been conducted according to the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). The electronic databases PubMed, MEDLINE, and EMBASE were searched from January 1, 2007 to April 30, 2018. The Methodological Index for Non-randomized Studies (MINORS) was used to assess study quality. A two-proportion z test was used to determine whether the differences between the proportions of cartilage restoration techniques used from 2007 to 2012 and 2013-2018 were statistically significant. RESULTS Overall, 28 studies were identified, including 708 patients (824 knees) with a mean age of 39.5 ± 10.5 years and a mean follow-up of 39.1 ± 16.0 months. Majority of patients were treated with ACI (45.5%) and MFx (29.6%). A significant increase in the use of the third generation ACI occurred with a simultaneous decreased usage of the conventional MFx over the last 5 years (p < 0.001). All techniques had significant (p < 0.05) improvements in clinical outcomes. The overall complication rate was 9.2%, of which graft hypertrophy (2.7%) was the most prevalent. CONCLUSIONS ACI was the most common restoration technique. The use of third generation ACI has increased with a concurrent decline in the use of conventional MFx over the latter half of the past decade (p < 0.001). Overall, the various cartilage restoration techniques reported improvements in patient reported outcomes with low complication rates. Definitive conclusions on the optimal treatment remain elusive due to a lack of high-quality comparative studies. LEVEL OF EVIDENCE Level IV, Systematic Review of Level-II-IV studies.
Collapse
|
35
|
Hadley CJ, Shi WJ, Murphy H, Tjoumakaris FP, Salvo JP, Freedman KB. The Clinical Evidence Behind Biologic Therapies Promoted at Annual Orthopaedic Meetings: A Systematic Review. Arthroscopy 2019; 35:251-259. [PMID: 30455088 DOI: 10.1016/j.arthro.2018.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study is to systematically evaluate the available clinical data for biologic therapies promoted for articular cartilage defects and osteoarthritis of the knee at the 2016 American Orthopaedic Society for Sports Medicine Meeting (AOSSM) and the 2017 Arthroscopy Association of North America meeting (AANA). METHODS Our sample included all exhibitors at the 2016 AOSSM meeting and 2017 AANA meeting. All biologic products marketed at each conference were identified by reviewing exhibition booths and company websites. A systematic review of the clinical data on each product was then completed using PubMed, EMBASE, and the product's own webpage. All clinical peer-reviewed studies with level I-IV evidence were included in the study. Basic science or preclinical studies were excluded. RESULTS There were 16 products promoted for biologic therapy for articular cartilage defects or osteoarthritis of the knee at the AOSSM meeting and 11 products promoted at the AANA meeting. A total of 280 articles detailed clinical findings for the articular cartilage products displayed at AOSSM and AANA. Of the 280, there were 36 level I evidence studies, 37 level II evidence studies, 18 level III evidence studies, and 189 level IV evidence studies. Of these articles, 91% were for 4 products. Of all biologic products promoted at the 2 meetings, 65% did not have any peer-reviewed clinical data supporting their use. CONCLUSION Overall, many biologic therapies promoted at leading arthroscopy and sports medicine conferences did not have clinical evidence evaluating their use in the peer-reviewed literature. Although scientific advancement requires new technology, orthopaedic surgeons should be cautious about using biologic therapies in their practice with no proven efficacy. There are likely promising new interventions that, with additional scientific research, will be proven efficacious for our patients. CLINICAL RELEVANCE This article gives orthopaedic surgeons a detailed example of some of the biologic treatments being offered on the market for the treatment of knee articular cartilage disease. When patients request these treatments, physicians must be able to explain the data supporting their use.
Collapse
Affiliation(s)
| | - Weilong J Shi
- Rothman Institute, Philadelphia, Pennsylvania, U.S.A
| | - Hamadi Murphy
- Rothman Institute, Philadelphia, Pennsylvania, U.S.A
| | | | - John P Salvo
- Rothman Institute, Philadelphia, Pennsylvania, U.S.A
| | | |
Collapse
|
36
|
Sun X, Yin H, Wang Y, Lu J, Shen X, Lu C, Tang H, Meng H, Yang S, Yu W, Zhu Y, Guo Q, Wang A, Xu W, Liu S, Lu S, Wang X, Peng J. In Situ Articular Cartilage Regeneration through Endogenous Reparative Cell Homing Using a Functional Bone Marrow-Specific Scaffolding System. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38715-38728. [PMID: 30360061 DOI: 10.1021/acsami.8b11687] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In situ tissue regeneration by homing endogenous reparative cells to the injury site has been extensively researched as a promising alternative strategy to facilitate tissue repair. In this study, a promising scaffolding system DCM-RAD/SKP, which integrated a decellularized cartilage matrix (DCM)-derived scaffold with a functionalized self-assembly Ac-(RADA)4-CONH2/Ac-(RADA)4GGSKPPGTSS-CONH2 (RAD/SKP) peptide nanofiber hydrogel, was designed for repairing rabbit osteochondral defect. In vitro experiments showed that rabbit bone marrow stem cells migrated into and have higher affinity toward the functional scaffolding system DCM-RAD/SKP than the control scaffolds. One week after in vivo implantation, the functional scaffolding system DCM-RAD/SKP facilitated the recruitment of endogenous mesenchymal stem cells within the defect site. Moreover, gene expression analysis indicated that the DCM-RAD/SKP promoted chondrogenesis of the recruited cells. In vivo results showed that the DCM-RAD/SKP achieved superior hyaline-like cartilage repair and successful subchondral bone reconstruction. By contrast, the control groups mostly led to fibrous tissue repair. These findings indicate that the DCM-RAD/SKP can recruit endogenous stem cells into the site of cartilage injury and promote differentiation of the infiltrating cells into the chondrogenic lineage, holding great potential as a one-step surgery strategy for cartilage repair.
Collapse
Affiliation(s)
- Xun Sun
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
- Department of Orthopedics , Tianjin Hospital , No. 406 Jiefang Nan Road , Tianjin 300211 , P. R. China
| | - Heyong Yin
- Department of Surgery , Ludwig-Maximilians-University , Nussbaumstr. 20 , Munich 80336 , Germany
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Jiaju Lu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Xuezhen Shen
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Changfeng Lu
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - He Tang
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Haoye Meng
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Wen Yu
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Yun Zhu
- School of Biomedical Sciences , University of Hong Kong , No. 21 Sassoon Road , Pokfulam, 999077 Hong Kong , P. R. China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Aiyuan Wang
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Wenjing Xu
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Shibi Lu
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| |
Collapse
|
37
|
Graceffa V, Vinatier C, Guicheux J, Stoddart M, Alini M, Zeugolis DI. Chasing Chimeras - The elusive stable chondrogenic phenotype. Biomaterials 2018; 192:199-225. [PMID: 30453216 DOI: 10.1016/j.biomaterials.2018.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022]
Abstract
The choice of the best-suited cell population for the regeneration of damaged or diseased cartilage depends on the effectiveness of culture conditions (e.g. media supplements, three-dimensional scaffolds, mechanical stimulation, oxygen tension, co-culture systems) to induce stable chondrogenic phenotype. Herein, advances and shortfalls in in vitro, preclinical and clinical setting of various in vitro microenvironment modulators on maintaining chondrocyte phenotype or directing stem cells towards chondrogenic lineage are critically discussed. Chondrocytes possess low isolation efficiency, limited proliferative potential and rapid phenotypic drift in culture. Mesenchymal stem cells are relatively readily available, possess high proliferation potential, exhibit great chondrogenic differentiation capacity, but they tend to acquire a hypertrophic phenotype when exposed to chondrogenic stimuli. Embryonic and induced pluripotent stem cells, despite their promising in vitro and preclinical data, are still under-investigated. Although a stable chondrogenic phenotype remains elusive, recent advances in in vitro microenvironment modulators are likely to develop clinically- and commercially-relevant therapies in the years to come.
Collapse
Affiliation(s)
- Valeria Graceffa
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Claire Vinatier
- INSERMU1229, Regenerative Medicine and Skeleton (RMeS), University of Nantes, UFR Odontologie & CHU Nantes, PHU 4 OTONN, 44042 Nantes, France
| | - Jerome Guicheux
- INSERMU1229, Regenerative Medicine and Skeleton (RMeS), University of Nantes, UFR Odontologie & CHU Nantes, PHU 4 OTONN, 44042 Nantes, France
| | - Martin Stoddart
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Mauro Alini
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
38
|
Lammi MJ, Piltti J, Prittinen J, Qu C. Challenges in Fabrication of Tissue-Engineered Cartilage with Correct Cellular Colonization and Extracellular Matrix Assembly. Int J Mol Sci 2018; 19:E2700. [PMID: 30208585 PMCID: PMC6164936 DOI: 10.3390/ijms19092700] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 12/12/2022] Open
Abstract
A correct articular cartilage ultrastructure regarding its structural components and cellularity is important for appropriate performance of tissue-engineered articular cartilage. Various scaffold-based, as well as scaffold-free, culture models have been under development to manufacture functional cartilage tissue. Even decellularized tissues have been considered as a potential choice for cellular seeding and tissue fabrication. Pore size, interconnectivity, and functionalization of the scaffold architecture can be varied. Increased mechanical function requires a dense scaffold, which also easily restricts cellular access within the scaffold at seeding. High pore size enhances nutrient transport, while small pore size improves cellular interactions and scaffold resorption. In scaffold-free cultures, the cells assemble the tissue completely by themselves; in optimized cultures, they should be able to fabricate native-like tissue. Decellularized cartilage has a native ultrastructure, although it is a challenge to obtain proper cellular colonization during cell seeding. Bioprinting can, in principle, provide the tissue with correct cellularity and extracellular matrix content, although it is still an open question as to how the correct molecular interaction and structure of extracellular matrix could be achieved. These are challenges facing the ongoing efforts to manufacture optimal articular cartilage.
Collapse
Affiliation(s)
- Mikko J Lammi
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning, Institute of Endemic Diseases, School of Public Health of Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
- Department of Integrative Medical Biology, University of Umeå, 901 87 Umeå, Sweden.
| | - Juha Piltti
- Department of Integrative Medical Biology, University of Umeå, 901 87 Umeå, Sweden.
- Nordlab Kokkola, Keski-Pohjanmaa Central Hospital Soite, 40620 Kokkola, Finland.
| | - Juha Prittinen
- Department of Integrative Medical Biology, University of Umeå, 901 87 Umeå, Sweden.
| | - Chengjuan Qu
- Department of Integrative Medical Biology, University of Umeå, 901 87 Umeå, Sweden.
| |
Collapse
|
39
|
Ferro T, Santhagunam A, Madeira C, Salgueiro JB, Silva CL, Cabral JMS. Successful isolation and ex vivo expansion of human mesenchymal stem/stromal cells obtained from different synovial tissue‐derived (biopsy) samples. J Cell Physiol 2018; 234:3973-3984. [DOI: 10.1002/jcp.27202] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/13/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Tiago Ferro
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
- CEDOC Chronic Diseases FCM NOVA
- NOVA Medical School, Universidade NOVA de Lisboa Lisboa Portugal
| | - Aruna Santhagunam
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
| | - Catarina Madeira
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
- CEDOC Chronic Diseases FCM NOVA
- NOVA Medical School, Universidade NOVA de Lisboa Lisboa Portugal
| | - João B. Salgueiro
- Centro Hospitalar de Lisboa Ocidental (CHLO)—Hospital S. Francisco Xavier Lisboa Portugal
| | - Cláudia L. Silva
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
| |
Collapse
|
40
|
Takahashi T, Sato M, Toyoda E, Maehara M, Takizawa D, Maruki H, Tominaga A, Okada E, Okazaki K, Watanabe M. Rabbit xenogeneic transplantation model for evaluating human chondrocyte sheets used in articular cartilage repair. J Tissue Eng Regen Med 2018; 12:2067-2076. [PMID: 30058138 PMCID: PMC6221121 DOI: 10.1002/term.2741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/27/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022]
Abstract
Research on cartilage regeneration has developed novel sources for human chondrocytes and new regenerative therapies, but appropriate animal models for translational research are needed. Although rabbit models are frequently used in such studies, the availability of immunocompromised rabbits is limited. Here, we investigated the usefulness of an immunosuppressed rabbit model to evaluate directly the efficacy of human chondrocyte sheets through xenogeneic transplantation. Human chondrocyte sheets were transplanted into knee osteochondral defects in Japanese white rabbits administered with immunosuppressant tacrolimus at a dosage of 0.8 or 1.6 mg/kg/day for 4 weeks. Histological evaluation at 4 weeks after transplantation in rabbits administered 1.6 mg/kg/day showed successful engraftment of human chondrocytes and cartilage regeneration involving a mixture of hyaline cartilage and fibrocartilage. No human chondrocytes were detected in rabbits administered 0.8 mg/kg/day, although regeneration of hyaline cartilage was confirmed. Histological evaluation at 12 weeks after transplantation (i.e., 8 weeks after termination of immunosuppression) showed strong immune rejection of human chondrocytes, which indicated that, even after engraftment, articular cartilage is not particularly immune privileged in xenogeneic transplantation. Our results suggest that Japanese white rabbits administered tacrolimus at 1.6 mg/kg/day and evaluated at 4 weeks may be useful as a preclinical model for the direct evaluation of human cell‐based therapies.
Collapse
Affiliation(s)
- Takumi Takahashi
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Masato Sato
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Eriko Toyoda
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Miki Maehara
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Daichi Takizawa
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Hideyuki Maruki
- Department of Orthopaedic Surgery, Tokyo Women's University, Tokyo, Japan
| | - Ayako Tominaga
- Department of Orthopaedic Surgery, Tokyo Women's University, Tokyo, Japan
| | - Eri Okada
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Ken Okazaki
- Department of Orthopaedic Surgery, Tokyo Women's University, Tokyo, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
41
|
Hernigou J, Vertongen P, Chahidi E, Kyriakidis T, Dehoux JP, Crutzen M, Boutry S, Larbanoix L, Houben S, Gaspard N, Koulalis D, Rasschaert J. Effects of press-fit biphasic (collagen and HA/βTCP) scaffold with cell-based therapy on cartilage and subchondral bone repair knee defect in rabbits. INTERNATIONAL ORTHOPAEDICS 2018; 42:1755-1767. [PMID: 29882123 DOI: 10.1007/s00264-018-3999-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/18/2018] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Human spontaneous osteonecrosis of the knee (SPONK) is still challenging as the current treatments do not allow the production of hyaline cartilage tissue. The aim of the present study was to explore the therapeutic potential of cartilage regeneration using a new biphasic scaffold (type I collagen/hydroxyapatite) previously loaded or not with concentrated bone marrow cells. MATERIAL AND METHODS Female rabbits were operated of one knee to create articular lesions of the trochlea (three holes of 4 × 4mm). The holes were left empty in the control group or were filled with the scaffold alone or the scaffold previously loaded with concentrated bone marrow cells. After two months, rabbits were sacrificed and the structure of the newly formed tissues were evaluated by macroscopic, MRI, and immunohistochemistry analyses. RESULTS Macroscopic and MRI evaluation of the knees did not show differences between the three groups (p > 0.05). However, histological analysis demonstrated that a higher O'Driscoll score was obtained in the two groups treated with the scaffold, as compared to the control group (p < 0.05). The number of cells in treated area was higher in scaffold groups compared to the control group (p < 0.05). There was no difference for intensity of collagen type II between the groups (p > 0.05) but subchondral bone repair was significantly thicker in scaffold-treated groups than in the control group (1 mm for the control group vs 2.1 and 2.6 mm for scaffold groups). Furthermore, we observed that scaffolds previously loaded with concentrated bone marrow were more reabsorbed (p < 0.05). CONCLUSION The use of a biphasic scaffold previously loaded with concentrated bone marrow significantly improves cartilage lesion healing.
Collapse
Affiliation(s)
- Jacques Hernigou
- Department of Orthopaedic and Traumatology Surgery, EpiCURA Hospital, Baudour, Hornu, Belgium. .,Laboratory of Bone and Metabolic Biochemistry, Faculty of Medicine, Université libre de Bruxelles, Brussels, Belgium.
| | - Pascale Vertongen
- Laboratory of Bone and Metabolic Biochemistry, Faculty of Medicine, Université libre de Bruxelles, Brussels, Belgium
| | - Esfandiar Chahidi
- Department of Orthopaedic and Traumatology Surgery, EpiCURA Hospital, Baudour, Hornu, Belgium
| | - Theofylaktos Kyriakidis
- Department of Orthopaedic and Traumatology Surgery - Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Jean-Paul Dehoux
- Institute of Experimental and Clinical Research (IREC), Laboratory of Experimental Surgery and Transplantation (CHEX), Université catholique de Louvain, Brussels, Belgium
| | - Magalie Crutzen
- Institute of Experimental and Clinical Research (IREC), Laboratory of Experimental Surgery and Transplantation (CHEX), Université catholique de Louvain, Brussels, Belgium
| | - Sébastien Boutry
- Center for Microscopy and Molecular Imaging (CMMI), Université de Mons (UMONS), Charleroi, Belgium
| | - Lionel Larbanoix
- Center for Microscopy and Molecular Imaging (CMMI), Université de Mons (UMONS), Charleroi, Belgium
| | - Sarah Houben
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université libre de Bruxelles, Brussels, Belgium
| | - Nathalie Gaspard
- Laboratory of Bone and Metabolic Biochemistry, Faculty of Medicine, Université libre de Bruxelles, Brussels, Belgium
| | - Dimitrios Koulalis
- Department of Orthopaedic and Traumatology Surgery - Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Joanne Rasschaert
- Laboratory of Bone and Metabolic Biochemistry, Faculty of Medicine, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
42
|
Frank RM, Cotter EJ, Strauss EJ, Gomoll AH, Cole BJ. The Utility of Biologics, Osteotomy, and Cartilage Restoration in the Knee. J Am Acad Orthop Surg 2018; 26:e11-e25. [PMID: 29261554 DOI: 10.5435/jaaos-d-17-00087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The management of complex cartilage and meniscal pathology in young, athletic patients is extremely challenging. Joint preservation surgery is most difficult in patients with concomitant knee pathologies, including cartilage defects, meniscal deficiency, malalignment, and/or ligamentous insufficiency. Clinical decision making for these patients is further complicated by articular cartilage lesions, which often are incidental findings; therefore, treatment decisions must be based on the confirmed contribution of articular cartilage lesions to symptomatology. Surgical management of any of the aforementioned knee pathologies that is performed in isolation typically results in acceptable patient outcomes; however, concomitant procedures for the management of concomitant knee pathologies often are essential to the success of any single procedure. The use of biologic therapy as an alternative to or to augment more conventional surgical management has increased in popularity in the past decade, and indications for biologic therapy continue to evolve. Orthopaedic surgeons should understand knee joint preservation techniques, including biologic and reconstructive approaches in young, high-demand patients.
Collapse
Affiliation(s)
- Rachel M Frank
- From CU Sports Medicine, Department of Orthopaedics, University of Colorado School of Medicine, Boulder, CO (Dr. Frank), the Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL (Mr. Cotter, and Dr. Cole), New York University, Langone Medical Center, New York, NY (Dr. Strauss), and Brigham and Women's Hospital, Boston, MA (Dr. Gomoll)
| | | | | | | | | |
Collapse
|
43
|
Mosaic Osteochondral Autograft Transplantation Versus Bone Marrow Stimulation Technique as a Concomitant Procedure With Opening-Wedge High Tibial Osteotomy for Spontaneous Osteonecrosis of the Medial Femoral Condyle. Arthroscopy 2018; 34:233-240. [PMID: 29102568 DOI: 10.1016/j.arthro.2017.08.244] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate the effects of osteochondral autograft transplantation (OAT) mosaicplasty as a concomitant procedure with opening-wedge valgus high tibial osteotomy (HTO) for spontaneous osteonecrosis of the medial femoral condyle (MFC) on clinical outcomes and cartilage status in comparison with bone marrow stimulation (BMS) by drilling, and to assess the relation between lesion size and postoperative cartilage status. METHODS Fifty-eight patients with spontaneous osteonecrosis of the MFC were treated with opening-wedge HTO and a concomitant procedure of BMS (28 patients) or OAT (30 patients). Clinical evaluation was carried out using the Knee Society Score at postoperative 2 years. Postoperative status of articular cartilage was assessed by arthroscopy according to the International Cartilage Repair Society (ICRS) grade at the time of plate removal. RESULTS The Knee Society Score objective score and function score were improved at postoperative 2 years compared with preoperative value in both groups, but no significant difference was found between the 2 groups. According to the ICRS overall repair grade, cartilage status was rated as normal or nearly normal (ICRS overall score ≥8) in 41% of the BMS group and 90% of the OAT group. The results suggested that cartilage repair in OAT was significantly better than that in BMS (P = .0015). Furthermore, the BMS group revealed that repair with normal or nearly normal was observed in all less than 4 cm2 of lesion size, whereas the OAT group exhibited that repair with normal or nearly normal was independent of lesion size. CONCLUSIONS This study suggested that OAT is superior to BMS as a concomitant procedure with opening-wedge valgus HTO for spontaneous osteonecrosis of the MFC in the success of cartilage repair. However, clinical outcomes were not significantly different between these 2 procedures. When treating the lesion larger than 4 cm2 by joint-preserving surgery, OAT mosaicplasty is recommended as a concomitant procedure with HTO. LEVEL OF EVIDENCE Level III, therapeutic case-control study.
Collapse
|
44
|
Clinical Trials and Management of Osteochondral Lesions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:391-413. [DOI: 10.1007/978-3-319-76711-6_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Flórez Cabrera A, González Duque MI, Fontanlla MR. Terapias Celulares y Productos de Ingeniería de Tejidos para el Tratamiento de Lesiones Condrales de Rodilla. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2017. [DOI: 10.15446/rev.colomb.biote.v19n2.70276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El cartílago articular es un tejido vulnerable a las lesiones de diferente etiología; siendo uno de los más afectados, el cartílago de la rodilla. Aunque la mayoría de los tratamientos convencionales reducen los síntomas, generalmente conducen a la formación de fibrocartílago; el cual, posee características diferentes a las del cartílago hialino de las articulaciones. Son pocas las aproximaciones terapéuticas que promueven el reemplazo del tejido dañado por cartílago hialino funcional; las más exitosas son las denominadas terapias avanzadas, que aplican células y productos de ingeniería de tejidos con el fin de estimular la regeneración del cartílago. La mayoría de ellas se basan en colocar soportes hechos con biomateriales de diferente origen, que sembrados o no con células exógenas o endógenas, reemplazan al cartílago dañado y promueven su regeneración. Este trabajo revisa algunas de las aproximaciones terapéuticas enfocadas en la regeneración del cartílago articular de rodilla; así como, los biomateriales más empleados en la elaboración de soportes para terapia celular e ingeniería de tejido cartilaginoso.
Collapse
|
46
|
Schrock JB, Kraeutler MJ, Houck DA, McQueen MB, McCarty EC. A Cost-Effectiveness Analysis of Surgical Treatment Modalities for Chondral Lesions of the Knee: Microfracture, Osteochondral Autograft Transplantation, and Autologous Chondrocyte Implantation. Orthop J Sports Med 2017; 5:2325967117704634. [PMID: 28516106 PMCID: PMC5418910 DOI: 10.1177/2325967117704634] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Numerous surgical options exist to treat chondral lesions in the knee, including microfracture (MFx), osteochondral autograft transplantation (OAT), first-generation autologous chondrocyte implantation (ACI-1), and next-generation ACI (ACI-2). Purpose: To compare the cost-effectiveness of MFx, OAT, and ACI-1. The secondary purpose of this study was to compare the functional outcomes of MFx, OAT, ACI-1, and ACI-2. Study Design: Systematic review; Level of evidence, 2. Methods: Two independent reviewers conducted an online literature search of 2 databases for level 1 and 2 studies using the Lysholm, International Knee Documentation Committee (IKDC), Knee injury and Osteoarthritis Outcome Score (KOOS), and/or Hospital for Special Surgery (HSS) Knee Score. A weighted mean difference in pre- to postoperative functional outcome score was calculated for each treatment. The mean per-patient costs associated with MFx, OAT, and ACI-1 were determined from a recent publication based on review of a national private insurance database. The cost for each procedure was then divided by the weighted mean difference in functional outcome score to give the cost-per-point change in outcome score. Results: A total of 12 studies (6 level 1, 6 level 2) met the inclusion criteria for the functional outcome analysis, including 730 knees (MFx, n = 300; OAT, n = 90; ACI-1, n = 68; ACI-2, n = 272). The mean follow-up was not significantly different between groups (MFx, 29.4 months; OAT, 38.3 months; ACI-1, 19.0 months; ACI-2, 26.7 months). The mean increase in functional outcome score was 23 for MFx, 19 for OAT, 20 for ACI-1, and 35 for ACI-2. The change in functional outcome score was significantly greater for ACI-2 when compared with all other treatments (P < .0001). The cost-per-point change in functional outcome score was $200.59 for MFx, $313.84 for OAT, and $536.59 for ACI-1. Conclusion: MFx, OAT, ACI-1, and ACI-2 are effective surgical procedures for the treatment of cartilage defects in the knee. All 4 treatments led to an increase in functional outcome scores postoperatively with a short-term follow-up. ACI-2 had a statistically greater improvement in functional outcome scores as compared with the other 3 procedures. MFx was found to be the most cost-effective treatment option and ACI-1 the least cost-effective.
Collapse
Affiliation(s)
- John B Schrock
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Matthew J Kraeutler
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Darby A Houck
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Matthew B McQueen
- Department of Orthopedics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Eric C McCarty
- Department of Orthopedics, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
47
|
Konya MN, Horata E, Maralcan G, Erten AR, Turamanlar O. Kombine Acellular Kollajen Matrisi ve Yüksek Tibial Osteotomi Tedavisi Osteokondral Kusurlarda Etkili Midir? Ön çalışma. ACTA MEDICA ALANYA 2017. [DOI: 10.30565/medalanya.270371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Tan AR, Hung CT. Concise Review: Mesenchymal Stem Cells for Functional Cartilage Tissue Engineering: Taking Cues from Chondrocyte-Based Constructs. Stem Cells Transl Med 2017; 6:1295-1303. [PMID: 28177194 PMCID: PMC5442836 DOI: 10.1002/sctm.16-0271] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 12/21/2016] [Indexed: 01/01/2023] Open
Abstract
Osteoarthritis, the most prevalent form of joint disease, afflicts 9% of the U.S. population over the age of 30 and costs the economy nearly $100 billion annually in healthcare and socioeconomic costs. It is characterized by joint pain and dysfunction, though the pathophysiology remains largely unknown. Due to its avascular nature and limited cellularity, articular cartilage exhibits a poor intrinsic healing response following injury. As such, significant research efforts are aimed at producing engineered cartilage as a cell-based approach for articular cartilage repair. However, the knee joint is mechanically demanding, and during injury, also a milieu of harsh inflammatory agents. The unforgiving mechano-chemical environment requires tissue replacements that are capable of bearing such burdens. The use of mesenchymal stem cells (MSCs) for cartilage tissue engineering has emerged as a promising cell source due to their ease of isolation, capacity to readily expand in culture, and ability to undergo lineage-specific differentiation into chondrocytes. However, to date, very few studies utilizing MSCs have successfully recapitulated the structural and functional properties of native cartilage, exposing the difficult process of uniformly differentiating stem cells into desired cell fates and maintaining the phenotype during in vitro culture and after in vivo implantation. To address these shortcomings, here, we present a concise review on modulating stem cell behavior, tissue development and function using well-developed techniques from chondrocyte-based cartilage tissue engineering. Stem Cells Translational Medicine 2017;6:1295-1303.
Collapse
|
49
|
Chuah YJ, Peck Y, Lau JEJ, Hee HT, Wang DA. Hydrogel based cartilaginous tissue regeneration: recent insights and technologies. Biomater Sci 2017; 5:613-631. [DOI: 10.1039/c6bm00863a] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Hydrogel based technologies has been extensively employed in both exploratory research and clinical applications to address numerous existing challenges in the regeneration of articular cartilage and intervertebral disc.
Collapse
Affiliation(s)
- Yon Jin Chuah
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Yvonne Peck
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Jia En Josias Lau
- School of Chemical & Life Sciences
- Singapore Polytechnic
- Singapore 139651
- Singapore
| | - Hwan Tak Hee
- Lee Kong Chian School of Medicine
- Nanyang Technological University
- Singapore 636921
- Singapore
- Pinnacle Spine & Scoliosis Centre
| | - Dong-An Wang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| |
Collapse
|
50
|
Abstract
Background and purpose - Cartilage damage can develop due to trauma, resulting in focal chondral or osteochondral defects, or as more diffuse loss of cartilage in a generalized organ disease such as osteoarthritis. A loss of cartilage function and quality is also seen with increasing age. There is a spectrum of diseases ranging from focal cartilage defects with healthy surrounding cartilage to focal lesions in degenerative cartilage, to multiple and diffuse lesions in osteoarthritic cartilage. At the recent Aarhus Regenerative Orthopaedics Symposium (AROS) 2015, regenerative challenges in an ageing population were discussed by clinicians and basic scientists. A group of clinicians was given the task of discussing the role of tissue engineering in the treatment of degenerative cartilage lesions in ageing patients. We present the outcomes of our discussions on current treatment options for such lesions, with particular emphasis on different biological repair techniques and their supporting level of evidence. Results and interpretation - Based on the studies on treatment of degenerative lesions and early OA, there is low-level evidence to suggest that cartilage repair is a possible treatment for such lesions, but there are conflicting results regarding the effect of advanced age on the outcome. We concluded that further improvements are needed for direct repair of focal, purely traumatic defects before we can routinely use such repair techniques for the more challenging degenerative lesions. Furthermore, we need to identify trigger mechanisms that start generalized loss of cartilage matrix, and induce subchondral bone changes and concomitant synovial pathology, to maximize our treatment methods for biological repair in degenerative ageing joints.
Collapse
Affiliation(s)
- Mats Brittberg
- Cartilage Research Unit, University of Gothenburg, Region Halland Orthopaedics, Kungsbacka Hospital, Kungsbacka, Sweden,Correspondence:
| | - Andreas H Gomoll
- Harvard Medical School, Cartilage Repair Center, Brigham and Women’s Hospital, Boston, MA
| | - José A Canseco
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
| | - Jack Far
- Indiana University School of Medicine, OrthoIndy Cartilage Restoration Center, Indianapolis, IN, USA
| | - Martin Lind
- Division of Sports Traumatology, Department of Orthopedics, Aarhus University Hospital, Århus, Denmark
| | - James Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| |
Collapse
|