1
|
Yao F, Bao Y, Meng Q, Chen Y, Zhao L, Wang P, Zhou B. Periprosthetic osteolysis: Mechanisms and potential treatment strategies. Cell Signal 2025; 131:111758. [PMID: 40132773 DOI: 10.1016/j.cellsig.2025.111758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Periprosthetic osteolysis is a common bone-related disorder that often occurs after total hip arthroplasty. The implants can cause damage to bone and bone-related cells due to mechanical stress and micromotions, resulting in the generation of a large number of wear particles. These wear particles trigger inflammation and oxidative stress in the surrounding tissues, disrupting the delicate balance maintained by osteoblasts and osteoclasts, ultimately leading to bone loss around the implant. Clinical investigations have demonstrated that Epimedium prenylflavonoids, miR-19a-3p, stem cell-derived exosomes, and certain non-PPO category pharmaceuticals have regulatory effects on bone homeostasis through distinct molecular pathways. Notably, this phenomenon reflects inherent biological rationality rather than stochastic occurrence. Extensive research has revealed that multiple natural compounds, non-coding RNAs, exosomes, and non-PPO therapeutics not only exert modulatory influences on critical pathophysiological processes including inflammatory cascades, oxidative stress responses, and tissue regeneration mechanisms, but also effectively regulate bone-related cellular functions to inhibit PPO progression. Therefore, this review comprehensively and systematically summarizes the main pathogenic mechanisms of periprosthetic osteolysis. Furthermore, it delves deeper into the research progress on the applications of currently reported natural products, ncRNAs, exosomes, and non-PPO medications in the treatment of periprosthetic osteolysis. Based on this, we hope that this paper can provide new perspectives and references for the future development of drugs targeting periprosthetic osteolysis.
Collapse
Affiliation(s)
- Fang Yao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yue Bao
- Department of Nursing, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Qian Meng
- Outpatient Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yanrong Chen
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Luxi Zhao
- Department of Anesthesiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Pingmei Wang
- Department of Orthopaedics, The People's Hospital of Shimen County, Shimen 415399, China
| | - Bin Zhou
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
2
|
Schweitzer L, Schoon J, Bläß N, Huesker K, Neufend JV, Siemens N, Bekeschus S, Schlüter R, Schneider P, Uhlmann E, Wassilew G, Schulze F. Ultraviolet laser induced periodic surface structures positively influence osteogenic activity on titanium alloys. Front Bioeng Biotechnol 2024; 12:1462232. [PMID: 39530059 PMCID: PMC11551024 DOI: 10.3389/fbioe.2024.1462232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objective Endoprostheses might fail due to complications such as implant loosening or periprosthetic infections. The surface topography of implant materials is known to influence osseointegration and attachment of pathogenic bacteria. Laser-Induced Periodic Surface Structures (LIPSS) can improve the surface topography of orthopedic implant materials. In this preclinical in vitro study, laser pulses with a wavelength in the ultraviolet (UV) spectrum were applied for the generation of LIPSS to positively influence formation of extracellular matrix by primary human Osteoblasts (hOBs) and to reduce microbial biofilm formation in vitro. Methods Laser machining was employed for generating UV-LIPSS on sample disks made of Ti6Al4V and Ti6Al7Nb alloys. Sample disks with polished surfaces were used as controls. Scanning electron microscopy was used for visualization of surface topography and adherent cells. Metal ion release and cellular metal levels were investigated by inductively coupled plasma mass spectrometry. Cell culture of hOBs on sample disks with and without UV-LIPSS surface treatments was performed. Cells were investigated for their viability, proliferation, osteogenic function and cytokine release. Biofilm formation was facilitated by seeding Staphylococcus aureus on sample disks and quantified by wheat germ agglutinin (WGA) staining. Results UV-LIPSS modification results in topographies with a periodicity of 223 nm ≤ λ ≤ 278 nm. The release of metal ions was found increased for UV-LIPSS on Ti6Al4V and decreased for UV-LIPSS on Ti6Al7Nb, while cellular metal levels remain unaffected. Cellular adherence was decreased for hOBs on UV-LIPSS Ti6Al4V when compared to controls while proliferation rate was unaffected. Metabolic activity was lower on UV-LIPSS Ti6Al7Nb when compared to the control. Alkaline phosphatase activity was upregulated for hOBs grown on UV-LIPSS on both alloys. Less pro-inflammatory cytokines were released for cells grown on UV-LIPSS Ti6Al7Nb when compared to polished surfaces. WGA signals were significantly lower on UV-LIPSS Ti6Al7Nb indicating reduced formation of a S. aureus biofilm. Conclusion Our results suggest that UV-LIPSS texturing of Ti6Al7Nb positively influence bone forming function and cytokine secretion profile of hOBs in vitro. In addition, our results indicate diminished biofilm formation on UV-LIPSS treated Ti6Al7Nb surfaces. These effects might prove beneficial in the context of long-term arthroplasty outcomes.
Collapse
Affiliation(s)
- Luiz Schweitzer
- Fraunhofer Institute for Production Systems and Design Technology, Berlin, Germany
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Niklas Bläß
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Katrin Huesker
- Endocrinology and Immunology Department, Institute for Medical Diagnostics, Berlin, Germany
| | - Janine V. Neufend
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | | | - Eckart Uhlmann
- Fraunhofer Institute for Production Systems and Design Technology, Berlin, Germany
- Institute for Machine Tools and Factory Management, Technische Universität Berlin, Berlin, Germany
| | - Georgi Wassilew
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Frank Schulze
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
3
|
Wagener N, Pumberger M, Hardt S. Impact of fixation method on femoral bone loss: a retrospective evaluation of stem loosening in first-time revision total hip arthroplasty among two hundred and fifty five patients. INTERNATIONAL ORTHOPAEDICS 2024; 48:2339-2350. [PMID: 38822836 PMCID: PMC11347471 DOI: 10.1007/s00264-024-06230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
PURPOSE Implant loosening represent the most common indication for stem revision in hip revision arthroplasty. This study compares femoral bone loss and the risk of initial revisions between cemented and uncemented loosened primary stems, investigating the impact of fixation method at primary implantation on femoral bone defects. METHODS This retrospective study reviewed 255 patients who underwent their first revision for stem loosening from 2010 to 2022, receiving either cemented or uncemented stem implants. Femoral bone loss was preoperatively measured using the Paprosky classification through radiographic evaluations. Kaplan-Meier analysis estimated the survival probability of the original stem, and the hazard ratio assessed the relative risk of revision for uncemented versus cemented stems in the first postoperative year and the following two to ten years. RESULTS Cemented stems showed a higher prevalence of significant bone loss (type 3b and 4 defects: 32.39% vs. 2.72%, p < .001) compared to uncemented stems, which more commonly had type 1 and 2 defects (82.07% vs. 47.89%, p < .001). In our analysis of revision cases, primary uncemented stems demonstrated a 20% lower incidence of stem loosening in the first year post-implantation compared to cemented stems (HR 0.8; 95%-CI 0.3-2.0). However, the incidence in uncemented stems increased by 20% during the subsequent years two to ten (HR 1.2; 95%-CI 0.7-1.8). Septic loosening was more common in cemented stems (28.17% vs. 10.87% in uncemented stems, p = .001). Kaplan-Meier analysis indicated a modestly longer revision-free period for cemented stems within the first ten years post-implantation (p < .022). CONCLUSION During first-time revision, cemented stems show significantly larger femoral bone defects than uncemented stems. Septic stem loosening occurred 17.30% more in cemented stems.
Collapse
Affiliation(s)
- Nele Wagener
- Center for Musculoskeletal Surgery, Department of Orthopaedic Surgery, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Matthias Pumberger
- Center for Musculoskeletal Surgery, Department of Orthopaedic Surgery, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sebastian Hardt
- Center for Musculoskeletal Surgery, Department of Orthopaedic Surgery, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
4
|
Sellin ML, Hansmann D, Bader R, Jonitz-Heincke A. Influence of metallic particles and TNF on the transcriptional regulation of NLRP3 inflammasome-associated genes in human osteoblasts. Front Immunol 2024; 15:1397432. [PMID: 38751427 PMCID: PMC11094288 DOI: 10.3389/fimmu.2024.1397432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction The release of mature interleukin (IL-) 1β from osteoblasts in response to danger signals is tightly regulated by the nucleotide-binding oligomerization domain leucine-rich repeat and pyrin-containing protein 3 (NLRP3) inflammasome. These danger signals include wear products resulting from aseptic loosening of joint arthroplasty. However, inflammasome activation requires two different signals: a nuclear factor-kappa B (NF-κB)-activating priming signal and an actual inflammasome-activating signal. Since human osteoblasts react to wear particles via Toll-like receptors (TLR), particles may represent an inflammasome activator that can induce both signals. Methods Temporal gene expression profiles of TLRs and associated intracellular signaling pathways were determined to investigate the period when human osteoblasts take up metallic wear particles after initial contact and initiate a molecular response. For this purpose, human osteoblasts were treated with metallic particles derived from cobalt-chromium alloy (CoCr), lipopolysaccharides (LPS), and tumor necrosis factor-alpha (TNF) alone or in combination for incubation times ranging from one hour to three days. Shortly after adding the particles, their uptake was observed by the change in cell morphology and spectral data. Results Exposure of osteoblasts to particles alone increased NLRP3 inflammasome-associated genes. The response was not significantly enhanced when cells were treated with CoCr + LPS or CoCr + TNF, whereas inflammation markers were induced. Despite an increase in genes related to the NLRP3 inflammasome, the release of IL-1β was unaffected after contact with CoCr particles. Discussion Although CoCr particles affect the expression of NLRP3 inflammasome-associated genes, a single stimulus was not sufficient to prime and activate the inflammasome. TNF was able to prime the NLRP3 inflammasome of human osteoblasts.
Collapse
Affiliation(s)
- Marie-Luise Sellin
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| | | | | | | |
Collapse
|
5
|
Panez-Toro I, Heymann D, Gouin F, Amiaud J, Heymann MF, Córdova LA. Roles of inflammatory cell infiltrate in periprosthetic osteolysis. Front Immunol 2023; 14:1310262. [PMID: 38106424 PMCID: PMC10722268 DOI: 10.3389/fimmu.2023.1310262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Classically, particle-induced periprosthetic osteolysis at the implant-bone interface has explained the aseptic loosening of joint replacement. This response is preceded by triggering both the innate and acquired immune response with subsequent activation of osteoclasts, the bone-resorbing cells. Although particle-induced periprosthetic osteolysis has been considered a foreign body chronic inflammation mediated by myelomonocytic-derived cells, current reports describe wide heterogeneous inflammatory cells infiltrating the periprosthetic tissues. This review aims to discuss the role of those non-myelomonocytic cells in periprosthetic tissues exposed to wear particles by showing original data. Specifically, we discuss the role of T cells (CD3+, CD4+, and CD8+) and B cells (CD20+) coexisting with CD68+/TRAP- multinucleated giant cells associated with both polyethylene and metallic particles infiltrating retrieved periprosthetic membranes. This review contributes valuable insight to support the complex cell and molecular mechanisms behind the aseptic loosening theories of orthopedic implants.
Collapse
Affiliation(s)
- Isidora Panez-Toro
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Independencia, Santiago, Chile
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Dominique Heymann
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
- Nantes Université, Laboratory of Histology and Embryology, Medical School, Nantes, France
- The University of Sheffield, Dept of Oncology and Metabolism, Sheffield, United Kingdom
| | - François Gouin
- Department of Surgical Oncology, Centre Léon Bérard, Lyon, France
| | - Jérôme Amiaud
- Nantes Université, Laboratory of Histology and Embryology, Medical School, Nantes, France
| | - Marie-Françoise Heymann
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Luis A. Córdova
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Independencia, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Oral and Maxillofacial Surgery, Clínica MEDS, Santiago, Chile
| |
Collapse
|
6
|
Ma TL, Chen JX, Ke ZR, Zhu P, Hu YH, Xie J. Targeting regulation of stem cell exosomes: Exploring novel strategies for aseptic loosening of joint prosthesis. Front Bioeng Biotechnol 2022; 10:925841. [PMID: 36032702 PMCID: PMC9399432 DOI: 10.3389/fbioe.2022.925841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
Periprosthetic osteolysis is a major long-term complication of total joint replacement. A series of biological reactions caused by the interaction of wear particles at the prosthesis bone interface and surrounding bone tissue cells after artificial joint replacement are vital reasons for aseptic loosening. Disorder of bone metabolism and aseptic inflammation induced by wear particles are involved in the occurrence and development of aseptic loosening of the prosthesis. Promoting osteogenesis and angiogenesis and mediating osteoclasts and inflammation may be beneficial in preventing the aseptic loosening of the prosthesis. Current research about the prevention and treatment of aseptic loosening of the prosthesis focuses on drug, gene, and stem cell therapy and has not yet achieved satisfactory clinical efficacy or has not been used in clinical practice. Exosomes are a kind of typical extracellular vehicle. In recent years, stem cell exosomes (Exos) have been widely used to regulate bone metabolism, block inflammation, and have broad application prospects in tissue repair and cell therapy.
Collapse
Affiliation(s)
- Tian-Liang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Impants, Xiangya Hospital, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Jing-Xian Chen
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Zhuo-Ran Ke
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Peng Zhu
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Yi-He Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Impants, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yi-He Hu, ; Jie Xie,
| | - Jie Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Impants, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yi-He Hu, ; Jie Xie,
| |
Collapse
|
7
|
Schluessel S, Hartmann ES, Koehler MI, Beck F, Redeker JI, Saller MM, Akova E, Krebs S, Holzapfel BM, Mayer-Wagner S. Dental and Orthopaedic Implant Loosening: Overlap in Gene Expression Regulation. Front Immunol 2022; 13:820843. [PMID: 35222398 PMCID: PMC8874814 DOI: 10.3389/fimmu.2022.820843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 01/19/2023] Open
Abstract
Objectives Endoprosthetic loosening still plays a major role in orthopaedic and dental surgery and includes various cellular immune processes within peri-implant tissues. Although the dental and orthopaedic processes vary in certain parts, the clinical question arises whether there are common immune regulators of implant loosening. Analyzing the key gene expressions common to both processes reveals the mechanisms of osteoclastogenesis within periprosthetic tissues of orthopaedic and dental origin. Methods Donor peripheral blood mononuclear cells (PBMCs) and intraoperatively obtained periprosthetic fibroblast-like cells (PPFs) were (co-)cultured with [± macrophage-colony stimulating factor (MCSF) and Receptor Activator of NF-κB ligand (RANKL)] in transwell and monolayer culture systems and examined for osteoclastogenic regulations [MCSF, RANKL, osteoprotegerin (OPG), and tumor necrosis factor alpha (TNFα)] as well as the ability of bone resorption. Sequencing analysis compared dental and orthopaedic (co-)cultures. Results Monolayer co-cultures of both origins expressed high levels of OPG, resulting in inhibition of osteolysis shown by resorption assay on dentin. The high OPG-expression, low RANKL/OPG ratios and a resulting inhibition of osteolysis were displayed by dental and orthopaedic PPFs in monolayer even in the presence of MCSF and RANKL, acting as osteoprotective and immunoregulatory cells. The osteoprotective function was only observed in monolayer cultures of dental and orthopaedic periprosthetic cells and downregulated in the transwell system. In transwell co-cultures of PBMCs/PPFs profound changes of gene expression, with a significant decrease of OPG (20-fold dental versus 100 fold orthopaedic), were identified. Within transwell cultures, which offer more in vivo like conditions, RANKL/OPG ratios displayed similar high levels to the original periprosthetic tissue. For dental and orthopaedic implant loosening, overlapping findings in principal component and heatmap analysis were identified. Conclusions Thus, periprosthetic osteoclastogenesis may be a correlating immune process in orthopaedic and dental implant failure leading to comparable reactions with regard to osteoclast formation. The transwell cultures system may provide an in vivo like model for the exploration of orthopaedic and dental implant loosening.
Collapse
Affiliation(s)
- Sabine Schluessel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Eliza S. Hartmann
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Miriam I. Koehler
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Felicitas Beck
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Julia I. Redeker
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Maximilian M. Saller
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Elif Akova
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Stefan Krebs
- Gene Center, Laboratory for Functional Genome Analysis, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Boris M. Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- *Correspondence: Susanne Mayer-Wagner,
| |
Collapse
|
8
|
Wang XF, Meng Y, Liu H, Hong Y, Wang BY. Anterior bone loss after cervical disc replacement: A systematic review. World J Clin Cases 2020; 8:5284-5295. [PMID: 33269261 PMCID: PMC7674730 DOI: 10.12998/wjcc.v8.i21.5284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/05/2020] [Accepted: 09/16/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Anterior bone loss (ABL) is a relatively easily neglected condition after cervical disc replacement (CDR). Whether this phenomenon is a radiological anomaly or a complication remains controversial. Several studies have reported the clinical characteristics of ABL and speculated on the pathogenic mechanism based on a certain type of artificial disc, while the overall understanding of ABL is lacking.
AIM To describe the prevalence, impacts, and risk factors of ABL after CDR.
METHODS We searched the PubMed, Cochrane Library, and Excerpta Medica databases using the terms “bone loss” or “bone remodeling” or “bone absorption” or “osteolysis” or “implant loosening” or “implant migration” or “hypersensitivity” or “hyperreactivity”, “cervical disc replacement” or “cervical disc arthroplasty” or “total disc replacement”. Eligible manuscripts on the prevalence and impacts of ABL were reviewed by the authors. Data extraction was performed using an established extraction form. The results of the included studies were described narratively.
RESULTS Six studies met the inclusion and exclusion criteria. One was a prospective study and the others were retrospective studies. A total of 440 patients with 536 segments were included. The artificial cervical discs included Bryan, Baguera-C, Discocerv, and Mobi-C. The prevalence of ABL ranged from 3.13% to 91.89%, with a combined overall prevalence of 41.84%. ABL occurred within 6 mo and stopped 12 mo after surgery. Several cases were noted to have a self-healing process. Severe ABL resulted in segmental kyphosis, implant subsidence, and persistent neck pain. ABL may be related to heterotopic ossification. Multilevel surgery may be one of the risk factors for ABL.
CONCLUSION ABL is a common condition after CDR. The underlying mechanisms of ABL may include stress concentration and injury to nutrient vessels. ABL should be considered a complication after CDR as it was associated with neck pain, implant subsidence, and heterotopic ossification.
Collapse
Affiliation(s)
- Xiao-Fei Wang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yang Meng
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hao Liu
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ying Hong
- Department of Anesthesia and Operation Center/West China School of Nursing, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bei-Yu Wang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
9
|
Fibroblast-like cells change gene expression of bone remodelling markers in transwell cultures. Eur J Med Res 2020; 25:52. [PMID: 33121539 PMCID: PMC7596965 DOI: 10.1186/s40001-020-00453-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/21/2020] [Indexed: 01/04/2023] Open
Abstract
Introduction Periprosthetic fibroblast-like cells (PPFs) play an important role in aseptic loosening of arthroplasties. Various studies have examined PPF behavior in monolayer culture systems. However, the periprosthetic tissue is a three-dimensional (3D) mesh, which allows the cells to interact in a multidirectional way. The expression of bone remodeling markers of fibroblast-like cells in a multilayer environment changes significantly versus monolayer cultures without the addition of particles or cytokine stimulation. Gene expression of bone remodeling markers was therefore compared in fibroblast-like cells from different origins and dermal fibroblasts under transwell culture conditions versus monolayer cultures. Methods PPFs from periprosthetic tissues (n = 12), osteoarthritic (OA) synovial fibroblast-like cells (SFs) (n = 6), and dermal fibroblasts (DFs) were cultured in monolayer (density 5.5 × 103/cm2) or multilayer cultures (density 8.5 × 105/cm2) for 10 or 21 days. Cultures were examined via histology, TRAP staining, immunohistochemistry (anti-S100a4), and quantitative real-time PCR. Results Fibroblast-like cells (PPFs/SFs) and dermal fibroblasts significantly increased the expression of RANKL and significantly decreased the expression of ALP, COL1A1, and OPG in multilayer cultures. PPFs and SFs in multilayer cultures further showed a higher expression of cathepsin K, MMP-13, and TNF-α. In multilayer PPF cultures, the mRNA level of TRAP was also found to be significantly increased. Conclusion The multilayer cultures are able to induce significant expression changes in fibroblast-like cells depending on the nature of cellular origin without the addition of any further stimulus. This system might be a useful tool to get more in vivo like results regarding fibroblast-like cell cultures.
Collapse
|
10
|
Tumor necrosis factor primes and metal particles activate the NLRP3 inflammasome in human primary macrophages. Acta Biomater 2020; 108:347-357. [PMID: 32194260 DOI: 10.1016/j.actbio.2020.03.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
Aseptic loosening of total joint replacements is driven by a macrophage-mediated inflammatory reaction to implant-derived wear particles. Phagocytosis of implant debris has been suggested to activate the NLRP3 inflammasome leading to secretion of interleukin (IL)-1β. However, factors and molecular mechanisms driving the particle-induced inflammasome activation are yet to be fully elucidated. In this study, we investigated the inflammasome response of human primary macrophages to titanium, chromium, and molybdenum particles in vitro. We observed that particles alone were not sufficient to induce IL-1β secretion, but an additional priming signal-such as bacterial lipopolysaccharide (LPS)-was required to license the inflammasome activation. By using specific inhibitors against the inflammasome signaling pathway, we demonstrate that the particle-induced IL-1β secretion depended upon activation of the NLRP3 inflammasome. We further hypothesized that tumor necrosis factor (TNF) could substitute for LPS as a priming signal, and found that particle stimulation together with preceding TNF treatment resulted in inflammasome-dependent IL-1β production as well. Our results show that the NLRP3 inflammasome mediates wear particle responses in human primary macrophages, and its activation does not necessarily require the presence of bacterial components, but can be induced under aseptic conditions by TNF priming. STATEMENT OF SIGNIFICANCE: This study was conducted to elucidate the molecular mechanisms of metal particle-induced IL-1β secretion in human primary macrophages. Production of this pro-inflammatory mediator from wear particle-activated macrophages has been associated with increased bone loss around total joint replacements-a condition eventually requiring revision surgery. Our results confirm that together with a co-stimulatory priming signal, particles of common implant metals elicit macrophage-mediated IL-1β secretion through activation of the NLRP3 inflammasome pathway. We also present a concept of TNF priming in this context, demonstrating that the particle-related IL-1β secretion can take place in a truly sterile environment. Thus, inhibition of inflammasome signaling appears a means to prevent wear particle-induced inflammation and development of peri‑prosthetic osteolysis.
Collapse
|
11
|
Koks S, Wood DJ, Reimann E, Awiszus F, Lohmann CH, Bertrand J, Prans E, Maasalu K, Märtson A. The Genetic Variations Associated With Time to Aseptic Loosening After Total Joint Arthroplasty. J Arthroplasty 2020; 35:981-988. [PMID: 31791832 DOI: 10.1016/j.arth.2019.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Total joint arthroplasty (TJA) is one of the most frequent surgical procedures performed in modern hospitals, and aseptic loosening is the most common indication for revision surgeries. We conducted a systemic exploration of potential genetic determinants for early aseptic loosening. METHODS Data from 423 patients undergoing TJA were collected and analyzed. Three analytical groups were formed based on joint arthroplasty status. Group 1 were TJA patients without symptoms of aseptic loosening of at least 1 year, group 2 were patients with primary TJA, and group 3 were patients receiving revision surgery because of aseptic loosening. Genome-wide genotyping comparing genotype frequencies between patients with and without aseptic loosening (group 3 vs groups 1 and 2) was conducted. A case-control association analysis and linear modeling were applied to identify the impact of the identified genes on implant survival with time to the revision as an outcome measure. RESULTS We identified 52 single-nucleotide polymorphisms (SNPs) with a genome-wide suggestive P value less than 10-5 to be associated with the implant loosening. The most remarkable odds ratios (OR) were found with the variations in the IFIT2/IFIT3 (OR, 21.6), CERK (OR, 12.6), and PAPPA (OR, 14.0) genes. Variations in the genotypes of 4 SNPs-rs115871127, rs16823835, rs13275667, and rs2514486-predicted variability in the time to aseptic loosening. The time to aseptic loosening varied from 8 to 16 years depending on the genotype, indicating a substantial effect of genetic variance. CONCLUSION Development of the aseptic loosening is associated with several genetic variations and we identified at least 4 SNPs with a significant effect on the time for loosening. These data could help to develop a personalized approach for TJA and loosening management.
Collapse
Affiliation(s)
- Sulev Koks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia; The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - David J Wood
- Department of Surgery, The University of Western Australia, Nedlands, WA, Australia
| | - Ene Reimann
- Department of Pathophysiology, University of Tartu, Tartu, Estonia
| | - Friedemann Awiszus
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Ele Prans
- Department of Pathophysiology, University of Tartu, Tartu, Estonia
| | - Katre Maasalu
- Department of Traumatology and Orthopaedics, University of Tartu, Tartu, Estonia; Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia
| | - Aare Märtson
- Department of Traumatology and Orthopaedics, University of Tartu, Tartu, Estonia; Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
12
|
Koehler MI, Hartmann ES, Schluessel S, Beck F, Redeker JI, Schmitt B, Unger M, van Griensven M, Summer B, Fottner A, Mayer-Wagner S. Impact of Periprosthetic Fibroblast-Like Cells on Osteoclastogenesis in Co-Culture with Peripheral Blood Mononuclear Cells Varies Depending on Culture System. Int J Mol Sci 2019; 20:E2583. [PMID: 31130703 PMCID: PMC6567687 DOI: 10.3390/ijms20102583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/16/2022] Open
Abstract
Co-culture studies investigating the role of periprosthetic fibroblasts (PPFs) in inflammatory osteoclastogenesis reveal contrary results, partly showing an osteoprotective function of fibroblasts and high OPG expression in monolayer. These data disagree with molecular analyses of original periosteolytic tissues. In order to find a more reliable model, PPFs were co-cultivated with peripheral blood mononuclear cells (PBMCs) in a transwell system and compared to conventional monolayer cultures. The gene expression of key regulators of osteoclastogenesis (macrophage colony-stimulating factor (MCSF), receptor activator of NF-κB ligand (RANK-L), osteoprotegerin (OPG), and tumor necrosis factor alpha (TNFα)) as well as the ability of bone resorption were analyzed. In monolayer co-cultures, PPFs executed an osteoprotective function with high OPG-expression, low RANK-L/OPG ratios, and a resulting inhibition of osteolysis even in the presence of MCSF and RANK-L. For transwell co-cultures, profound changes in gene expression, with a more than hundredfold decrease of OPG and a significant upregulation of TNFα were observed. In conclusion, we were able to show that a change of culture conditions towards a transwell system resulted in a considerably more osteoclastogenic gene expression profile, being closer to findings in original periosteolytic tissues. This study therefore presents an interesting approach for a more reliable in vitro model to examine the role of fibroblasts in periprosthetic osteoclastogenesis in the future.
Collapse
Affiliation(s)
- Miriam I Koehler
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
- Department of Cardiology and Vascular Medicine, West-German Heart and Vascular Center, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Eliza S Hartmann
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Sabine Schluessel
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Felicitas Beck
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Julia I Redeker
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Baerbel Schmitt
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Marina Unger
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Martijn van Griensven
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Burkhard Summer
- Department of Dermatology, Ludwig-Maximilians-University, Frauenlobstr. 9-11, 80337 Munich, Germany.
| | - Andreas Fottner
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Susanne Mayer-Wagner
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| |
Collapse
|
13
|
Immobilization of Denosumab on Titanium Affects Osteoclastogenesis of Human Peripheral Blood Monocytes. Int J Mol Sci 2019; 20:ijms20051002. [PMID: 30813507 PMCID: PMC6429431 DOI: 10.3390/ijms20051002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/01/2019] [Accepted: 02/21/2019] [Indexed: 01/03/2023] Open
Abstract
Immobilization of proteins has been examined to improve implant surfaces. In this study, titanium surfaces were modified with nanofunctionalized denosumab (cDMAB), a human monoclonal anti-RANKL IgG. Noncoding DNA oligonucleotides (ODN) served as linker molecules between titanium and DMAB. Binding and release experiments demonstrated a high binding capacity of cDMAB and continuous release. Human peripheral mononuclear blood cells (PBMCs) were cultured in the presence of RANKL/MCSF for 28 days and differentiated into osteoclasts. Adding soluble DMAB to the medium inhibited osteoclast differentiation. On nanofunctionalized titanium specimens, the osteoclast-specific TRAP5b protein was monitored and showed a significantly decreased amount on cDMAB-titanium in PBMCs + RANKL/MCSF. PBMCs on cDMAB-titanium also changed SEM cell morphology. In conclusion, the results indicate that cDMAB reduces osteoclast formation and has the potential to reduce osteoclastogenesis on titanium surfaces.
Collapse
|
14
|
Wear Particle-induced Priming of the NLRP3 Inflammasome Depends on Adherent Pathogen-associated Molecular Patterns and Their Cognate Toll-like Receptors: An In Vitro Study. Clin Orthop Relat Res 2018; 476:2442-2453. [PMID: 30427314 PMCID: PMC6259896 DOI: 10.1097/corr.0000000000000548] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Orthopaedic wear particles activate the NLRP3 inflammasome to produce active interleukin 1β (IL1β). However, the NLRP3 inflammasome must be primed before it can be activated, and it is unknown whether wear particles induce priming. Toll-like receptors (TLRs) are thought to mediate particle bioactivity. It remains controversial whether pathogen-associated molecular patterns (PAMPs) and/or alarmins are responsible for TLR activation by wear particles. QUESTIONS/PURPOSES (1) Does priming of the NLRP3 inflammasome by wear particles depend on adherent PAMPs? (2) Does priming of the NLRP3 inflammasome by wear particles depend on TLRs and TIRAP/Mal? (3) Does priming of the NLRP3 inflammasome by wear particles depend on cognate TLRs? (4) Does activation of the NLRP3 inflammasome by wear particles depend on adherent PAMPs? METHODS Immortalized murine macrophages were stimulated by as-received titanium particles with adherent bacterial debris, endotoxin-free titanium particles, or titanium particles with adherent ultrapure lipopolysaccharide. To study priming, NLRP3 and IL1β mRNA and IL1β protein levels were assessed in wild-type, TLR4, TLR2, and TIRAP/Mal macrophages. To study activation, IL1β protein secretion was assessed in wild-type macrophages preprimed with ultrapure lipopolysaccharide. RESULTS Compared with titanium particles with adherent bacterial debris, endotoxin-free titanium particles induced 86% less NLRP3 mRNA (0.05 ± 0.03 versus 0.35 ± 0.01 NLRP3/GAPDH, p < 0.001) and 91% less IL1β mRNA (0.02 ± 0.01 versus 0.22 ± 0.03 IL1β/GAPDH, p < 0.001). ProIL1β protein level was robustly increased in wild-type macrophages stimulated by particles with adherent PAMPs but was not detectably produced in macrophages stimulated by endotoxin-free particles. Adherence of ultrapure lipopolysaccharide to endotoxin-free particles reconstituted stimulation of NLRP3 and IL1β mRNA. Particles with adherent bacterial debris induced 79% less NLRP3 mRNA (0.09 ± 0.004 versus 0.43 ± 0.13 NLRP3/GAPDH, p < 0.001) and 40% less IL1β mRNA (0.09 ± 0.04 versus 0.15 ± 0.03 IL1β/GAPDH, p = 0.005) in TLR4 macrophages than in wild-type. Similarly, those particles induced 49% less NLRP3 mRNA (0.22 ± 0.10 versus 0.43 ± 0.13 NLRP3/GAPDH, p = 0.004) and 47% less IL1β mRNA (0.08 ± 0.02 versus 0.15 ± 0.03 IL1β/GAPDH, p = 0.012) in TIRAP/Mal macrophages than in wild-type. Particles with adherent ultrapure lipopolysaccharide induced 96% less NLRP3 mRNA (0.012 ± 0.001 versus 0.27 ± 0.05 NLRP3/GAPDH, p = 0.003) and 91% less IL1β mRNA (0.03 ± 0.01 versus 0.34 ± 0.07 IL1β/GAPDH, p < 0.001) expression in TLR4 macrophages than in wild-type. In contrast, those particles did not induce less NLRP3 and IL1β mRNA in TLR2 macrophages. IL1β protein secretion was equivalently induced by particles with adherent bacterial debris or by endotoxin-free particles in a time-dependent manner in wild-type macrophages. For example, particles with adherent bacterial debris induced 99% ± 2% of maximal IL1β secretion after 12 hours, whereas endotoxin-free particles induced 92% ± 11% (p > 0.5). CONCLUSIONS This cell culture study showed that adherent PAMPs are required for priming of the NLRP3 inflammasome by wear particles and this process is dependent on their cognate TLRs and TIRAP/Mal. In contrast, activation of the NLRP3 inflammasome by titanium particles is not dependent on adherent PAMPs. Animal and implant retrieval studies are needed to determine whether wear particles have similar effects on the NLRP3 inflammasome in vivo. CLINICAL RELEVANCE Our findings, together with recent findings that aseptic loosening associates with polymorphisms in the TIRAP/Mal locus, support that adherent PAMPs may contribute to aseptic loosening in patients undergoing arthroplasty.
Collapse
|
15
|
Wang Y, Zhang C, Xu W, Wang B, Lan Y, Yu M, Wang P, Xie Z. The effect of surface immobilized NBD peptide on osteoclastogenesis of rough titanium plates in vitro and osseointegration of rough titanium implants in ovariectomized rats in vivo. RSC Adv 2018; 8:22853-22865. [PMID: 35539717 PMCID: PMC9081414 DOI: 10.1039/c8ra03116a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/14/2018] [Indexed: 01/08/2023] Open
Abstract
Successful osseointegration in dental implants depends on balanced activation of osteoclasts and osteoblasts. Osteoporosis up-regulates osteoclast activity, so it is desirable to find effective interventions to inhibit osteoclastogenesis and enhance the osseointegration of implants under these conditions. It has been reported that the NF-κB essential modulator (NEMO)-binding domain (NBD) peptide can prevent osteoclast formation and bone resorption. In this study, we conjugated NBD peptide onto the surface of rough pure titanium (Ti) using the layer by layer technique. We analyzed the surface characteristics and determined the successful NBD integration by the presence of trivial granular structures, increased S elements and hydrophilia. Importantly, we first reported that Ti surface-conjugated NBD peptide retained its inhibitory effects on osteoclastogenesis by reducing osteoclast sealing zone formation and function. These effects were mediated by a reduction in NFATc1 expression, which in turn regulated integrin ανβ3 and MMP9 by targeting the P65 signaling pathway. In vivo TRAP staining suggested NBD-coating decreased osteoclast formation with less pseudopodia. Micro-CT and histomorphometric analysis demonstrated that NBD-coating enhanced pronounced osseointegration in vivo in ovariectomized rats. This study holds great promise for in vivo use of immobilized NBD peptide and offers an effective therapeutic approach to select more suitable Ti-implant surface modifications for improving implant osseointegration in osteoporotic patients. Successful osseointegration in dental implants depends on balanced activation of osteoclasts and osteoblasts.![]()
Collapse
Affiliation(s)
- Yu Wang
- Department of Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| | - Chen Zhang
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| | - Weijian Xu
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| | - Baixiang Wang
- Department of Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| | - Yanhua Lan
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| | - Mengfei Yu
- Department of Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| | - Pinger Wang
- Zhejiang Chinese Medical University Hangzhou P. R. China
| | - Zhijian Xie
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Medical College, Zhejiang University Hangzhou P. R. China
| |
Collapse
|
16
|
Micrometer-Sized Titanium Particles Induce Aseptic Loosening in Rabbit Knee. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5410875. [PMID: 29651439 PMCID: PMC5831897 DOI: 10.1155/2018/5410875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/06/2018] [Accepted: 01/14/2018] [Indexed: 11/26/2022]
Abstract
Wear debris induced aseptic loosening is the leading cause of total knee arthroplasty (TKA) failure. The complex mechanism of aseptic loosening has been a major issue for introducing effective prevention and treatment methods, so a simplified yet efficient rabbit model was established to address this concern with the use of micrometer-sized titanium particles. 20 New Zealand white rabbits were selected and divided into two groups (control = 10, study = 10). A TKA surgery was then performed for each of them, with implantation of a titanium rod prosthesis which was coated evenly with micrometer-sized titanium in the study group and nothing in the control group, into right femoral medullary cavity. After 12 weeks, all the animals were euthanized and X-ray analyses, H&E staining, Goldner Masson trichrome staining, Von Kossa staining, PCR, and Western blotting of some specific mRNAs and proteins in the interface membrane tissues around the prosthesis were carried out. The implantation of a titanium rod prosthesis coated with 20 μm titanium particles into the femoral medullary cavity of rabbits caused continuous titanium particle stimulation around the prosthesis, effectively inducing osteolysis and aseptic loosening. Titanium particle-induced macrophages produce multiple inflammatory factors able to activate osteoclast differentiation through the OPG/RANKL/RANK signaling pathway, resulting in osteolysis while suppressing the function of osteoblasts and reducing bone ingrowth around the prosthesis. This model simulated the implantation and loosening process of an artificial prosthesis, which is an ideal etiological model to study the aseptic prosthetic loosening.
Collapse
|