1
|
Castro AL, Gonçalves RM. Trends and considerations in annulus fibrosus in vitro model design. Acta Biomater 2025; 195:42-51. [PMID: 39900271 DOI: 10.1016/j.actbio.2025.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/09/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Annulus Fibrosus (AF) tissue integrity maintains intervertebral disc (IVD) structure, essential to spine mobility and shock absorption. However, this tissue, which confines nucleus pulposus (NP), has been poorly investigated, partially due to the lack of appropriate study models. This review provides a comprehensive analysis of AF in vitro models. By critically assessing the current AF in vitro models, this works thoroughly identifies key gaps in replicating the tissue's complex microenvironment. Finally, we outline the essential criteria for developing more accurate and reliable AF models, emphasizing the importance of biomaterial composition, architecture, and microenvironmental cues. By advancing in vitro models, we aim to deepen the understanding of AF failure mechanisms and support the development of novel therapeutic strategies for IVD herniation. Insights gained from this review may also have broader applications in regenerative medicine, particularly in the study and treatment of other connective tissue disorders. STATEMENT OF SIGNIFICANCE: This review evaluates the current in vitro models of the annulus fibrosus (AF), a key component of the intervertebral disc (IVD). By identifying gaps in these models, particularly in replicating tissue's complex microenvironment, we propose essential criteria for the development of more accurate AF models, to better understand the pathomechanisms and potentially aid the development of therapeutic approaches for spinal disorders. The findings also extend to broader studies of musculoskeletal tissue disorders in the context of regenerative medicine, appealing to a diverse biomedical research readership.
Collapse
Affiliation(s)
- A L Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - R M Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
2
|
Ferreira JR, Caldeira J, Sousa M, Barbosa MA, Lamghari M, Almeida-Porada G, Gonçalves RM. Dynamics of CD44 + bovine nucleus pulposus cells with inflammation. Sci Rep 2024; 14:9156. [PMID: 38644369 PMCID: PMC11033282 DOI: 10.1038/s41598-024-59504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/11/2024] [Indexed: 04/23/2024] Open
Abstract
Intervertebral Disc (IVD) degeneration has been associated with a chronic inflammatory response, but knowledge on the contribution of distinct IVD cells, namely CD44, to the progression of IVD degeneration remains elusive. Here, bovine nucleus pulposus (NP) CD44 cells were sorted and compared by gene expression and proteomics with the negative counterpart. NP cells were then stimulated with IL-1b (10 ng/ml) and dynamics of CD44 gene and protein expression was analyzed upon pro-inflammatory treatment. The results emphasize that CD44 has a multidimensional functional role in IVD metabolism, ECM synthesis and production of neuropermissive factors. CD44 widespread expression in NP was partially associated with CD14 and CD45, resulting in the identification of distinct cell subsets. In conclusion, this study points out CD44 and CD44-based cell subsets as relevant targets in the modulation of the IVD pro-inflammatory/degenerative cascade.
Collapse
Affiliation(s)
- J R Ferreira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal
- Cell & Gene Therapy Safety, Clinical Pharmacology & Safety Science, R&D, AstraZeneca, Molndal, Sweden
| | - J Caldeira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
| | - M Sousa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
| | - M A Barbosa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal
| | - M Lamghari
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal
| | - G Almeida-Porada
- WFIRM-Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - R M Gonçalves
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal.
| |
Collapse
|
3
|
Brenneis M, Jenei-Lanzl Z, Kupka J, Braun S, Junker M, Zaucke F, Rickert M, Meurer A. Correlation between Adrenoceptor Expression and Clinical Parameters in Degenerated Lumbar Intervertebral Discs. Int J Mol Sci 2022; 23:ijms232315358. [PMID: 36499685 PMCID: PMC9739018 DOI: 10.3390/ijms232315358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Despite advanced knowledge of the cellular and biomechanical processes of intervertebral disc degeneration (IVDD), the trigger and underlying mechanisms remain unclear. Since the sympathetic nervous system (SNS) has been shown to exhibit catabolic effects in osteoarthritis pathogenesis, it is attractive to speculate that it also influences IVDD. Therefore, we explored the adrenoceptor (AR) expression profile in human IVDs and correlated it with clinical parameters of patients. IVD samples were collected from n = 43 patients undergoing lumbar spinal fusion surgery. AR gene expression was analyzed by semi-quantitative polymerase chain reaction. Clinical parameters as well as radiological Pfirrmann and Modic classification were collected and correlated with AR expression levels. In total human IVD homogenates α1A-, α1B-, α2A-, α2B-, α2C-, β1- and β2-AR genes were expressed. Expression of α1A- (r = 0.439), α2A- (r = 0.346) and β2-AR (r = 0.409) showed a positive and significant correlation with Pfirrmann grade. α1A-AR expression was significantly decreased in IVD tissue of patients with adjacent segment disease (p = 0.041). The results of this study indicate that a relationship between IVDD and AR expression exists. Thus, the SNS and its neurotransmitters might play a role in IVDD pathogenesis. The knowledge of differential AR expression in different etiologies could contribute to the development of new therapeutic approaches for IVDD.
Collapse
Affiliation(s)
- Marco Brenneis
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
- Correspondence: or
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Johannes Kupka
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Sebastian Braun
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Marius Junker
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Marcus Rickert
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Andrea Meurer
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| |
Collapse
|
4
|
Groh AMR, Fournier DE, Battié MC, Séguin CA. Innervation of the Human Intervertebral Disc: A Scoping Review. PAIN MEDICINE (MALDEN, MASS.) 2021; 22:1281-1304. [PMID: 33595648 PMCID: PMC8185559 DOI: 10.1093/pm/pnab070] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Back pain is an elusive symptom complicated by a variety of possible causes, precipitating and maintaining factors, and consequences. Notably, the underlying pathology remains unknown in a significant number of cases. Changes to the intervertebral disc (IVD) have been associated with back pain, leading many to postulate that the IVD may be a direct source of pain, typically referred to as discogenic back pain. Yet despite decades of research into the neuroanatomy of the IVD, there is a lack of consensus in the literature as to the distribution and function of neural elements within the tissue. The current scoping review provides a comprehensive systematic overview of studies that document the topography, morphology, and immunoreactivity of neural elements within the IVD in humans. METHOD Articles were retrieved from six separate databases in a three-step systematic search and were independently evaluated by two reviewers. RESULTS Three categories of neural elements were described within the IVD: perivascular nerves, sensory nerves independent of blood vessels, and mechanoreceptors. Nerves were consistently localized within the outer layers of the annulus fibrosus. Neural ingrowth into the inner annulus fibrosus and nucleus pulposus was found to occur only in degenerative and disease states. CONCLUSION While the pattern of innervation within the IVD is clear, the specific topographic arrangement and function of neural elements in the context of back pain remains unclear.
Collapse
Affiliation(s)
- Adam M R Groh
- Integrated Program in Neuroscience, The Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Dale E Fournier
- Health and Rehabilitation Sciences (Physical Therapy), Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
- Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
| | - Michele C Battié
- Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
- School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Cheryle A Séguin
- Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Chen YJ, Chang WA, Wu LY, Hsu YL, Chen CH, Kuo PL. Systematic Analysis of Transcriptomic Profile of Chondrocytes in Osteoarthritic Knee Using Next-Generation Sequencing and Bioinformatics. J Clin Med 2018; 7:E535. [PMID: 30544699 PMCID: PMC6306862 DOI: 10.3390/jcm7120535] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022] Open
Abstract
The phenotypic change of chondrocytes and the interplay between cartilage and subchondral bone in osteoarthritis (OA) has received much attention. Structural changes with nerve ingrowth and vascular penetration within OA cartilage may contribute to arthritic joint pain. The aim of this study was to identify differentially expressed genes and potential miRNA regulations in OA knee chondrocytes through next-generation sequencing and bioinformatics analysis. Results suggested the involvement of SMAD family member 3 (SMAD3) and Wnt family member 5A (WNT5A) in the growth of blood vessels and cell aggregation, representing features of cartilage damage in OA. Additionally, 26 dysregulated genes with potential miRNA⁻mRNA interactions were identified in OA knee chondrocytes. Myristoylated alanine rich protein kinase C substrate (MARCKS), epiregulin (EREG), leucine rich repeat containing 15 (LRRC15), and phosphodiesterase 3A (PDE3A) expression patterns were similar among related OA cartilage, subchondral bone and synovial tissue arrays in Gene Expression Omnibus database. The Ingenuity Pathway Analysis identified MARCKS to be associated with the outgrowth of neurite, and novel miRNA regulations were proposed to play critical roles in the pathogenesis of the altered OA knee joint microenvironment. The current findings suggest new perspectives in studying novel genes potentially contributing to arthritic joint pain in knee OA, which may assist in finding new targets for OA treatment.
Collapse
Affiliation(s)
- Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Ling-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chia-Hsin Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
6
|
Proinflammatory Cytokines IL-1β and TNF-α Influence Human Annulus Cell Signaling Cues for Neurite Growth: In Vitro Coculture Studies. Spine (Phila Pa 1976) 2017; 42:1529-1537. [PMID: 28306638 DOI: 10.1097/brs.0000000000002155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Institutional review board-approved research using human annulus cells cocultured with F11 nerve cells. OBJECTIVE To perform functional, kinetic assays of neurite dynamics and media neurotrophin measurements to test whether proinflammatory cytokines influence annulus cells' signaling cues for neurite growth/repulsion. SUMMARY OF BACKGROUND DATA Nerves grow in response to signaling molecules called neurotrophins, which disc cells produce (e.g., brain-derived neurotrophic factor [BDNF], glial cell line-derived neurotrophic factor [GDNF], and neurotrophin 3 [NT3]) and which influence neuron survival, differentiation, and migration. How proinflammatory cytokines influence disc signaling cues for neurite growth/repulsion is poorly understood. METHODS Studies used our previous model of 4-day human annulus cell-F11 nerve cell coculture to assess effects of added proinflammatory cytokines interleukin 1 beta (IL-1β; 10 pmol/L) or tumor necrosis factor alpha (TNF-α) (10 pmol/L). Annulus cells were cultured from 6 Thompson grade I, 9 grade II, 8 grade III, 11 grade IV, and 7 grade V discs. Neurite lengths were measured following control conditions or with added IL-1β or TNF-α, and conditioned media assayed with RayBiotech Growth Factor Arrays. Standard statistical methods used analysis of variance and Spearman correlation coefficient testing associations of neurite length with neurotrophin levels. RESULTS IL-1-β or TNF-α significantly increased neurite lengths (P < 0.001) and BDNF, NT3, and GDNF media levels (P ≤ 0.01) versus controls. Significant positive correlations were present between media neurotrophin levels for BDNF, NT3, and GDNF and neurite lengths under control conditions, following addition of IL-1β, and following addition of TNF-α. Novel data showed production of the neurotrophin amphiregulin. CONCLUSION In vitro data supported the hypothesis that nerve-disc cell interactions may be influenced by the heightened proinflammatory milieu present in degenerating discs, leading to increased nerve migration. Data may have direct clinical relevance/implications for nerve ingrowth and pain in the outer annulus (where disc cell numbers are high), and in regions where nerves penetrate into the disc via annular tears. LEVEL OF EVIDENCE N/A.
Collapse
|
7
|
Iatridis JC, Kang J, Kandel R, Risbud MV. New Horizons in Spine Research: Disc biology, spine biomechanics and pathomechanisms of back pain. J Orthop Res 2016; 34:1287-8. [PMID: 27571441 PMCID: PMC5072778 DOI: 10.1002/jor.23375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- James C. Iatridis
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - James Kang
- Department of Orthopedic
Surgery, Brigham and Women’s Hospital, Boston, MA 02115
| | - Rita Kandel
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, Ontario, Canada M5G1X5
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|