1
|
Wang W, Zhuang W, Zeng W, Feng Y, Zhang Z. Review of susceptibility genes in developmental dysplasia of the hip: A comprehensive examination of candidate genes and pathways. Clin Genet 2025; 107:3-12. [PMID: 39307874 DOI: 10.1111/cge.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 12/18/2024]
Abstract
Developmental dysplasia of the hip (DDH) is one of the most prevalent skeletal deformities, primarily due to the incompatibility between the acetabulum and femoral head. It includes complete dislocation, partial dislocation, instability with femoral head subluxation, and a range of imaging abnormalities that reflect inadequate acetabular formation. Known risk factors for DDH include positive family history, sex, premature birth, non-cephalic delivery, oligohydramnios, gestational diabetes mellitus, maternal hypertension, associated anomalies, swaddling clothes, intrauterine space restriction, and post-term pregnancy. Various research designs have been employed in DDH studies to identify relevant genes, including candidate gene association studies (CGAS), genome-wide association studies (GWAS), restriction fragment length polymorphism (RFLP), and whole exome sequencing (WES). To date, multiple DDH-associated genes have been identified in various populations. Despite extensive research into the epidemiology, risk factors, and genes associated with DDH, its pathogenesis remains unclear. This study provides a comprehensive summary of DDH research designs and evidence for relevant gene mutations through a PubMed search.
Collapse
Affiliation(s)
- Wenla Wang
- Research Institute of Orthopedics, Jiangnan Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Wei Zhuang
- Research Institute of Orthopedics, Jiangnan Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Wenxiang Zeng
- Research Institute of Orthopedics, Jiangnan Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Yuqi Feng
- Research Institute of Orthopedics, Jiangnan Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Zhaowei Zhang
- Research Institute of Orthopedics, Jiangnan Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
2
|
Gombosh M, Proskorovski-Ohayon R, Yogev Y, Eskin-Schwartz M, Hadar N, Aharoni S, Dolgin V, Cohen E, Birk OS. Developmental dysplasia of the hip caused by homozygous TRIM33 pathogenic variant affecting downstream BMP pathway. J Med Genet 2024; 61:959-965. [PMID: 39054052 DOI: 10.1136/jmg-2024-109928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Developmental dysplasia of the hip (DDH), formerly termed congenital dislocation of the hip, is the most common congenital disease of the musculoskeletal system in newborns. While familial predilection to DDH has been well documented, the molecular genetics/pathways of this common disorder are poorly understood. METHODS Linkage analysis and whole exome sequencing; real-time PCR studies of skin fibroblasts. RESULTS Consanguineous Bedouin kindred presented with DDH with apparent autosomal recessive heredity. Linkage analysis and whole exome sequencing delineated a single 3.2 Mbp disease-associated chromosome 1 locus (maximal multipoint Logarithm of the Odds score 2.3), containing a single homozygous variant with a relevant expression pattern: addition of threonine in TRIM33 (NM_015906.4); c.1648_1650dup. TRIM33 encodes a protein that acts both in the TGF-β and the BMP pathways; however, it has been mostly studied regarding its function in the TGF-β pathway. Since BMPs are known to act in bone formation, we focused on the BMP pathway, in which TRIM33 functions as a transcription factor, both an activator and repressor. Skin fibroblasts of two affected girls and a heterozygous TRIM33 variant carrier were assayed through reverse-transcription PCR for expression of genes known to be downstream of TRIM33 in the BMP pathway: fibroblasts of affected individuals showed significantly reduced expression of DLX5, significantly increased expression of BGLAP, increased expression of ALPL and no change in expression of RUNX2 or of TRIM33 itself. CONCLUSIONS DDH can be caused by a biallelic variant in TRIM33, affecting the BMP pathway.
Collapse
Affiliation(s)
- Maya Gombosh
- Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Regina Proskorovski-Ohayon
- Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yuval Yogev
- Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marina Eskin-Schwartz
- Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Institute for Human Genetics, Soroka Medical Center, Beer Sheva, Israel
| | - Noam Hadar
- Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sarit Aharoni
- Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vadim Dolgin
- Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eugen Cohen
- Department of Orthopedics, Soroka Medical Center and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad S Birk
- Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Institute for Human Genetics, Soroka Medical Center, Beer Sheva, Israel
| |
Collapse
|
3
|
Zhao X, Liu S, Yang Z, Li Y. Molecular mechanisms and genetic factors contributing to the developmental dysplasia of the hip. Front Genet 2024; 15:1413500. [PMID: 39156961 PMCID: PMC11327038 DOI: 10.3389/fgene.2024.1413500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
The most prevalent hip disease in neonates is developmental dysplasia of the hip (DDH). A timely and accurate diagnosis is required to provide the most effective treatment for pediatric patients with DDH. Heredity and gene variation have been the subject of increased attention and research worldwide as one of the factors contributing to the pathogenesis of DDH. Genome-wide association studies (GWAS), genome-wide linkage analyses (GWLA), and exome sequencing (ES) have identified variants in numerous genes and single-nucleotide polymorphisms (SNPs) as being associated with susceptibility to DDH in sporadic and DDH family patients. Furthermore, the DDH phenotype can be observed in animal models that exhibit susceptibility genes or loci, including variants in CX3CR1, KANSL1, and GDF5. The dentification of noncoding RNAs and de novo gene variants in patients with DDH-related syndrome has enhanced our understanding of the genes implicated in DDH. This article reviews the most recent molecular mechanisms and genetic factors that contribute to DDH.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Department of Pediatric Orthopaedics, Shenyang Orthopaedic Hospital, Shenyang, China
| | - Shuai Liu
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Liu Y, Fan X, Qian K, Wu C, Zhang L, Yuan L, Man Z, Wu S, Li P, Wang X, Li W, Zhang Y, Sun S, Yu C. Deciphering the pathogenic role of rare RAF1 heterozygous missense mutation in the late-presenting DDH. Front Genet 2024; 15:1375736. [PMID: 38952713 PMCID: PMC11215071 DOI: 10.3389/fgene.2024.1375736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/17/2024] [Indexed: 07/03/2024] Open
Abstract
Background Developmental Dysplasia of the Hip (DDH) is a skeletal disorder where late-presenting forms often escape early diagnosis, leading to limb and pain in adults. The genetic basis of DDH is not fully understood despite known genetic predispositions. Methods We employed Whole Genome Sequencing (WGS) to explore the genetic factors in late-presenting DDH in two unrelated families, supported by phenotypic analyses and in vitro validation. Results In both cases, a novel de novo heterozygous missense mutation in RAF1 (c.193A>G [p.Lys65Glu]) was identified. This mutation impacted RAF1 protein structure and function, altering downstream signaling in the Ras/ERK pathway, as demonstrated by bioinformatics, molecular dynamics simulations, and in vitro validations. Conclusion This study contributes to our understanding of the genetic factors involved in DDH by identifying a novel mutation in RAF1. The identification of the RAF1 mutation suggests a possible involvement of the Ras/ERK pathway in the pathogenesis of late-presenting DDH, indicating its potential role in skeletal development.
Collapse
Affiliation(s)
- Yuzhao Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xuesong Fan
- Shandong Mental Health Center, Shandong University, Jinan, China
| | - Kun Qian
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Changshun Wu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Laibo Zhang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lin Yuan
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuai Wu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ping Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xianquan Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanqing Zhang
- Shandong Mental Health Center, Shandong University, Jinan, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chenxi Yu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Digital Health Laboratory, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Yang D, Zhou Z, Wang S, Ying H, Wang S, Ma Q, Wu J, Jiao Q, Fan L, Chen M, Wang Y, Zhao L. A Novel Heterozygous Missense Variant in Parathyroid Hormone 1 is Related to the Occurrence of Developmental Dysplasia of the Hip. Genet Test Mol Biomarkers 2023; 27:74-80. [PMID: 36989525 DOI: 10.1089/gtmb.2022.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Introduction: Developmental dysplasia of the hip (DDH) is one of the most common diseases in the pediatric orthopedics, with an incidence of 1-5%. Genetic factors are the bases of the pathogenesis of DDH, but the pathogenic variants and pathogenesis of DDH are still unknown. There are no key accurate diagnostic or prognostic molecular markers for DDH. The purpose of our study was to screen for genetic variant associated with DDH and explore its pathogenesis. Materials and Methods: The genetic variation of DDH was tested by variant NGS-based exome analyses, verified by the Sanger sequencing. Results: A four-generation family in which DDH was present in three generations was recruited. A novel heterozygous missense variant c.629C>T (p.(Ala210Val)) in exon 7/8 of the parathyroid hormone 1 receptor (PTH1R) gene was identified through screening of two affected and one unaffected family members. The candidate variant was validated in all available family members with all three affected members being positive for the PTH1R variant. Conclusion: Our results are highly supportive of PTH1R as a novel candidate gene for DDH and demonstrated that the combination of pedigree information and next-generation sequencing is an effective method for identifying pathogenic variants associated with DDH.
Collapse
Affiliation(s)
- Dan Yang
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, P.R. China
| | - Zaiwei Zhou
- Shanghai Xunyin Biotechnology Co., Ltd., Shanghai, P.R. China
| | - Shiqi Wang
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Hao Ying
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Sun Wang
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qichao Ma
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jing Wu
- Laboratory of Translational Research, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qin Jiao
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lingyan Fan
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Mengjie Chen
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yichen Wang
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lihua Zhao
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
6
|
Wen J, Ping H, Kong X, Chai W. Developmental dysplasia of the hip: A systematic review of susceptibility genes and epigenetics. Gene 2023; 853:147067. [PMID: 36435507 DOI: 10.1016/j.gene.2022.147067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Developmental dysplasia of the hip (DDH) is a complex developmental deformity whose pathogenesis and susceptibility-related genes have yet to be elucidated. This systematic review summarizes the current literature on DDH-related gene mutations, animal model experiments, and epigenetic changes in DDH. METHODS We performed a comprehensive search of relevant documents in the Medline, Scopus, Cochrane, and ScienceDirect databases covering the period from October 1991 to October 2021. We analyzed basic information on the included studies and summarized the DDH-related mutation sites, animal model experiments, and epigenetic changes associated with DDH. RESULTS A total of 63 studies were included in the analysis, of which 54 dealt with the detection of gene mutations, 7 presented details of animal experiments, and 6 were epigenetic studies. No genetic mutations were clearly related to the pathogenesis of DDH, including the most frequently studied genes on chromosomes 1, 17, and 20. Most gene-related studies were performed in Han Chinese or North American populations, and the quality of these studies was medium or low. GDF5 was examined in the greatest number of studies, and mutation sites with odds ratios > 10 were located on chromosomes 3, 9, and 13. Six mutations were found in animal experiments (i.e., CX3CR1, GDF5, PAPPA2, TENM3, UFSP2, and WISP3). Epigenetics research on DDH has focused on GDF5 promoter methylation, three microRNAs (miRNAs), and long noncoding RNAs. In addition, there was also a genetic test for miRNA and mRNA sequencing. CONCLUSIONS DDH is a complex joint deformity with a considerable genetic component whose early diagnosis is significant for preventing disease. At present, no genes clearly involved in the pathogenesis of DDH have been identified. Research on mutations associated with this condition is progressing in the direction of in vivo experiments in animal models to identify DDH susceptibility genes and epigenetics analyses to provide novel insights into its pathogenesis. In the future, genetic profiling may improve matters.
Collapse
Affiliation(s)
- Jiaxin Wen
- School of Medicine, Nankai University, Tianjin, China
| | - Hangyu Ping
- School of Medicine, Nankai University, Tianjin, China
| | | | - Wei Chai
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
7
|
Whole exome sequencing of 28 families of Danish descent reveals novel candidate genes and pathways in developmental dysplasia of the hip. Mol Genet Genomics 2023; 298:329-342. [PMID: 36454308 PMCID: PMC9938029 DOI: 10.1007/s00438-022-01980-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
Developmental dysplasia of the hip (DDH) is a common condition involving instability of the hip with multifactorial etiology. Early diagnosis and treatment are critical as undetected DDH is an important cause of long-term hip complications. Better diagnostics may be achieved through genetic methods, especially for patients with positive family history. Several candidate genes have been reported but the exact molecular etiology of the disease is yet unknown. In the present study, we performed whole exome sequencing of DDH patients from 28 families with at least two affected first-degree relatives. Four genes previously not associated with DDH (METTL21B, DIS3L2, PPP6R2, and TM4SF19) were identified with the same variants shared among affected family members, in more than two families. Among known association genes, we found damaging variants in DACH1, MYH10, NOTCH2, TBX4, EVC2, OTOG, and SHC3. Mutational burden analysis across the families identified 322 candidate genes, and enriched pathways include the extracellular matrix, cytoskeleton, ion-binding, and detection of mechanical stimulus. Taken altogether, our data suggest a polygenic mode of inheritance for DDH, and we propose that an impaired transduction of the mechanical stimulus is involved in the etiopathological mechanism. Our findings refine our current understanding of candidate causal genes in DDH, and provide a foundation for downstream functional studies.
Collapse
|
8
|
Katsoula G, Steinberg J, Tuerlings M, Coutinho de Almeida R, Southam L, Swift D, Meulenbelt I, Wilkinson JM, Zeggini E. A molecular map of long non-coding RNA expression, isoform switching and alternative splicing in osteoarthritis. Hum Mol Genet 2022; 31:2090-2105. [PMID: 35088088 PMCID: PMC9239745 DOI: 10.1093/hmg/ddac017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Osteoarthritis is a prevalent joint disease and a major cause of disability worldwide with no curative therapy. Development of disease-modifying therapies requires a better understanding of the molecular mechanisms underpinning disease. A hallmark of osteoarthritis is cartilage degradation. To define molecular events characterizing osteoarthritis at the whole transcriptome level, we performed deep RNA sequencing in paired samples of low- and high-osteoarthritis grade knee cartilage derived from 124 patients undergoing total joint replacement. We detected differential expression between low- and high-osteoarthritis grade articular cartilage for 365 genes and identified a 38-gene signature in osteoarthritis cartilage by replicating our findings in an independent dataset. We also found differential expression for 25 novel long non-coding RNA genes (lncRNAs) and identified potential lncRNA interactions with RNA-binding proteins in osteoarthritis. We assessed alterations in the relative usage of individual gene transcripts and identified differential transcript usage for 82 genes, including ABI3BP, coding for an extracellular matrix protein, AKT1S1, a negative regulator of the mTOR pathway and TPRM4, coding for a transient receptor potential channel. We further assessed genome-wide differential splicing, for the first time in osteoarthritis, and detected differential splicing for 209 genes, which were enriched for extracellular matrix, proteoglycans and integrin surface interactions terms. In the largest study of its kind in osteoarthritis, we find that isoform and splicing changes, in addition to extensive differences in both coding and non-coding sequence expression, are associated with disease and demonstrate a novel layer of genomic complexity to osteoarthritis pathogenesis.
Collapse
Affiliation(s)
- Georgia Katsoula
- Technical University of Munich (TUM), School of Medicine, Munich 81675, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Julia Steinberg
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
- Daffodil Centre, University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 1340, Australia
| | - Margo Tuerlings
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Diane Swift
- Department of Oncology and Metabolism, University of Sheffield, Metabolic Bone Unit, Sorby Wing Northern General Hospital Sheffield, Sheffield, S5 7AU, UK
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, Metabolic Bone Unit, Sorby Wing Northern General Hospital Sheffield, Sheffield, S5 7AU, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Munich 81675, Germany
| |
Collapse
|
9
|
Xu X, Bi X, Wang J, Gui R, Li T, Li L, Wang B. Identification of KANSL1 as a novel pathogenic gene for developmental dysplasia of the hip. J Mol Med (Berl) 2022; 100:1159-1168. [PMID: 35727364 DOI: 10.1007/s00109-022-02220-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 01/02/2023]
Abstract
Developmental dysplasia of the hip (DDH) is a common anomaly leading to adult osteoarthritis. Environmental and genetic factors contribute to DDH, but its exact genetic mechanism is unclear. In this study, we used whole exome sequencing to identify the causative gene of a DDH pedigree. A rare missense variant in KANSL1 (c.C767T; p.S256F) was identified as the pathogenic cause of DDH. Subsequent mutation screening showed another missense variant in 1 of 200 sporadic patients. Kansl1-mutated mice showed reduced chondrocytes in the acetabulum and a decrease in the cartilage matrix, which may be DDH phenotype-related abnormalities. Furthermore, functional studies showed that cell proliferation was delayed and Mmp13 expression was abnormally upregulated in chondrocytes differentiated from Kansl1 mutant mouse embryonic stem cells. In conclusion, our findings suggest that KANSL1 is a novel pathogenic gene for DDH. The identification of KANSL1 variants has great diagnostic value for identifying individuals with DDH. KEY MESSAGES: Developmental dysplasia of the hip (DDH) is a common anomaly causing adult osteoarthritis. Environmental and genetic factors contribute to DDH, but its exact genetic mechanism is unclear. Using high-throughput whole exome sequencing, we found a novel variant in KANSL1 that was co-inherited by all severely affected individuals diagnosed with DDH from a three-generation family. Further analysis revealed that a Kansl1 variant in mice reduced the number of chondrocytes and decreased cartilage matrix, and mouse embryonic stem differentiation assay showed cartilage defects. These findings indicate a direct association between KANSL1 and hip development, expanding the pathogenic gene spectrum in DDH and providing insight into potential new targets for diagnosing and treating hip dysplasia.
Collapse
Affiliation(s)
- Xiaowen Xu
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xinying Bi
- Center for Genetics, National Research Institute for Family Planning, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Medical Genetics, The Capital Medical University, Beijing, China
| | - Ronghua Gui
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Tengyan Li
- Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Lianyong Li
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
| | - Binbin Wang
- Center for Genetics, National Research Institute for Family Planning, Beijing, China.
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
10
|
Yang W, Jin G, Qian K, Zhang C, Zhi W, Yang D, Lu Y, Han J. Comprehensive bioinformatics analysis of susceptibility genes for developmental dysplasia of the hip. Intractable Rare Dis Res 2022; 11:70-80. [PMID: 35702583 PMCID: PMC9161127 DOI: 10.5582/irdr.2022.01043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/05/2022] Open
Abstract
Developmental dysplasia of the hip (DDH) is a multifactorial disease, which occurs under environmental and genetic influence. The etiopathogenesis of DDH has not been fully explained. As research progresses, many candidate genes have been found to be closely related to the occurrence of DDH. In this study, we comprehensively examined 16 susceptibility genes of DDH using bioinformatics. COL1A1 encodes the pro-alpha1 chains of type I collagen, which is the major protein component of the bone extracellular matrix (ECM). The genes displaying the most statistically significant co-expression link to COL1A1 are ASPN, TGFB1, DKK1, IL-6, TENM3 and GDF5. DKK1, FRZB and WISP3 are components of the Wnt signaling pathway. CX3CR1 and GDF5 regulate chondrogenesis through the canonical Wnt signaling pathway. ASPN could induce collagen mineralization through binding with collagen and calcium. Integrated bioinformatics analysis indicates that ECM, Wnt signaling pathway and TGF-β signaling pathway are involved in the occurrence of DDH. These provide a basis for further exploring the pathogenesis of DDH.
Collapse
Affiliation(s)
- Wei Yang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Guiyang Jin
- Department of General Education, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Keying Qian
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Chao Zhang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Wei Zhi
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Dan Yang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yanqin Lu
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
- Address correspondence to:Yanqin Lu and Jinxiang Han, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766 Jingshi Road, Ji'nan 250013, China. E-mail: (YL), (JH)
| | - Jinxiang Han
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
- Address correspondence to:Yanqin Lu and Jinxiang Han, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766 Jingshi Road, Ji'nan 250013, China. E-mail: (YL), (JH)
| |
Collapse
|
11
|
Zhou W, Luo W, Liu D, Canavese F, Li L, Zhao Q. Fluoride increases the susceptibility of developmental dysplasia of the hip via increasing capsular laxity triggered by cell apoptosis and oxidative stress in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113408. [PMID: 35298972 DOI: 10.1016/j.ecoenv.2022.113408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/26/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The etiology of developmental dysplasia of the hip (DDH) is multifactorial, including breech presentation and hip capsular laxity. In particular, hip laxity is the main contributor to DDH by changing the ratio and distribution of collagens. Also, fluoride (F) affects collagens from various tissue besides bone and tooth. To investigate the association of DDH and excessive F intake, we conducted this research in lab on cell and animal model simultaneously. We established animal model of combination of DDH and F toxicity. The incidence of DDH in each group was calculated, and hip capsules were collected for testing histopathological and ultrastructural changes. The primary fibroblasts were further extracted from hip capsule and treated with F. The expression of collagen type I and III was both examined in vivo and in vitro, and the level of oxidative stress and apoptosis was also tested identically. We revealed that the incidence of DDH increased with F concentration. Furthermore, the oxidative stress and apoptosis levels of hip capsules and fibroblasts both increased after F exposure. Therefore, this study shows that excessive F intake increases susceptibility to DDH by altering hip capsular laxity in vivo and in vitro respectively. We believe that F might be a risk factor for DDH by increasing hip laxity induced by triggering fibroblast oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Weizheng Zhou
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Federico Canavese
- Department of Pediatric Orthopedics, Lille University Center, Jeanne de Flandres Hospital, Avenue Eugène-Avinée, Lille 59037, France
| | - Lianyong Li
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China.
| | - Qun Zhao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| |
Collapse
|
12
|
Gholami Yarahmadi S, Sarlaki F, Morovvati S. Novel mutation in TENM3 gene in an Iranian patient with colobomatous microphthalmia. Clin Case Rep 2022; 10:e05532. [PMID: 35280100 PMCID: PMC8905136 DOI: 10.1002/ccr3.5532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
This investigation revealed a homozygous c.5069-1G>C variation in TENM3 gene although has not been reported for its pathogenicity and can be considered as a novel mutation. The present finding can be used for genetic diagnosis and detection of carriers in the family and other patients with similar disease manifestations.
Collapse
Affiliation(s)
| | | | - Saeid Morovvati
- School of Advanced Sciences and TechnologyIslamic Azad University‐Tehran Medical SciencesTehranIran
| |
Collapse
|
13
|
Establishment of pediatric developmental dysplasia of the hip biobank: Shanghai children's hospital experience. Cell Tissue Bank 2022; 23:581-590. [PMID: 35212846 PMCID: PMC9371995 DOI: 10.1007/s10561-022-09995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/28/2022] [Indexed: 12/01/2022]
Abstract
Developmental dysplasia of the hip (DDH) is a debilitating condition that affects 1–7% of newborns. Children with DDH, not treated early and effectively, will easily lead to disability. A better understanding of the biology of DDH is critical to the development of prognostic biomarkers and novel therapies. The purpose of this study was to establish a biobank of DDH genetic resources, to facilitate clinical and basic scientific research. The biological specimen and clinical data of DDH were collected in Shanghai Children’s Hospital from 2014 to 2021. The collection of blood samples was performed at definitive diagnosis and review, tissue specimens were performed at definitive surgery. The clinical data was collected at the whole stage of DDH patients at diagnosis, treatment and follow-up. A total of 528 patients with DDH were enrolled in this study, 90 were men and 438 were women, with the mean age of 4.67 years. The numbers of tissue and blood specimens reached 2172 and 1490, respectively. The quality test results showed that the DNA concentration decreased slightly with the extension of storage time, but the DNA purity did not change. Meanwhile, the extension of storage time slightly affected the stability of protein of tissue samples but did not affect the expression of the housekeeping gene. The DDH biobank built has the potential of monitoring disease pathogenesis and progress, which could provide specimens to the researchers improving the biological understanding and provide guidance of clinical treatment of this disease to clinicians.
Collapse
|
14
|
Analysis of Homozygous-by-Descent (HBD) Segments for Purebred and Crossbred Pigs in Russia. Life (Basel) 2021; 11:life11080861. [PMID: 34440604 PMCID: PMC8400874 DOI: 10.3390/life11080861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
Intensive selection raises the efficiency of pig farming considerably, but it also promotes the accumulation of homozygosity, which can lead to an increase in inbreeding and the accumulation of deleterious variation. The analysis of segments homozygous-by-descent (HBD) and non-HBD segments in purebred and crossbred pigs is of great interest. Research was carried out on 657 pigs, of which there were Large White (LW, n = 280), Landrace (LR, n = 218) and F1 female (♂LR × ♀LW) (F1, n = 159). Genotyping was performed using the GeneSeek® GGP Porcine HD Genomic Profiler v1 (Illumina Inc., USA). To identify HBD segments and estimate autozygosity (inbreeding coefficient), we used the multiple HBD classes model. LW pigs exhibited 50,420 HBD segments, an average of 180 per animal; LR pigs exhibited 33,586 HBD segments, an average of 154 per animal; F1 pigs exhibited 21,068 HBD segments, an average of 132 per animal. The longest HBD segments in LW were presented in SSC1, SSC13 and SSC15; in LR, in SSC1; and in F1, in SSC15. In these segments, 3898 SNPs localized in 1252 genes were identified. These areas overlap with 441 QTLs (SSC1—238 QTLs; SSC13—101 QTLs; and SSC15—102 QTLs), including 174 QTLs for meat and carcass traits (84 QTLs—fatness), 127 QTLs for reproduction traits (100 QTLs—litter traits), 101 for production traits (69 QTLs—growth and 30 QTLs—feed intake), 21 QTLs for exterior traits (9 QTLs—conformation) and 18 QTLs for health traits (13 QTLs—blood parameters). Thirty SNPs were missense variants. Whilst estimating the potential for deleterious variation, six SNPs localized in the NEDD4, SEC11C, DCP1A, CCT8, PKP4 and TENM3 genes were identified, which may show deleterious variation. A high frequency of potential deleterious variation was noted for LR in DCP1A, and for LW in TENM3 and PKP4. In all cases, the genotype frequencies in F1 were intermediate between LR and LW. The findings presented in our work show the promise of genome scanning for HBD as a strategy for studying population history, identifying genomic regions and genes associated with important economic traits, as well as deleterious variation.
Collapse
|
15
|
Young JR, Anderson MJ, O'Connor CM, Kazley JM, Mantica AL, Dutt V. Team Approach: Developmental Dysplasia of the Hip. JBJS Rev 2021; 8:e20.00030. [PMID: 32890048 DOI: 10.2106/jbjs.rvw.20.00030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Developmental dysplasia of the hip (DDH) encompasses a wide spectrum of hip disorders, including neonatal instability, acetabular dysplasia, hip subluxation, and frank dislocation of the hip. It is a common disorder, with a reported incidence of between 0.1% and >10% of live births.
Coordinated, interdisciplinary care is important to achieving successful outcomes. This starts with accurate assessment of risk factors in the prenatal period, thorough clinical examination by the primary care provider at all well-child visits, and early referral to a pediatric orthopaedic surgeon for prompt diagnosis and treatment. Early diagnosis and prompt treatment is critical for an excellent outcome. Ongoing, open communication between clinicians is essential for the effective coordination of care. Treatment options vary depending on the age of presentation. A Pavlik harness (dynamic hip abduction orthosis) is used for children up to 6 months of age. A more rigid abduction orthosis may be used if treatment with a Pavlik harness is unsuccessful, with a closed reduction and spica cast being the next step if needed for children up to 18 months of age. Finally, open reduction with possible concomitant femoral and/or pelvic osteotomies is the surgical option in an older child, when necessary. In general, the later the child is diagnosed with and treated for DDH, the greater the risk of a nonoptimal outcome. Depending on the severity of the condition, children with DDH may need to be followed closely until skeletal maturity so as not to miss the diagnosis of asymptomatic residual hip dysplasia, which can predispose patients to early hip arthritis.
Collapse
Affiliation(s)
- Joseph R Young
- Division of Orthopedic Surgery, Albany Medical Center, Albany, New York
| | | | | | | | | | | |
Collapse
|
16
|
Xu X, Wang B, Chen Y, Zhou W, Li L. Replicative verification of susceptibility genes previously identified from families with segregating developmental dysplasia of the hip. Ital J Pediatr 2021; 47:140. [PMID: 34174923 PMCID: PMC8234666 DOI: 10.1186/s13052-021-01087-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/28/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Developmental dysplasia of the hip (DDH) is a complex hip joint deformity with effects ranging from acetabulum malformation to irreversible hip dislocation. Previous studies suggest a significant association of four variations, teneurin transmembrane protein 3 (TENM3, OMIM * 610083) (chr4:183721398), heparan sulfate proteoglycan 2 (HSPG2, OMIM * 142461) (chr1:22201470), ATPase plasma membrane Ca2+ transporting 4 (ATP2B4, OMIM * 108732) (chr1:203682345), and prostaglandin F receptor (PTGFR, OMIM * 600563) (chr1:79002214), with DDH susceptibility in families with segregating DDH. However, the association was not validated in sporadic cases and remains controversial. To confirm the association of the reported variations in these four genes with DDH, we conducted replicative verification in 250 sporadic samples with DDH from a Chinese Han population. METHODS We conducted Sanger sequencing after amplifying the variation sites. The results were compared with the reference sequence from the GRCh37 assembly in UCSC ( http://genome.ucsc.edu ). RESULTS Replication analysis of 250 sporadic samples by Sanger sequencing indicated that the four variations, TENM3 (OMIM * 610083, chr4:183721398), HSPG2 (OMIM * 142461, chr1:22201470), ATP2B4 (OMIM * 108732, chr1:203682345), and PTGFR (OMIM * 600563, chr1:79002214), were not associated with the susceptibility to DDH in the Chinese Han population. CONCLUSIONS Further studies should be performed to identify other variations of these four genes that are potentially associated with DDH by whole-exome sequencing and the results should be verified in different populations.
Collapse
Affiliation(s)
- Xiaowen Xu
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Binbin Wang
- Center for Genetics, National Research Institute for Family Planning, 12 Dahuisi Road, Haidian District, Beijing, 100081, China
| | - Yufan Chen
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Weizheng Zhou
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Lianyong Li
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| |
Collapse
|
17
|
Harsanyi S, Zamborsky R, Kokavec M, Danisovic L. Genetics of developmental dysplasia of the hip. Eur J Med Genet 2020; 63:103990. [PMID: 32540376 DOI: 10.1016/j.ejmg.2020.103990] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022]
Abstract
In the last decade, the advances in the molecular analyses and sequencing techniques allowed researchers to study developmental dysplasia of the hip (DDH) more thoroughly. Certain chromosomes, genes, loci and polymorphisms are being associated with variable severity of this disorder. The wide range of signs and symptoms is dependent either on isolated or systemic manifestation. Phenotypes of isolated cases range from only a mild ligamental laxity, through subluxation, to a complete dislocation of the femoral head. Systemic manifestation is connected to various forms of skeletal dysplasia and other malformations characterized by significant genetic aberrations. To reveal the background of DDH heredity, multiple studies focused on large sample sizes with an emphasis on the correlation between genotype, phenotype and continuous clinical examination. Etiological risk factors that have been observed and documented in patients include genetic, environmental, and mechanical factors, which significantly contribute to the familial or nonfamilial occurrence and phenotypic variability of this disorder. Still, the multifactorial etiology and pathogenesis of DDH are not yet sufficiently clarified, explained, or understood. Formation of connective tissue, osteogenesis, chondrogenesis, and all other affected pathways and variations in the function of their individual elements contribute to the creation of the pathology in a developing human body. This review article presents an up-to-date list of known DDH associated genes, their products, and functional characteristics.
Collapse
Affiliation(s)
- Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08, Bratislava, Slovakia.
| | - Radoslav Zamborsky
- Department of Orthopedics, Faculty of Medicine, Comenius University and National Institute of Children's Diseases, Limbova 1, 833 40, Bratislava, Slovakia.
| | - Milan Kokavec
- Department of Orthopedics, Faculty of Medicine, Comenius University and National Institute of Children's Diseases, Limbova 1, 833 40, Bratislava, Slovakia.
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08, Bratislava, Slovakia.
| |
Collapse
|
18
|
Harsanyi S, Zamborsky R, Krajciova L, Kokavec M, Danisovic L. Developmental Dysplasia of the Hip: A Review of Etiopathogenesis, Risk Factors, and Genetic Aspects. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:153. [PMID: 32244273 PMCID: PMC7230892 DOI: 10.3390/medicina56040153] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/11/2022]
Abstract
As one of the most frequent skeletal anomalies, developmental dysplasia of the hip (DDH) is characterized by a considerable range of pathology, from minor laxity of ligaments in the hip joint to complete luxation. Multifactorial etiology, of which the candidate genes have been studied the most, poses a challenge in understanding this disorder. Candidate gene association studies (CGASs) along with genome-wide association studies (GWASs) and genome-wide linkage analyses (GWLAs) have found numerous genes and loci with susceptible DDH association. Studies put major importance on candidate genes associated with the formation of connective tissue (COL1A1), osteogenesis (PAPPA2, GDF5), chondrogenesis (UQCC1, ASPN) and cell growth, proliferation and differentiation (TGFB1). Recent studies show that epigenetic factors, such as DNA methylation affect gene expression and therefore could play an important role in DDH pathogenesis. This paper reviews all existing risk factors affecting DDH incidence, along with candidate genes associated with genetic or epigenetic etiology of DDH in various studies.
Collapse
Affiliation(s)
- Stefan Harsanyi
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, Comenius University in Bratislava, 811-08 Bratislava, Slovakia; (L.K.); (L.D.)
| | - Radoslav Zamborsky
- Department of Orthopedics, Faculty of Medicine, Comenius University and National Institute of Children’s Diseases, 833-40 Bratislava, Slovakia; (R.Z.); (M.K.)
| | - Lubica Krajciova
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, Comenius University in Bratislava, 811-08 Bratislava, Slovakia; (L.K.); (L.D.)
| | - Milan Kokavec
- Department of Orthopedics, Faculty of Medicine, Comenius University and National Institute of Children’s Diseases, 833-40 Bratislava, Slovakia; (R.Z.); (M.K.)
| | - Lubos Danisovic
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, Comenius University in Bratislava, 811-08 Bratislava, Slovakia; (L.K.); (L.D.)
| |
Collapse
|
19
|
Zhang L, Xu X, Chen Y, Li L, Zhang L, Li Q. Mapping of developmental dysplasia of the hip to two novel regions at 8q23-q24 and 12p12. Exp Ther Med 2020; 19:2799-2803. [PMID: 32256763 DOI: 10.3892/etm.2020.8513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 01/01/2020] [Indexed: 12/24/2022] Open
Abstract
Developmental dysplasia of the hip (DDH), previously known as congenital hip dislocation, is a frequently disabling condition characterized by premature arthritis later in life. Genetic factors play a key role in the aetiology of DDH. In the present study, a genome-wide linkage scan with the Affymetrix 10K GeneChip was performed on a four-generation Chinese family, which included 19 healthy members and 5 patients. Parametric and non-parametric multipoint linkage analyses were carried out with Genespring GT v.2.0 software, and the logarithm of odds (LOD) score and nonparametric linkage (NPL) score were calculated. Parametric linkage analysis was performed, assuming an autosomal recessive trait with full penetrance and Affymetrix 'Asian' allele frequencies. The strongest evidence for linkage was found on chromosome 8q23-24, with a peak LOD score of 2.658 (θ=0), covering 2.377 Mb from single nucleotide polymorphisms (SNPs) rs724717 to rs720132. This interval included nine additional successive SNPs: rs1566071, rs1902121, rs756404, rs702768, rs777813, rs2033995, rs147959, rs2884367 and rs1898287. The same region also yielded the highest NPL score of 2.883 (P=0.0156) from the non-parametric multipoint linkage analysis. Additionally, the second highest NPL score of 2.727 (P=0.0156) and LOD score of 2.528 (θ=0) were obtained on chromosome 12p12 for three consecutive markers (rs1919980, rs763853 and rs725124). This region overlapped a narrow distance of 0.642 Mb. Notably, in addition to these two regions; no significant linkage was identified for other chromosomal regions (with LOD and NPL scores >2.0). For the first time, at least for this pedigree, the evidence in the present study showed that DDH is mapped to two novel regions at 8q23-q24 and 12p12.
Collapse
Affiliation(s)
- Lixin Zhang
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiaowen Xu
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yufan Chen
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lianyong Li
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lijun Zhang
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qiwei Li
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
20
|
Kenanidis E, Gkekas NK, Karasmani A, Anagnostis P, Christofilopoulos P, Tsiridis E. Genetic Predisposition to Developmental Dysplasia of the Hip. J Arthroplasty 2020; 35:291-300.e1. [PMID: 31522852 DOI: 10.1016/j.arth.2019.08.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/14/2019] [Accepted: 08/12/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The etiopathogenesis of developmental dysplasia of the hip (DDH) has not been clarified. This systematic review evaluated current literature concerning all known chromosomes, loci, genes, and their polymorphisms that have been associated or not with the prevalence and severity of DDH. METHODS Following the established methodology of Meta-analysis of Observational Studies in Epidemiology guidelines, MEDLINE, EMBASE, and Cochrane Register of Controlled Trials were systematically searched from inception to January 2019. RESULTS Forty-five studies were finally included. The majority of genetic studies were candidate gene association studies assessing Chinese populations with moderate methodological quality. Among the most frequently studied are the first, third, 12th,17th, and 20th chromosomes. No gene was firmly associated with DDH phenotype. Studies from different populations often report conflicting results on the same single-nucleotide polymorphism (SNP). The SNP rs143384 of GDF5 gene on chromosome 20 demonstrated the most robust relationship with DDH phenotype in association studies. The highest odds of coinheritance in linkage studies have been reported for regions of chromosome 3 and 13. Five SNPs have been associated with the severity of DDH. Animal model studies validating previous human findings provided suggestive evidence of an inducing role of mutations of the GDF5, CX3CR1, and TENM3 genes in DDH etiopathogenesis. CONCLUSION DDH is a complex disorder with environmental and genetic causes. However, no firm correlation between genotype and DDH phenotype currently exists. Systematic genome evaluation in studies with larger sample size, better methodological quality, and assessment of DDH patients is necessary to clarify the DDH heredity. The role of next-generation sequencing techniques is promising.
Collapse
Affiliation(s)
- Eustathios Kenanidis
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Thessaloniki, Balkan Center, Greece; Academic Orthopaedic Department, Aristotle University Medical School, General Hospital Papageorgiou, Thessaloniki, Greece
| | - Nifon K Gkekas
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Thessaloniki, Balkan Center, Greece; Academic Orthopaedic Department, Aristotle University Medical School, General Hospital Papageorgiou, Thessaloniki, Greece
| | - Areti Karasmani
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Thessaloniki, Balkan Center, Greece
| | - Panagiotis Anagnostis
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Thessaloniki, Balkan Center, Greece
| | | | - Eleftherios Tsiridis
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Thessaloniki, Balkan Center, Greece; Academic Orthopaedic Department, Aristotle University Medical School, General Hospital Papageorgiou, Thessaloniki, Greece
| |
Collapse
|
21
|
Rebolledo-Jaramillo B, Ziegler A. Teneurins: An Integrative Molecular, Functional, and Biomedical Overview of Their Role in Cancer. Front Neurosci 2018; 12:937. [PMID: 30618566 PMCID: PMC6297388 DOI: 10.3389/fnins.2018.00937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Teneurins are large transmembrane proteins originally identified in Drosophila. Their essential role in development of the central nervous system is conserved throughout species, and evidence supports their involvement in organogenesis of additional tissues. Homophilic and heterophilic interactions between Teneurin paralogues mediate cellular adhesion in crucial processes such as neuronal pathfinding and synaptic organization. At the molecular level, Teneurins are proteolytically processed into distinct subdomains that have been implicated in extracellular and intracellular signaling, and in transcriptional regulation. Phylogenetic studies have shown a high degree of intra- and interspecies conservation of Teneurin genes. Accordingly, the occurrence of genetic variants has been associated with functional and phenotypic alterations in experimental systems, and with some inherited or sporadic conditions. Recently, tumor-related variations in Teneurin gene expression have been associated with patient survival in different cancers. Although these findings were incidental and molecular mechanisms were not addressed, they suggested a potential utility of Teneurin transcript levels as biomarkers for disease prognosis. Mutations and chromosomal alterations affecting Teneurin genes have been found occasionally in tumors, but literature remains scarce. The analysis of open-access molecular and clinical datasets derived from large oncologic cohorts provides an invaluable resource for the identification of additional somatic mutations. However, Teneurin variants have not been classified in terms of pathogenic risk and their phenotypic impact remains unknown. On this basis, is it plausible to hypothesize that Teneurins play a role in carcinogenesis? Does current evidence support a tumor suppressive or rather oncogenic function for these proteins? Here, we comprehensively discuss available literature with integration of molecular evidence retrieved from open-access databases. We show that Teneurins undergo somatic changes comparable to those of well-established cancer genes, and discuss their involvement in cancer-related signaling pathways. Current data strongly suggest a functional contribution of Teneurins to human carcinogenesis.
Collapse
Affiliation(s)
| | - Annemarie Ziegler
- Center for Genetics and Genomics, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|