1
|
Lei L, Wang H, Zhao Z, Huang Y, Huang X, Guo X, Jiang G, Chen S, Wang W, Chen X, Zheng Z, Wang J, Chen F. Curculigoside upregulates BMAL1 to decrease nucleus pulposus cell apoptosis by inhibiting the JAK/STAT3 pathway. Osteoarthritis Cartilage 2025; 33:412-425. [PMID: 39622432 DOI: 10.1016/j.joca.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a natural process that occurs with aging and is the main cause of low back pain. Basic helix-loop-helix ARNT-like 1 (BMAL1) plays key roles in the pathogenesis of many diseases. The present study investigates the role of curculigoside (CUR), which has been reported to be a potential anti-apoptotic compound in other diseases. METHODS Dysregulated genes were identified by RNA sequencing (RNA-seq). Western blotting (WB), immunohistochemistry, immunofluorescence (IF) staining, and real-time fluorescent quantitative polymerase chain reaction were used to detect BMAL1 expression in 25 human intervertebral disc specimens (male: female =13:12), tissues from BMAL1-knockout mice and from an IVDD mouse model. The regulatory effects of CUR and BMAL1 in nucleus pulposus (NP) cells after Small Interfering RNA (siRNA) transfection were examined by flow cytometry, IF staining and WB. The therapeutic effect of intraperitoneal CUR injection was also evaluated in mice. RESULTS BMAL1 expression was negatively correlated with IVDD severity and was significantly lower in degenerative NP cells. After BMAL1 knockdown using siRNA, the apoptosis rate of degenerative NP cells was significantly higher, while transfection with a lentivirus overexpressing BMAL1 exerted the opposite effect. Bioinformatics analysis revealed that BMAL1 is regulated by the JAK-STAT3 pathway, and CUR upregulated BMAL1 expression by inhibiting STAT3 phosphorylation, subsequently alleviating NP cell apoptosis and increasing extracellular matrix (ECM) components., thus alleviating IVDD. CONCLUSIONS CUR can inhibit apoptosis and improve the ECM by upregulating BMAL1 expression, which is reduced in IVDD. This study provides a therapeutic strategy to alleviate apoptosis associated with inflammation-induced IVDD.
Collapse
Affiliation(s)
- Linchuan Lei
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China; Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Hua Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China.
| | - Zhuoyang Zhao
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China; Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Yuming Huang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China.
| | - Xiaohui Huang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Xingyu Guo
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China; Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Guowei Jiang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China; Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Shunlun Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China.
| | - Wantao Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China.
| | - Xi Chen
- Department of Pediatrics, The Second Xiangya Hospital, Central South Univeristy, Hunan 410011, PR China.
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China; Pain Research Center, Sun Yat Sen University, PR China.
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China.
| | - Fan Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China; Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
2
|
Zhu H, Ren J, Wang X, Qin W, Xie Y. Targeting skeletal interoception: a novel mechanistic insight into intervertebral disc degeneration and pain management. J Orthop Surg Res 2025; 20:159. [PMID: 39940003 PMCID: PMC11823264 DOI: 10.1186/s13018-025-05577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
Despite being a leading cause of chronic pain and disability, the underlying mechanisms of intervertebral disc (IVD) degeneration (IVDD) remain unclear. Emerging evidence suggests that mechanosensation (the ability of the skeletal system to perceive mechanical and biochemical signals) mediated by abnormal mechanical loading plays a critical role in the regulation of IVD health. This review examines the complex interactions amongIVDs, intraosseous sensory mechanisms, and the central nervous system (CNS), with a particular focus on the roles of pathways such as PGE2/EP4, Wnt/β-catenin, and NF-κB. This review elucidates the manner in which mechanical stress and aberrant signaling disrupt the homeostasis of the nucleus pulposus (NP), cartilaginous endplate (CEP) and annulus fibrosus (AF), thereby driving degeneration and exacerbating pain. Furthermore, targeted therapeutic strategies, including the modulation of skeletal interoception and dynamic mechanical loading, present novel avenues for reversing IVDD progression. By integrating skeletal biology with spinal pathology, this work offers a novel perspective on the pathogenesis of IVDD and identifies promising strategies for clinical intervention. These findings highlight the potential of targeting skeletal interoception to mitigate IVDD and associated pain, paving the way for innovative, mechanism-driven therapies.
Collapse
Affiliation(s)
- Houcheng Zhu
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - JianHang Ren
- Affiliated Yongchuan Hospital of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 402160, China
| | - Xiangjin Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Wenjing Qin
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Yong Xie
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China.
| |
Collapse
|
3
|
Wang Z, Zhang L, Wu T, Pan X, Li L, Yang X, Zhang M, Liu Y. Mechanism of dexmedetomidine in brain injury of infant rats via the IRE1α/NF-κB/CHOP pathway. World J Biol Psychiatry 2025; 26:103-115. [PMID: 39815639 DOI: 10.1080/15622975.2024.2446817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
OBJECTIVE We investigated the mechanism of Dexmedetomidine (Dex) in infant rats with brain injury. METHODS The infant rats underwent brain injury modelling. The motor function, spatial learning and memory abilities in rats, and the hippocampal CA1 region Nissl body level and apoptosis were evaluated by behavioural tests and histological stainings. Levels of the hippocampal CA1 region p-IRE1α, nuclear/cytoplasmic p65, CHOP, Bax and Bcl-2 proteins were determined by Western blot. RESULTS Propofol anaesthesia caused brain injury in infant rats. Dex increased the hippocampal CA1 region Nissl body level, abated cell apoptosis, reduced p-IRE1α, ATF6, p-PERK/PERK and CHOP levels, decreased the Bax protein level, elevated the Bcl-2 protein level, and alleviated brain injury in infant rats. After ERS induction and the NF-κB pathway inhibition, the hippocampal CA1 region nuclear/cytoplasmic p65 ratio, CHOP level, and apoptosis were reduced in infant rats with brain injury treated with Dex, while the learning and memory abilities of rats were enhanced. CONCLUSION Dex reduced the hippocampal CA1 region cell apoptosis and enhanced learning and memory abilities by inhibiting the ERS-mediated IRE1α/NF-κB/CHOP pathway, thereby alleviating brain injury in infant rats.
Collapse
Affiliation(s)
- Zhi Wang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Lina Zhang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Ting Wu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Xu Pan
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Le Li
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Xin Yang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Miao Zhang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Ying Liu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| |
Collapse
|
4
|
Dou Y, Zhang Y, Liu Y, Sun X, Liu X, Li B, Yang Q. Role of macrophage in intervertebral disc degeneration. Bone Res 2025; 13:15. [PMID: 39848963 PMCID: PMC11758090 DOI: 10.1038/s41413-024-00397-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Intervertebral disc degeneration is a degenerative disease where inflammation and immune responses play significant roles. Macrophages, as key immune cells, critically regulate inflammation through polarization into different phenotypes. In recent years, the role of macrophages in inflammation-related degenerative diseases, such as intervertebral disc degeneration, has been increasingly recognized. Macrophages construct the inflammatory microenvironment of the intervertebral disc and are involved in regulating intervertebral disc cell activities, extracellular matrix metabolism, intervertebral disc vascularization, and innervation, profoundly influencing the progression of disc degeneration. To gain a deeper understanding of the inflammatory microenvironment of intervertebral disc degeneration, this review will summarize the role of macrophages in the pathological process of intervertebral disc degeneration, analyze the regulatory mechanisms involving macrophages, and review therapeutic strategies targeting macrophage modulation for the treatment of intervertebral disc degeneration. These insights will be valuable for the treatment and research directions of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, 300070, China
| | - Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xinyu Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Bin Li
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215007, China.
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
5
|
Tao C, Lin S, Shi Y, Gong W, Chen M, Li J, Zhang P, Yao Q, Qian D, Ling Z, Xiao G. Inactivation of Tnf-α/Tnfr signaling attenuates progression of intervertebral disc degeneration in mice. JOR Spine 2024; 7:e70006. [PMID: 39391171 PMCID: PMC11461905 DOI: 10.1002/jsp2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is a major cause of low back pain (LBP), worsened by chronic inflammatory processes associated with aging. Tumor necrosis factor alpha (Tnf-α) and its receptors, Tnf receptor type 1 (Tnfr1) and Tnf receptor type 2 (Tnfr2), are upregulated in IVDD. However, its pathologic mechanisms remain poorly defined. Methods To investigate the role of Tnfr in IVDD, we generated global Tnfr1/2 double knockout (KO) mice and age-matched control C57BL/6 male mice, and analyzed intervertebral disc (IVD)-related phenotypes of both genotypes under physiological conditions, aging, and lumbar spine instability (LSI) model through histological and immunofluorescence analyses and μCT imaging. Expression levels of key extracellular matrix (ECM) proteins in aged and LSI mice, especially markers of cell proliferation and apoptosis, were evaluated in aged (21-month-old) mice. Results At 4 months, KO and control mice showed no marked differences of IVDD-related parameters. However, at 21 months of age, the loss of Tnfr expression significantly alleviated IVDD-like phenotypes, including a significant increase in height of the nucleus pulposus (NPs) and reductions of endplates (EPs) porosity and histopathological scores, when compared to controls. Tnfr deficiency promoted anabolic metabolism of the ECM proteins and suppressed ECM catabolism. Tnfr loss largely inhibited hypertrophic differentiation, and, in the meantime, suppressed cell apoptosis and cellular senescence in the annulus fibrosis, NP, and EP tissues without affecting cell proliferation. Similar results were observed in the LSI model, where Tnfr deficiency significantly alleviated IVDD and enhanced ECM anabolic metabolism while suppressing catabolism. Conclusion The deletion of Tnfr mitigates age-related and LSI-induced IVDD, as evidenced by preserved IVD structure, and improved ECM integrity. These findings suggest a crucial role of Tnf-α/Tnfr signaling in IVDD pathogenesis in mice. Targeting this pathway may be a novel strategy for IVDD prevention and treatment.
Collapse
Affiliation(s)
- Chu Tao
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Sixiong Lin
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Department of OrthopaedicsThe First Affiliated Hospital of Guangzhou Medical University, Guangdong key Laboratory of Orthopaedic Technology and Implant MaterialsGuangzhouChina
| | - Yujia Shi
- School of Biomedical SciencesThe Chinese University of Hong KongShatinHong Kong
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Jianglong Li
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Department of Orthopaedics, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Peijun Zhang
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Dongyang Qian
- Department of OrthopaedicsThe First Affiliated Hospital of Guangzhou Medical University, Guangdong key Laboratory of Orthopaedic Technology and Implant MaterialsGuangzhouChina
| | - Zemin Ling
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
6
|
Zhang K, Wang H, Mo L, Huang X, Yuan C, Liu C. Melatonin attenuates degenerative disc degression by downregulating DLX5 via the TGF/Smad2/3 pathway in nucleus pulposus cells. JOR Spine 2024; 7:e70014. [PMID: 39539538 PMCID: PMC11558270 DOI: 10.1002/jsp2.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 08/05/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is the leading cause of low back pain, and apoptosis plays a key role in its pathogenesis. Distal-less homeobox 5 (Dlx5) has been reported to induce cell apoptosis. Melatonin, as a powerful antiapoptotic agent, has been widely reported. Aim This study aimed to investigate the role of DLX5 in the pathogenesis of IVDD and the potential therapeutic role of melatonin in targeting DLX5 in IVDD. Materials & Methods Western blotting, RT-qPCR, immunohistochemistry, si-DLX5, Ex-DLX5, flow cytometry, and immunofluorescence were used to examine the regulatory effect of DLX5 on apoptosis. Therapeutic efficacy was assessed by the intraperitoneal injection of melatonin into IVDD mice. Results The expression level of DLX5 is significantly increased in IVDD, and the expression levels were positively correlated with the grade of IVDD. DLX5 was significantly upregulated in TNF-α-induced degenerative NP cells. Degenerative NP cells transfected with si-DLX5 exhibited significantly less apoptosis than control cells. Melatonin significantly alleviated IVDD in surgically induced IVDD model mice. Discussion The results revealed that the expression of DLX5 was positively correlated with the severity of IVDD and that melatonin ameliorated DLX5-induced apoptosis and extracellular matrix imbalance by inhibiting the TGF-β/Smad signaling pathway. This study may provide therapeutic strategies to alleviate inflammation-induced apoptosis IVDD-associated inflammation-induced apoptosis. Conclusion DLX5 plays an important role in IVDD progression by promoting apoptosis, and melatonin represents a promising therapeutic strategy for alleviating IVDD-associated inflammation and apoptosis.
Collapse
Affiliation(s)
- Kuibo Zhang
- Department of Spine SurgeryThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Hua Wang
- Department of Spine SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Ling Mo
- The Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Research Institute for Orthopedics & Traumatology of Chinese MedicineGuangzhouChina
| | - Xiaohui Huang
- Laboratory of General Surgery, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Chao Yuan
- The Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Research Institute for Orthopedics & Traumatology of Chinese MedicineGuangzhouChina
| | - Caijun Liu
- The Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Research Institute for Orthopedics & Traumatology of Chinese MedicineGuangzhouChina
| |
Collapse
|
7
|
Liu G, Gao L, Wang Y, Xie X, Gao X, Wu X. The JNK signaling pathway in intervertebral disc degeneration. Front Cell Dev Biol 2024; 12:1423665. [PMID: 39364138 PMCID: PMC11447294 DOI: 10.3389/fcell.2024.1423665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) serves as the underlying pathology for various spinal degenerative conditions and is a primary contributor to low back pain (LBP). Recent studies have revealed a strong correlation between IDD and biological processes such as Programmed Cell Death (PCD), cellular senescence, inflammation, cell proliferation, extracellular matrix (ECM) degradation, and oxidative stress (OS). Of particular interest is the emerging evidence highlighting the significant involvement of the JNK signaling pathway in these fundamental biological processes of IDD. This paper explores the potential mechanisms through the JNK signaling pathway influences IDD in diverse ways. The objective of this article is to offer a fresh perspective and methodology for in-depth investigation into the pathogenesis of IDD by thoroughly examining the interplay between the JNK signaling pathway and IDD. Moreover, this paper summarizes the drugs and natural compounds that alleviate the progression of IDD by regulating the JNK signaling pathway. This paper aims to identify potential therapeutic targets and strategies for IDD treatment, providing valuable insights for clinical application.
Collapse
Affiliation(s)
- Ganggang Liu
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lu Gao
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuncai Wang
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinsheng Xie
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuejiao Gao
- Otolaryngology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xingjie Wu
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Cazzanelli P, Lamoca M, Hausmann ON, Mesfin A, Puvanesarajah V, Hitzl W, Haglund L, Wuertz-Kozak K. Exploring the Impact of TLR-2 Signaling on miRNA Dysregulation in Intervertebral Disc Degeneration. Adv Biol (Weinh) 2024; 8:e2300581. [PMID: 38419396 DOI: 10.1002/adbi.202300581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Toll-like receptors (TLRs) are key mediators of inflammation in intervertebral disc (IVD) degeneration. TLR-2 activation contributes to the degenerative process by increasing the expression of extracellular matrix-degrading enzymes, pro-inflammatory cytokines, and neurotrophins. As potent post-transcriptional regulators, microRNAs can modulate intracellular mechanisms, and their dysregulation is known to contribute to numerous pathologies. This study aims to investigate the impact of TLR-2 signaling on miRNA dysregulation in the context of IVD degeneration. Small-RNA sequencing of degenerated IVD cells shows the dysregulation of ten miRNAs following TLR-2 activation by PAM2CSK4. The miR-155-5p is most significantly upregulated in degenerated and non-degenerated annulus fibrosus and nucleus pulposus cells. Sequence-based target and pathway prediction shows the involvement of miR-155-5p in inflammation- and cell fate-related pathways and TLR-2-induced miR-155-5p expression leads to the downregulation of its target c-FOS. Furthermore, changes specific to the activation of TLR-2 through fragmented fibronectin are seen in miR-484 and miR-487. Lastly, miR-100-3p, miR-320b, and miR-181a-3p expression exhibit degeneration-dependent changes. These results show that TLR-2 signaling leads to the dysregulation of miRNAs in IVD cells as well as their possible downstream effects on inflammation and degeneration. The identified miRNAs provide important opportunities as potential therapeutic targets for IVD degeneration and low back pain.
Collapse
Affiliation(s)
- Petra Cazzanelli
- Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - Mikkael Lamoca
- Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - Oliver Nic Hausmann
- Neuro- and Spine Center, Hirslanden Klinik St. Anna, St. Anna-Strasse 32, Lucerne, 6006, Switzerland
- Neurosurgical Department, University of Berne, Freiburgstrasse 16, Bern, 3010, Switzerland
| | - Addisu Mesfin
- Medstar Orthopaedic Institute, Georgetown University School of Medicine Washington, 3800 Reservoir Rd NW, Washington, DC, 20007, USA
| | - Varun Puvanesarajah
- Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Wolfgang Hitzl
- Research and Innovation Management (RIM), Paracelsus Medical University, Strubergasse 16, Salzburg, 5020, Austria
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Strubergasse 21, Salzburg, 5020, Austria
- Research Program Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University, Strubergasse 21, Salzburg, 5020, Austria
| | - Lisbet Haglund
- Orthopaedic Research Laboratory, and Shriners Hospital for Children, 1003 Decarie Boulevard, Montreal, H4A 0A9, Canada
- Department of Surgery, McGill University, 1001 Decarie Boulevard, Montreal, H4A 3J1, Canada
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY, 14623, USA
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), Grünwalder Str. 72, 81547, Munich, Germany
| |
Collapse
|
9
|
Li L, Zhang G, Yang Z, Kang X. Stress-Activated Protein Kinases in Intervertebral Disc Degeneration: Unraveling the Impact of JNK and p38 MAPK. Biomolecules 2024; 14:393. [PMID: 38672411 PMCID: PMC11047866 DOI: 10.3390/biom14040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a major cause of lower back pain. The pathophysiological development of IDD is closely related to the stimulation of various stressors, including proinflammatory cytokines, abnormal mechanical stress, oxidative stress, metabolic abnormalities, and DNA damage, among others. These factors prevent normal intervertebral disc (IVD) development, reduce the number of IVD cells, and induce senescence and apoptosis. Stress-activated protein kinases (SAPKs), particularly, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), control cell signaling in response to cellular stress. Previous studies have shown that these proteins are highly expressed in degenerated IVD tissues and are involved in complex biological signal-regulated processes. Therefore, we summarize the research reports on IDD related to JNK and p38 MAPK. Their structure, function, and signal regulation mechanisms are comprehensively and systematically described and potential therapeutic targets are proposed. This work could provide a reference for future research and help improve molecular therapeutic strategies for IDD.
Collapse
Affiliation(s)
- Lei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Zhili Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| |
Collapse
|
10
|
Guo J, Yang S, Zhai W, Xie Y, Shen Z, Zhang J, Jia Y. Network Pharmacology with Metabolomics Study to Reveal the Mechanisms of Bushen Huoxue Formula in Intervertebral Disc Degeneration Treatment. Drug Des Devel Ther 2024; 18:493-512. [PMID: 38405577 PMCID: PMC10894601 DOI: 10.2147/dddt.s451197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/14/2024] [Indexed: 02/27/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is a pathophysiological process that leads to severe back pain or neurological deficits. The Bushen Huoxue Formula (BSHXF) is a traditional herbal remedy widely used to treat diseases related to IVDD. However, its pharmacological mechanism needs further exploration. Objective This study aimed to elucidate the mechanisms through which BSHXF treats IVDD-related diseases by integrating metabolomics with network pharmacology. Methods Network pharmacology was utilized to identify potential targets of BSHXF against IVDD. Additionally, an animal model of needle puncture-induced disc degeneration was established to assess the effect of BSHXF. Mice were randomly assigned to the sham group, model group, and BSHXF group. Various techniques, including PCR, CCK-8 assay, MRI, histological examinations, and immunohistochemical analyses, were employed to evaluate degenerative and oxidative stress conditions in mouse disc tissue and cultured nucleus pulposus (NP) cells. UHPLC-HRMS/MS was used to differential distinct metabolites in the disc tissue from different groups, and MetaboAnalyst 5.0 was employed to enrich the metabolic pathways. Results Through network pharmacology, 15 core proteins were identified through protein-protein interaction (PPI) network construction. Functional enrichment analysis highlighted the critical role of BSHXF in addressing IVDD by influencing the response to oxidative stress. Furthermore, experimental evidence demonstrated that BSHXF significantly improved the pathological progression of IVDD and increased oxidative stress markers SOD-1 and GPX1, both in the disc degeneration model and cultured NP cells. Metabolomics identified differential metabolites among the three groups, revealing 15 metabolic pathways between the sham and model groups, and 13 metabolic pathways enriched between the model and BSHXF groups. Conclusion This study, integrating network pharmacology and metabolomics, suggests that BSHXF can alleviate IVDD progression by modulating oxidative stress. Key metabolic pathways associated with BSHXF-mediated reduction of oxidative stress include the citrate cycle, cysteine and methionine metabolism, alanine, aspartate and glutamate metabolism, glycine, serine and threonine metabolism, D-glutamine and D-glutamate metabolism, glutathione metabolism, and tryptophan metabolism. While this research demonstrates the therapeutic potential of BSHXF in reducing oxidative stress levels in IVDD, further research is needed to thoroughly understand its underlying mechanisms.
Collapse
Affiliation(s)
- Ji Guo
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
| | - Shengqi Yang
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Weifeng Zhai
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People’s Republic of China
| | - Yue Xie
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Zhan Shen
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jianpo Zhang
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
| | - Yongwei Jia
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People’s Republic of China
| |
Collapse
|
11
|
Yao D, Chen E, Li Y, Wang K, Liao Z, Li M, Huang L. The role of endoplasmic reticulum stress, mitochondrial dysfunction and their crosstalk in intervertebral disc degeneration. Cell Signal 2024; 114:110986. [PMID: 38007189 DOI: 10.1016/j.cellsig.2023.110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Low back pain (LBP) is a pervasive global health issue. Roughly 40% of LBP cases are attributed to intervertebral disc degeneration (IVDD). While the underlying mechanisms of IVDD remain incompletely understood, it has been confirmed that apoptosis and extracellular matrix (ECM) degradation caused by many factors such as inflammation, oxidative stress, calcium (Ca2+) homeostasis imbalance leads to IVDD. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are involved in these processes. The initiation of ER stress precipitates cell apoptosis, and is also related to inflammation, levels of oxidative stress, and Ca2+ homeostasis. Additionally, mitochondrial dynamics, antioxidative systems, disruption of Ca2+ homeostasis are closely associated with Reactive Oxygen Species (ROS) and inflammation, promoting cell apoptosis. However, numerous crosstalk exists between the ER and mitochondria, where they interact through inflammatory cytokines, signaling pathways, ROS, or key molecules such as CHOP, forming positive and negative feedback loops. Furthermore, the contact sites between the ER and mitochondria, known as mitochondria-associated membranes (MAM), facilitate direct signal transduction such as Ca2+ transfer. However, the current attention towards this issue is insufficient. Therefore, this review summarizes the impacts of ER stress and mitochondrial dysfunction on IVDD, along with the possibly potential crosstalk between them, aiming to unveil novel avenues for IVDD intervention.
Collapse
Affiliation(s)
- Dengbo Yao
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Enming Chen
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yuxi Li
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kun Wang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Zhuangyao Liao
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ming Li
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Lin Huang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China..
| |
Collapse
|
12
|
Wang X, Zeng Q, Ge Q, Hu S, Jin H, Wang PE, Li J. Protective effects of Shensuitongzhi formula on intervertebral disc degeneration via downregulation of NF-κB signaling pathway and inflammatory response. J Orthop Surg Res 2024; 19:80. [PMID: 38243334 PMCID: PMC10799454 DOI: 10.1186/s13018-023-04391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/18/2023] [Indexed: 01/21/2024] Open
Abstract
Low back pain (LBP) is a common orthopedic disease over the world. Lumbar intervertebral disc degeneration (IDD) is regarded as an important cause of LBP. Shensuitongzhi formula (SSTZF) is a drug used in clinical treatment for orthopedic diseases. It has been found that SSTZF can have a good treatment for IDD. But the exact mechanism has not been clarified. The results showed that SSTZF protects against LSI-induced degeneration of cartilage endplates and intervertebral discs. Meanwhile, SSTZF treatment dramatically reduces the expression of inflammatory factor as well as the expression of catabolism protein and upregulates the expression of anabolism protein in LSI-induced mice. In addition, SSTZF delayed the progression of LSI-induced IDD via downregulation the level of NF-κB signaling key gene RELA and phosphorylation of key protein P65 in endplate chondrocytes. Our study has illustrated the treatment as well as the latent mechanism of SSTZF in IDD.
Collapse
Affiliation(s)
- Xu Wang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qinghe Zeng
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qinwen Ge
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Songfeng Hu
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Orthopaedics and Traumatology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, Zhejiang, China
| | - Hongting Jin
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Ping-Er Wang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China.
| | - Ju Li
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China.
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| |
Collapse
|
13
|
Wen ZQ, Lin J, Xie WQ, Shan YH, Zhen GH, Li YS. Insights into the underlying pathogenesis and therapeutic potential of endoplasmic reticulum stress in degenerative musculoskeletal diseases. Mil Med Res 2023; 10:54. [PMID: 37941072 PMCID: PMC10634069 DOI: 10.1186/s40779-023-00485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Degenerative musculoskeletal diseases are structural and functional failures of the musculoskeletal system, including osteoarthritis, osteoporosis, intervertebral disc degeneration (IVDD), and sarcopenia. As the global population ages, degenerative musculoskeletal diseases are becoming more prevalent. However, the pathogenesis of degenerative musculoskeletal diseases is not fully understood. Previous studies have revealed that endoplasmic reticulum (ER) stress is a stress response that occurs when impairment of the protein folding capacity of the ER leads to the accumulation of misfolded or unfolded proteins in the ER, contributing to degenerative musculoskeletal diseases. By affecting cartilage degeneration, synovitis, meniscal lesion, subchondral bone remodeling of osteoarthritis, bone remodeling and angiogenesis of osteoporosis, nucleus pulposus degeneration, annulus fibrosus rupture, cartilaginous endplate degeneration of IVDD, and sarcopenia, ER stress is involved in the pathogenesis of degenerative musculoskeletal diseases. Preclinical studies have found that regulation of ER stress can delay the progression of multiple degenerative musculoskeletal diseases. These pilot studies provide foundations for further evaluation of the feasibility, efficacy, and safety of ER stress modulators in the treatment of musculoskeletal degenerative diseases in clinical trials. In this review, we have integrated up-to-date research findings of ER stress into the pathogenesis of degenerative musculoskeletal diseases. In a future perspective, we have also discussed possible directions of ER stress in the investigation of degenerative musculoskeletal disease, potential therapeutic strategies for degenerative musculoskeletal diseases using ER stress modulators, as well as underlying challenges and obstacles in bench-to-beside research.
Collapse
Affiliation(s)
- Ze-Qin Wen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jun Lin
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215001, China
| | - Wen-Qing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yun-Han Shan
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ge-Hua Zhen
- Department of Orthopaedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
14
|
Chen X, Wang Z, Deng R, Yan H, Liu X, Kang R. Intervertebral disc degeneration and inflammatory microenvironment: expression, pathology, and therapeutic strategies. Inflamm Res 2023; 72:1811-1828. [PMID: 37665342 DOI: 10.1007/s00011-023-01784-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a leading cause of low back pain (LBP), posing a significant socioeconomic burden. Recent studies highlight the crucial role of inflammatory microenvironment in IDD progression. METHOD A keyword-based search was performed using the PubMed database for published articles. RESULTS AND CONCLUSIONS Dysregulated expression of inflammatory cytokines disrupts intervertebral disc (IVD) homeostasis, causing atrophy, fibrosis, and phenotypic changes in nucleus pulposus cells. Modulating the inflammatory microenvironment and restoring cytokine balance hold promise for IVD repair and regeneration. This comprehensive review systematically examines the expression regulation, pathological effects, therapeutic strategies, and future challenges associated with the inflammatory microenvironment and relevant cytokines in IDD. Key inflammatory cytokines, including interleukins (IL), tumor necrosis factor-alpha (TNF-α), and chemokines, exhibit significant pathological effects in IDD. Furthermore, major therapeutic modalities such as chemical antagonists, biologics, plant extracts, and gene transcription therapies are introduced to control and ameliorate the inflammatory microenvironment. These approaches provide valuable insights for identifying potential targets in future anti-inflammatory treatments for IDD.
Collapse
Affiliation(s)
- Xin Chen
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Zihan Wang
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Rongrong Deng
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Hongjie Yan
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Xin Liu
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
| | - Ran Kang
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
Zeng Q, Sun Q, Xu H, Chen J, Ling H, Ge Q, Zou K, Wang X, Jin H, Li J, Jin M. Amygdalin Delays Cartilage Endplate Degeneration and Improves Intervertebral Disc Degeneration by Inhibiting NF-κB Signaling Pathway and Inflammatory Response. J Inflamm Res 2023; 16:3455-3468. [PMID: 37600226 PMCID: PMC10438437 DOI: 10.2147/jir.s415527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a major cause of lower back pain (LBP), in which inflammatory is frequently involved. Amygdalin (AMD) is a naturally occurring compound that exerts anti-fibrotic, anti-inflammatory, analgesic, and immunomodulatory effects in various diseases. The purpose of this study was to investigate the therapeutic effects and molecular mechanisms of AMD on Lumbar spine instability (LSI)-induced IDD in mice. Methods In this study, we first explored the effects of AMD in vivo, and then further explored the mechanism of its effects both in vivo and in vitro. Ten-week-old male C57BL/6J mice were administrated with AMD. At 10 weeks after LSI, spinal were collected for tissue analyses, including histology, micro-CT, and immunohistochemistry for Col2, Mmp-13, TNF-α, and p-P65. Additionally, we also evaluated the mRNA and protein expression level of p-P65 and p-IKBα after being treated with AMD in vitro. Results Histological staining, micro-CT and immunohistochemical analysis showed that AMD treatment significantly inhibited the expression of TNF-α and Mmp-13, increased the expression of Col2 as well as attenuated the calcification of cartilage endplates, eventually to delayed the progression of IDD. Meanwhile, in vivo and in vitro fluorescence imaging revealed that AMD markedly inhibited the AMD significantly inhibited the LSI-induced increase in TNF-α expression and P65and IKBα phosphorylation. Discussion Our findings suggest that AMD partly inhibits the activation of NF-κB signaling pathway to reduce the release of inflammatory mediators and delay the degeneration of cartilage endplate in IDD model mice. Therefore, AMD may be a potential candidate for the treatment of IDD.
Collapse
Affiliation(s)
- Qinghe Zeng
- Institute of Orthopedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Qi Sun
- Department of Orthopaedic Surgery, Fuyang Orthopaedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Huihui Xu
- Institute of Orthopedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Jiali Chen
- Institute of Orthopedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Houfu Ling
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Qinwen Ge
- Institute of Orthopedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Kaiao Zou
- Institute of Orthopedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xu Wang
- Institute of Orthopedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Hongting Jin
- Institute of Orthopedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Ju Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Minwei Jin
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| |
Collapse
|
16
|
Li D, Guo M, Liang W, Jin C, Li C. CHOP promotes coelomocyte apoptosis through p38-MAPK pathway in Vibrio splendidus-challenged sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2023:108855. [PMID: 37257572 DOI: 10.1016/j.fsi.2023.108855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) belongs to the C/EBP family of transcription factors that has been proven to regulate apoptosis in many vertebrate species. However, the functional role of CHOP in invertebrates is largely unknown. In this paper, the open reading frame of CHOP was cloned and characterized in the sea cucumber Apostichopus japonicus (AjCHOP). The deuced amino acid of AjCHOP shared a conserved RTP801_C domain from 63 to 171 aa. Phylogenetic analysis indicated that AjCHOP clustered with CHOPs from Lytechinus variegatus and Strongylocentrotus purpuratus. To confirm the immune function of AjCHOP, the time-course expression profiles of AjCHOP were investigated, and the findings revealed AjCHOP was significantly induced in coelomocytes at mRNA and protein levels after Vibro splendidus challenge. Furthermore, knockdown of AjCHOP in coelomocyes by siRNA transfection significantly decreased the apoptosis level induced by V. splendidus. Mechanically, AjCHOP-mediated apoptosis was dependent on the activation of p38-MAPK pathway but not JNK/ERK-MAPK. Overall, our results supported that V. splendidus triggers apoptosis among the coelomocytes, whereas AjCHOP mediates through the p38-MAPK pathway in A. japonicus.
Collapse
Affiliation(s)
- Dongdong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China
| | - Weikang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China.
| | - Chunhua Jin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
17
|
Pan H, Li H, Guo S, Wang C, Long L, Wang X, Shi H, Zhang K, Chen H, Li S. The mechanisms and functions of TNF-α in intervertebral disc degeneration. Exp Gerontol 2023; 174:112119. [PMID: 36758650 DOI: 10.1016/j.exger.2023.112119] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Low back pain (LBP) is one of the most common health problems in people's lives, which brings a massive burden to clinicians, and the leading cause of LBP is intervertebral disc degeneration (IDD). IDD is mainly caused by factors such as aging, mechanical stress, and lack of nutrition. The pathological mechanism of IDD is very complex, involving inflammatory response, cell metabolism disorder, and so on. Unfortunately, in the current treatment of IDD, only relieving symptoms as the primary means of relieving a patient's pain cannot effectively inhibit or reverse the progression of IDD. Tumor necrosis factor-α (TNF-α) is a multifunctional pro-inflammatory factor involved in many diseases' pathological processes. With the in-depth study of the pathological mechanism of IDD, more and more evidence has shown that TNF-α is an essential activator of IDD, which is related to the metabolic disorder, inflammatory responses, apoptosis, and other pathological processes of extracellular dissociation in the intervertebral disc. Therefore, anti-TNF-α therapy is an effective therapeutic target for alleviating IDD, especially in inhibiting extracellular matrix degradation and reducing inflammatory responses. This article reviews the pathological role of TNF-α in IDD and the latest research progress of TNF-α inhibitors in treating IDD.
Collapse
Affiliation(s)
- Hongyu Pan
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hongtao Li
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sheng Guo
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chenglong Wang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Longhai Long
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqiang Wang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Houyin Shi
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Kaiquan Zhang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hui Chen
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Sen Li
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
18
|
Shi X, Li P, Wu X, Shu J. Whole-transcriptome sequencing identifies key differentially expressed circRNAs/lncRNAs/miRNAs/mRNAs and linked ceRNA networks in adult degenerative scoliosis. Front Mol Neurosci 2023; 16:1038816. [PMID: 37063366 PMCID: PMC10098162 DOI: 10.3389/fnmol.2023.1038816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/10/2023] [Indexed: 04/18/2023] Open
Abstract
Background Adult degenerative scoliosis (ADS) is forecast to be a prevalent disabling condition in an aging society. Universally, its pathogenesis is perceived as intervertebral disc degeneration (IDD), however, a thought-provoking issue is why precisely a subset of patients with disc degeneration develop ADS. Exploring the diversities between common IDD and ADS would contribute to unraveling the etiological mechanisms of ADS. Therefore, we aimed to integrate the circRNA, lncRNA, miRNA, and mRNA expression profiles from normal adults (Normal), patients with lumbar disc herniation (LDH), and ADS by whole transcriptome sequencing, which identifies critical functional ncRNA and ceRNA networks and crosstalk between the various transcripts. Methods The fresh whole blood samples (n = 3/group) were collected from ADS patients, LDH patients, and healthy volunteers (Normal group), which were examined for mRNA, miRNA, lncRNA, and circRNA expression and screened for differentially expressed (DE) ncRNAs. Then, Gene Ontology (GO) and KEGG analyses were performed for gene annotation and enrichment pathways on the DE RNAs, which were constructed as a lncRNA-miRNA-mRNA network. Eventually, DE RNAs were validated by qRT-PCR targeting disc nucleus pulposus (NP) tissue in ADS and LDH group (n = 10/group). Results Compared to the LDH group, we identified 3322 DE mRNAs, 221 DE lncRNAs, 20 DE miRNAs, and 15 DE circRNAs in the ADS. In contrast to Normal, 21 miRNAs and 19 circRNAs were differentially expressed in the ADS. The expression of multiple differentially expressed ncRNAs was confirmed by qRT-PCR analysis to be consistent with the sequencing results. In addition, GO, and KEGG analysis demonstrated that most DE mRNAs and ncRNAs target genes are involved in various biological processes, including Endocytosis, Apoptosis, Rap1 signaling pathway, Notch signaling pathway, and others. The constructed lncRNA-miRNA-mRNA co-expression network was primarily related to angiogenesis and regulation. Conclusion By focusing on comparing asymmetric and symmetric disc degeneration, whole-transcriptome sequencing and bioinformatics analysis systematically screened for key ncRNAs in the development of ADS, which provided an abundance of valuable candidates for the elucidation of regulatory mechanisms. The DE ncRNAs and the lncRNA-miRNA-mRNA network are intrinsically involved in the regulation of mediator and angiogenesis, which may contribute to the insight into the pathogenesis of ADS.
Collapse
Affiliation(s)
- Xin Shi
- The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Panpan Li
- The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- *Correspondence: Panpan Li,
| | - Xiang Wu
- The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Jun Shu
- The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| |
Collapse
|
19
|
Li Z, Yang H, Hai Y, Cheng Y. Regulatory Effect of Inflammatory Mediators in Intervertebral Disc Degeneration. Mediators Inflamm 2023; 2023:6210885. [PMID: 37101594 PMCID: PMC10125773 DOI: 10.1155/2023/6210885] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/11/2022] [Accepted: 03/18/2023] [Indexed: 04/28/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a major contributor to back, neck, and radicular pain. It is related to changes in tissue structure and function, including the breakdown of the extracellular matrix (ECM), aging, apoptosis of the nucleus pulposus, and biomechanical tissue impairment. Recently, an increasing number of studies have demonstrated that inflammatory mediators play a crucial role in IDD, and they are being explored as potential treatment targets for IDD and associated disorders. For example, interleukins (IL), tumour necrosis factor-α (TNF-α), chemokines, and inflammasomes have all been linked to the pathophysiology of IDD. These inflammatory mediators are found in high concentrations in intervertebral disc (IVD) tissues and cells and are associated with the severity of LBP and IDD. It is feasible to reduce the production of these proinflammatory mediators and develop a novel therapy for IDD, which will be a hotspot of future research. In this review, the effects of inflammatory mediators in IDD were described.
Collapse
Affiliation(s)
- Zhangfu Li
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Honghao Yang
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yong Hai
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yunzhong Cheng
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
20
|
Gao D, Hu B, Ding B, Zhao Q, Zhang Y, Xiao L. N6-Methyladenosine-induced miR-143-3p promotes intervertebral disc degeneration by regulating SOX5. Bone 2022; 163:116503. [PMID: 35878746 DOI: 10.1016/j.bone.2022.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/18/2022] [Accepted: 07/19/2022] [Indexed: 11/02/2022]
Abstract
Intervertebral disc degeneration is the basic cause of lumbocrural pain, which not only causes pain and but also serious economic burdens on patients. Increasingly more evidence has shown that tumor necrosis factor-α (TNF-α) is involved in the pathological process of intervertebral disc degeneration, but the specific molecular mechanism is still unclear. This study investigated the potential mechanism and function of methyltransferase-like 3 (METTL3)/miR-143-3p/SOX5 regulatory axis in nucleus pulposus cells under the action of TNF-α. Human nucleus pulposus cells were treated with TNF-α to construct an in vitro model of intervertebral disc degeneration. Flow cytometry, quantitative reverse-transcription PCR (RT-qPCR), Western blot (WB) and luciferase assays were used to identify the mechanism of action of miR-143-3p in the course of intervertebral disc degeneration in vitro and the downstream targeted regulatory molecules. The role of miR-143-3p in intervertebral disc degeneration was also validated by in vivo. RT-qPCR, WB, coimmunoprecipitation (Co-IP) and flow cytometry were used to verify the regulatory effect of METTL3 on miR-143-3p maturation. RT-qPCR and WB were adopted to detect differences in METTL3, miR-143-3p and SOX5 expression in human nucleus pulposus tissue. miR-143-3p in nucleus pulposus cells was involved in the regulation of extracellular matrix metabolism and apoptosis after TNF-α stimulation, and intervertebral disc degeneration was relieved by effectively regulating miR-143-3p expression. Subsequent experiments showed that the downstream direct target gene of miR-143-3p was SOX5 and that miR-143-3p negatively regulated the expression of SOX5. In addition, METTL3 promoted miR-143-3p maturation, and METTL3 and miR-143-3p were significantly upregulated in degenerative nucleus pulposus, an effect that was significantly negatively correlated with low SOX5 expression. In conclusion, TNF-α upregulates METTL3, METTL3 promotes miR-143-3p maturation, and miR-143-3p inhibits the transcriptional activity of SOX5 through targeted binding, thereby inducing intervertebral disc degeneration. The inhibition of METTL3 or miR-143-3p expression may be an effective way to treat intervertebral disc degeneration.
Collapse
Affiliation(s)
- Daokuan Gao
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241001, Anhui, China
| | - Bo Hu
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241001, Anhui, China
| | - Baiyang Ding
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241001, Anhui, China
| | - Quanlai Zhao
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241001, Anhui, China
| | - Yu Zhang
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241001, Anhui, China
| | - Liang Xiao
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, No. 2 Zheshan West Road, Wuhu 241001, Anhui, China.
| |
Collapse
|
21
|
Ren S, Huang T, Ou D, Feng L, Huang S, Zhou C, Ge L. Inhibition of TNF- α and JNK Signaling Pathway Can Reduce Paclitaxel-Induced Apoptosis of Mouse Cardiomyocytes. Appl Bionics Biomech 2022; 2022:8460121. [PMID: 36016921 PMCID: PMC9398847 DOI: 10.1155/2022/8460121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Paclitaxel (PTX) is a widely used chemotherapeutic drug for treating tumors. However, studies have shown that it can cause cardiac problems such as arrhythmia, myocarditis, chronic cardiomyopathy, and heart failure. Therefore, it is essential to study the mechanism behind the cardiotoxicity of PTX in tumor treatment. In this study, we initially injected PTX into mice to establish a myocardial cell apoptosis model to observe the degree of damage to mouse myocardium caused by PTX. Upon determining the levels of mouse myocardial creatine phosphokinase (CK), myokinase isoenzyme (CK-MB), aspartate transaminase (AST), and lactate dehydrogenase (LDH), we found that all of these levels showed apparent increases in mice treated with PTX. Further analyses of the TNF-α level and the expression of Jun N-terminal kinase (JNK) and Bcl-2 family-related proteins in myocardial tissue were performed. It was found that PTX increased the protein levels of TNF-α, Bax, p-JNK, and JNK in myocardial tissue but decreased the protein level of Bcl-2. After 1 month of PTX treatment in mice, we inhibited the expression of TNF-α and JNK proteins, which reduced the effect of paclitaxel on the apoptosis of mouse cardiomyocytes. The protein levels of Bax, p-JNK, and TNF-α in cardiomyocytes were reduced, while there was a relative increase in the Bcl-2 protein level. The findings suggested that inhibition of the NK signaling pathway and TNF-α can lessen the effect of PTX on mouse cardiomyocytes.
Collapse
Affiliation(s)
- Shuang Ren
- Department of General Internal Medicine, Guangxi Medical University Cancer Hospital, Nanning, 530021 Guangxi, China
| | - Tianwen Huang
- Department of Clinical Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021 Guangxi, China
| | - Danyan Ou
- Department of General Internal Medicine, Guangxi Medical University Cancer Hospital, Nanning, 530021 Guangxi, China
| | - Luhuai Feng
- Department of General Internal Medicine, Guangxi Medical University Cancer Hospital, Nanning, 530021 Guangxi, China
| | - Sisi Huang
- Department of General Internal Medicine, Guangxi Medical University Cancer Hospital, Nanning, 530021 Guangxi, China
| | - Chaonan Zhou
- Department of General Internal Medicine, Guangxi Medical University Cancer Hospital, Nanning, 530021 Guangxi, China
| | - Lianying Ge
- Ultrasonic Department, Guangxi Medical University Cancer Hospital, Nanning, 530021 Guangxi, China
| |
Collapse
|
22
|
Bermudez-Lekerika P, Crump KB, Tseranidou S, Nüesch A, Kanelis E, Alminnawi A, Baumgartner L, Muñoz-Moya E, Compte R, Gualdi F, Alexopoulos LG, Geris L, Wuertz-Kozak K, Le Maitre CL, Noailly J, Gantenbein B. Immuno-Modulatory Effects of Intervertebral Disc Cells. Front Cell Dev Biol 2022; 10:924692. [PMID: 35846355 PMCID: PMC9277224 DOI: 10.3389/fcell.2022.924692] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Low back pain is a highly prevalent, chronic, and costly medical condition predominantly triggered by intervertebral disc degeneration (IDD). IDD is often caused by structural and biochemical changes in intervertebral discs (IVD) that prompt a pathologic shift from an anabolic to catabolic state, affecting extracellular matrix (ECM) production, enzyme generation, cytokine and chemokine production, neurotrophic and angiogenic factor production. The IVD is an immune-privileged organ. However, during degeneration immune cells and inflammatory factors can infiltrate through defects in the cartilage endplate and annulus fibrosus fissures, further accelerating the catabolic environment. Remarkably, though, catabolic ECM disruption also occurs in the absence of immune cell infiltration, largely due to native disc cell production of catabolic enzymes and cytokines. An unbalanced metabolism could be induced by many different factors, including a harsh microenvironment, biomechanical cues, genetics, and infection. The complex, multifactorial nature of IDD brings the challenge of identifying key factors which initiate the degenerative cascade, eventually leading to back pain. These factors are often investigated through methods including animal models, 3D cell culture, bioreactors, and computational models. However, the crosstalk between the IVD, immune system, and shifted metabolism is frequently misconstrued, often with the assumption that the presence of cytokines and chemokines is synonymous to inflammation or an immune response, which is not true for the intact disc. Therefore, this review will tackle immunomodulatory and IVD cell roles in IDD, clarifying the differences between cellular involvements and implications for therapeutic development and assessing models used to explore inflammatory or catabolic IVD environments.
Collapse
Affiliation(s)
- Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | - Katherine B Crump
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | | | - Andrea Nüesch
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Exarchos Kanelis
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Ahmad Alminnawi
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | | | - Roger Compte
- Twin Research and Genetic Epidemiology, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Francesco Gualdi
- Institut Hospital Del Mar D'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Leonidas G Alexopoulos
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Liesbet Geris
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, KU Leuven, Leuven, Belgium
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States.,Spine Center, Schön Klinik München Harlaching Academic Teaching Hospital and Spine Research Institute of the Paracelsus Private Medical University Salzburg (Austria), Munich, Germany
| | - Christine L Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | | | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Fan P, Yu XY, Chen CH, Gao JW, Xu YZ, Xie XH, Wang YT. Parkin-mediated mitophagy protects against TNF-α-induced stress in bone marrow mesenchymal stem cells. Exp Gerontol 2022; 164:111829. [DOI: 10.1016/j.exger.2022.111829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
|
24
|
Grem1 accelerates nucleus pulposus cell apoptosis and intervertebral disc degeneration by inhibiting TGF-β-mediated Smad2/3 phosphorylation. Exp Mol Med 2022; 54:518-530. [PMID: 35440754 PMCID: PMC9076866 DOI: 10.1038/s12276-022-00753-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 11/09/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a main cause of low back pain, and inflammatory factors play key roles in its pathogenesis. Gremlin-1 (Grem1) was reported to induce an inflammatory response in other fields. This study aimed to investigate the mechanisms of Grem1 in the degenerative process of intervertebral discs. Dysregulated genes were determined by analyzing microarray profiles. The expression of Grem1 in 17 human disc samples (male:female = 9:8) and rat models (n = 5 each group) was measured by western blotting (WB), real-time quantitative PCR (RT-qPCR), and immunohistochemistry (IHC). The regulatory effects of Grem1 on apoptosis were examined using siRNAs, flow cytometry, immunofluorescence (IF), and WB. The therapeutic effect was evaluated by locally injecting specific Grem1 siRNA into IVDD rats. The expression of Grem1 was significantly increased in human degenerative intervertebral discs; furthermore, the expression of Grem1 positively correlated with the level of intervertebral disc degeneration. Grem1 was significantly overexpressed in tumor necrosis factor (TNF)-α-induced degenerative NP cells. Apoptosis in degenerative NP cells transfected with siRNA targeting Grem1 was significantly lower than that in the control group. Specific Grem1 siRNA markedly repressed the development of IVDD in surgery-induced IVDD rats. These results indicated that the expression of Grem1 was positively correlated with the severity of intervertebral disc degeneration, and Grem1 siRNA could inhibit Grem1-induced apoptosis and extracellular matrix alterations by mediating the TGF-β/Smad signaling pathway. This study may provide a therapeutic strategy for alleviating inflammation-induced apoptosis associated with intervertebral disc degeneration.
Collapse
|
25
|
Herbal Formula Modified Bu-Shen-Huo-Xue Decoction Attenuates Intervertebral Disc Degeneration via Regulating Inflammation and Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4284893. [PMID: 35154344 PMCID: PMC8828322 DOI: 10.1155/2022/4284893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 11/26/2022]
Abstract
Objective This study aims to clarify the potential mechanism of modified Bu-Shen-Huo-Xue decoction (MBSHXD) in treating intervertebral disc degeneration (IDD) with methods of network pharmacology and molecular docking. Methods An MBSHXD and IDD-related common target gene set was established through TCMSP, UniProt, and two disease gene databases. GO and KEGG enrichment analysis and protein-protein interaction (PPI) networks were performed through the R platform and STRING to discover the potential mechanism. Molecular docking between the active ingredients and the core genes is used to calculate the binding energy. Results A total of 147 active ingredients and 79 common genes (including 10 core genes, TNF, VEGFA, IL6, MAPK3, AKT1, MAPK8, TP53, JUN, MMP9, and CXCL8) were identified. The results of GO and KEGG enrichment analysis showed that MBSHXD plays an essential role in regulating inflammation and oxidative stress. The meaningful pathways are the AGE-RAGE signaling pathway in diabetic complications, the IL-17 signaling pathway, the TNF signaling pathway, the PI3K-Akt signaling pathway, the MAPK signaling pathway, and apoptosis. In addition, the PPI network and molecular docking further demonstrated the roles that nine bioactive ingredients of MBSHXD play in IDD treatment through their interference with core target proteins. Conclusion This study reveals that MBSHXD has the characteristics of a “multi-component, multi-target, and multi-pathway” in the treatment of IDD by regulating inflammation and oxidative stress, and network pharmacology may provide a feasible method to verify the molecular mechanism of MBSHXD for IDD by combining with molecular docking.
Collapse
|
26
|
Yuan Z, Yang Z. The Effect of Naringin on the Apoptosis of Degenerative Nucleus Pulposus Cells: A Study on the Function and Mechanism. Drug Des Devel Ther 2022. [DOI: 10.2147/dddt.s338355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
27
|
Aloin Regulates Matrix Metabolism and Apoptosis in Human Nucleus Pulposus Cells via the TAK1/NF- κB/NLRP3 Signaling Pathway. Stem Cells Int 2022; 2022:5865011. [PMID: 35035490 PMCID: PMC8758297 DOI: 10.1155/2022/5865011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is a degenerative disease that is characterized by decreased matrix synthesis and extra degradation, nucleus pulposus cells (NPCs) apoptosis, and infiltration of inflammatory factors. Aloin, a colored compound from aloe plants, has been shown to be effective against skeletal degenerative diseases, but it is unclear whether it is protective against IDD. Herein, we investigated the role of aloin in NPCs. In our study, the upregulation of proinflammatory factors, apoptosis, and unbalanced matrix metabolism were observed in degenerative NP tissues. We found that aloin had a curative effect on extracellular matrix metabolism and apoptosis in TNF-alpha- (TNF-α-) treated NPCs by inhibiting oxidative stress and the proinflammatory factor expression. Further investigation revealed that aloin treatment suppressed the TAK1/NF-κB pathway. Moreover, the expression level of the NLPR3 inflammasome was downregulated after aloin treatment in TNF-α-treated NPCs. In summary, our results demonstrated that aloin treatment can reverse TNF-α-induced unbalanced matrix metabolism and apoptosis of NPCs via the TAK1/NF-κB/NLRP3 axis. This study supports that aloin can be a promising therapeutic agent for IDD.
Collapse
|
28
|
Zhu F, Duan W, Zhong C, Ji B, Liu X. The protective effects of dezocine on interleukin-1β-induced inflammation, oxidative stress and apoptosis of human nucleus pulposus cells and the possible mechanisms. Bioengineered 2022; 13:1399-1410. [PMID: 34974796 PMCID: PMC8805889 DOI: 10.1080/21655979.2021.2017700] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a natural problem linked to the inflammation. We aimed to investigate the role of dezocine (DEZ) in the development of IDD. Human nucleus pulposus cells (HNPCs) induced by interleukin (IL)-1β was used as a cellular model of IDD. After treatment with DEZ, HNPCs viability was evaluated with a CCK-8 assay. Then, the levels of inflammatory factors, including IL-6 and tumor necrosis factor-α (TNF-α), and oxidative stress-related markers, including reactive oxygen species (ROS), malondialdehyde (MDA) and reduced glutathione (GSH), were tested by RT-qPCR or kits. TUNEL staining was employed to detect cell apoptosis and Western blot was used to determine the expression of proteins related to inflammation, oxidative stress, apoptosis, endoplasmic reticulum stress (ERS) and MAPK signaling. Afterward, PMA, a MAPK signaling pathway agonist, was adopted for exploring the regulatory effects of DEZ on MAPK pathway. Results indicated that DEZ enhanced cell viability of HNPCs after IL-1β exposure. DEZ alleviated the inflammation and oxidative stress, evidenced by decreased levels of IL-6, TNF-α, ROS, MDA, p-NF-κB p65, NF-κB p65 in nucleus, cox-2 and increased levels of NF-κB p65 in cytoplasm, GSH, SOD1 and SOD2. Moreover, DEZ notably inhibited IL-1β-induced apoptosis of HNPCs. Furthermore, DEZ suppressed the levels of ERS-related proteins. The levels of related proteins in MAPK signaling including p-P38 and p-ERK1/2 were remarkably reduced after DEZ administration. By contrast, PMA crippled the impacts of DEZ on inflammation, oxidative stress and apoptosis of HNPCs induced by IL-1β. Collectively, DEZ ameliorates IL-1β-induced HNPCs injury via inhibiting MAPK signaling.
Collapse
Affiliation(s)
- Fang Zhu
- Department of Pain, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wei Duan
- Dental Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chao Zhong
- Department of Pain, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Bing Ji
- Department of Pain, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinjun Liu
- Department of Vascular and Endovascular Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Huang J, Zhou Q, Ren Q, Luo L, Ji G, Zheng T. Endoplasmic reticulum stress associates with the development of intervertebral disc degeneration. Front Endocrinol (Lausanne) 2022; 13:1094394. [PMID: 36714579 PMCID: PMC9877331 DOI: 10.3389/fendo.2022.1094394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Endoplasmic reticulum (ER) is an important player in various intracellular signaling pathways that regulate cellular functions in many diseases. Intervertebral disc degeneration (IDD), an age-related degenerative disease, is one of the main clinical causes of low back pain. Although the pathological development of IDD is far from being fully elucidated, many studies have been shown that ER stress (ERS) is involved in IDD development and regulates various processes, such as inflammation, cellular senescence and apoptosis, excessive mechanical loading, metabolic disturbances, oxidative stress, calcium homeostasis imbalance, and extracellular matrix (ECM) dysregulation. This review summarizes the formation of ERS and the potential link between ERS and IDD development. ERS can be a promising new therapeutic target for the clinical management of IDD.
Collapse
Affiliation(s)
- Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qingluo Zhou
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Liliang Luo
- Department of Orthopedics, Shangyou Hospital of traditional Chinese Medicine, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tiansheng Zheng
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tiansheng Zheng,
| |
Collapse
|
30
|
Li S, Huang C, Xiao J, Wu Y, Zhang Z, Zhou Y, Tian N, Wu Y, Wang X, Zhang X. The Potential Role of Cytokines in Diabetic Intervertebral Disc Degeneration. Aging Dis 2022; 13:1323-1335. [PMID: 36186138 PMCID: PMC9466964 DOI: 10.14336/ad.2022.0129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/29/2022] [Indexed: 12/02/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a major cause of low back pain. Diabetes mellitus is a chronic inflammatory disease that may cause or aggravate IVDD; however, the mechanism by which diabetes induce IVDD is currently unclear. Compared to non-diabetic individuals, diabetic patients have higher levels of plasma cytokines, especially TNF-α, IL-1β, IL-5, IL-6, IL-7, IL-10, and IL-18. Due to the crucial role of cytokines in the process of intervertebral disc degeneration, we hypothesized that elevation of these cytokines in plasma of diabetic patients may be involved in the process of diabetes-induced IVDD. In this review, changes in plasma cytokine levels in diabetic patients were summarized and the potential role of elevated cytokines in diabetes-induced IVDD was discussed. Results showed that some cytokines such as TNF-α and IL-1β may accelerate the development of IVDD, while others such as IL-10 is supposed to prevent its development. Apoptosis, senescence, and extracellular matrix metabolism were found to be regulated by these cytokines in IVDD. Further studies are required to validate the cytokines targeted strategy for diabetic IVDD therapy.
Collapse
Affiliation(s)
- Sunlong Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yuhao Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zengjie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Correspondence should be addressed to: Dr. Xiaolei Zhang () or Dr. Xiangyang Wang (), Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, West Xueyuan Road, Wenzhou, Zhejiang, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang, China.
- Correspondence should be addressed to: Dr. Xiaolei Zhang () or Dr. Xiangyang Wang (), Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, West Xueyuan Road, Wenzhou, Zhejiang, China
| |
Collapse
|
31
|
Distinctive roles of tumor necrosis factor receptor type 1 and type 2 in a mouse disc degeneration model. J Orthop Translat 2021; 31:62-72. [PMID: 34934623 PMCID: PMC8648970 DOI: 10.1016/j.jot.2021.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 01/23/2023] Open
Abstract
Background Elevated tumor necrosis factor alpha (TNF-α) expression is correlated with the progression of intervertebral disc degeneration (IVDD). Progranulin binding to tumor necrosis factor receptor (TNFR) and its derivative Atsttrin are effective for treating inflammatory arthritis. We hypothesize that Atsttrin has a protective effect in IVDD through different roles of TNFR receptor type 1 (TNFR1) and TNFR receptor type 2 (TNFR2) in degenerated discs. Methods IVDD models were established in TNFR1−/−, TNFR2−/− mice and their control littermates. Nucleus Pulpous (NP) samples from human patients and IVDD murine models were evaluated by X-ray, micro-MRI, μCT, histological staining and immunofluorescence staining. NP cells isolated from wild-type (WT), TNFR1−/− and TNFR2−/− mice were treated with TNF-α or Atsttrin and then assayed by Western blotting, qRT–PCR, and ELISA. Results TNFR1 and TNFR2 expression was significantly elevated in the disc tissues of both human patients and IVDD murine models. TNFR1 knockout contributed to reduced disc degeneration. In contrast, TNFR2 knockout was associated with enhanced IVDD severity, including degraded cellular composition, increased cell apoptosis and elevated vertebral destruction. Atsttrin protected against IVDD in WT and TNFR1−/− mouse models but had no effect in TNFR2−/− IVDD models. Additionally, in vitro NP cell-based assays demonstrated that TNF-α-stimulated catabolism and Atsttrin-activated anabolism depended on TNFR1 and TNFR2, respectively. Conclusion TNFR1 is associated with the degenerative progression of IVDD, while TNFR2 contributes to the protective effect on the discs. Atsttrin protects against IVDD at least partially by inhibiting the TNFα/TNFR1 inflammatory/catabolic pathway and activating the TNFR2 protective/anabolic pathway. The translational potential of this article This study demonstrates that TNFR1 and TNFR2 have disparate roles in disc degeneration and hlights the potential use of Atsttrin as a therapeutic agent against IVDD in mice.
Collapse
|
32
|
Pharmacological Mechanism of Danggui-Sini Formula for Intervertebral Disc Degeneration: A Network Pharmacology Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5165075. [PMID: 34805401 PMCID: PMC8601842 DOI: 10.1155/2021/5165075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022]
Abstract
Background Intervertebral disc degeneration (IVDD) is the most significant cause of low back pain, the sixth-largest disease burden globally, and the leading cause of disability. This study is aimed at investigating the molecular biological mechanism of Danggui-Sini formula (DSF) mediated IVDD treatment. Methods A potential gene set for DSF treatment of IVDD was identified through TCMSP, UniProt, and five disease gene databases. A protein interaction network of common targets between DSF and IVDD was established by using the STRING database. GO and KEGG enrichment analyses were performed using the R platform to discover the potential mechanism. Moreover, AutoDock Vina was used to verify molecular docking and calculate the binding energy. Results A total of 119 active ingredients and 136 common genes were identified, including 10 core genes (AKT1, IL6, ALB, TNF, VEGFA, TP53, MAPK3, CASP3, JUN, and EGF). Enrichment analysis results showed that the therapeutic targets of DSF for diseases mainly focused on the AGE-RAGE signaling pathway involved in diabetic complications, IL-17 signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, apoptosis, cellular senescence, PI3K-Akt signaling pathway, and FoxO signaling pathway. These biological processes are induced mainly in response to oxidative stress and reactive oxygen species and the regulation of apoptotic signaling pathways. Molecular docking showed that there was a stable affinity between the core genes and the key components. Conclusions The combination of network pharmacology and molecular docking provides a practical way to analyze the molecular biological mechanism of DSF-mediated IVDD treatment, which confirms the “multicomponent, multitarget and multipathway” characteristics of DSF and provides an essential theoretical basis for clinical practice.
Collapse
|
33
|
Zou J, Yi S, Niu L, Zhou H, Lin Z, Wang Y, Huang X, Meng W, Guo Y, Qi L, Meng L. Neuroprotective Effect of Ultrasound Neuromodulation on Kainic Acid- Induced Epilepsy in Mice. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3006-3016. [PMID: 33979280 DOI: 10.1109/tuffc.2021.3079628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Preliminary evidence suggests that low-intensity pulsed ultrasound (LIPUS) has neuroprotective effects on ischemic stroke, depression, and other conditions leading to neuronal cell death (e.g., Parkinson's disease). The purpose of this study was to investigate the neuroprotective effects of LIPUS in epileptic mice. Mice were made epileptic through kainic acid (KA) administration and then stimulated with LIPUS. The neuroprotective effect of ultrasound was evaluated by observing the latency, anxiety-like behavior, and levels of proteins related to inflammation, apoptosis, or signaling pathways. The safety of LIPUS was assessed by hematoxylin and eosin (H&E) and Nissl stainings. LIPUS prolonged the latency (Sham: 6.00 ± 0.26 days; 1-kHz pulse repetition frequency (PRF): 7.00 ± 0.31 days), improved the anxiety-like behavior, and inhibited the expression of inflammatory factors and apoptosis-related proteins. In addition, H&E and Nissl staining results confirmed that LIPUS did not damage the brain. These findings suggest that LIPUS has neuroprotective effects in mice with KA-induced epilepsy. LIPUS may offer a new therapeutic approach to epilepsy.
Collapse
|
34
|
Shi J, Wang S, He Q, Liu K, Zhao W, Xie Q, Cheng L. TNF-α induces up-regulation of MicroRNA-27a via the P38 signalling pathway, which inhibits intervertebral disc degeneration by targeting FSTL1. J Cell Mol Med 2021; 25:7146-7156. [PMID: 34190406 PMCID: PMC8335690 DOI: 10.1111/jcmm.16745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/16/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
The mechanism of intervertebral disc degeneration is still unclear, and there are no effective therapeutic strategies for treating this condition. miRNAs are naturally occurring macromolecules in the human body and have many biological functions. Therefore, we hope to elucidate whether miRNAs are associated with intervertebral disc degeneration and the underlying mechanisms involved. In our study, differentially expressed miRNAs were predicted by the GEO database and then confirmed by qPCR and in situ hybridization. Apoptosis of nucleus pulposus cells was detected by flow cytometry and Bcl2, Bax and caspase 3. Deposition of extracellular matrix was assessed by Alcian blue staining, and the expression of COX2 and MMP13 was detected by immunofluorescence, Western blot and qPCR. Moreover, qPCR was used to detect the expression of miR27a and its precursors. The results showed that miR27a was rarely expressed in healthy intervertebral discs but showed increased expression in degenerated intervertebral discs. Ectopic miR27a expression inhibited apoptosis, suppressed the inflammatory response and attenuated the catabolism of the extracellular matrix by targeting FSTL1. Furthermore, it seems that the expression of miR27a was up-regulated by TNF-α via the P38 signalling pathway. So we conclude that TNF-α and FSTL1 engage in a positive feedback loop to promote intervertebral disc degeneration. At the same time, miR27a is up-regulated by TNF-α via the P38 signalling pathway, which ameliorates inflammation, apoptosis and matrix degradation by targeting FSTL1. Thus, this negative feedback mechanism might contribute to the maintenance of a low degeneration load and would be beneficial to maintain a persistent chronic disc degeneration.
Collapse
Affiliation(s)
- Jie Shi
- Department of OrthopaedicQilu HospitalCheeloo College of Medicine of Shandong UniversityJinanChina
- Cheeloo College of MedicineShandong UniversityJinanChina
- NHC key Laboratory of OtorhinolaryngologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Shaoyi Wang
- Department of OrthopaedicQilu HospitalCheeloo College of Medicine of Shandong UniversityJinanChina
- Cheeloo College of MedicineShandong UniversityJinanChina
| | - Qiting He
- Department of OrthopaedicQilu HospitalCheeloo College of Medicine of Shandong UniversityJinanChina
- Cheeloo College of MedicineShandong UniversityJinanChina
- NHC key Laboratory of OtorhinolaryngologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Kaiwen Liu
- Department of OrthopaedicQilu HospitalCheeloo College of Medicine of Shandong UniversityJinanChina
- Cheeloo College of MedicineShandong UniversityJinanChina
| | - Wei Zhao
- Department of OrthopaedicQilu HospitalCheeloo College of Medicine of Shandong UniversityJinanChina
- Cheeloo College of MedicineShandong UniversityJinanChina
| | - Qing Xie
- Department of PharmacyQilu HospitalCheeloo College of Medicine of Shandong UniversityJinanChina
| | - Lei Cheng
- Department of OrthopaedicQilu HospitalCheeloo College of Medicine of Shandong UniversityJinanChina
| |
Collapse
|
35
|
Zhang G, Liu M, Chen H, Wu Z, Gao Y, Ma Z, He X, Kang X. NF-κB signalling pathways in nucleus pulposus cell function and intervertebral disc degeneration. Cell Prolif 2021; 54:e13057. [PMID: 34028920 PMCID: PMC8249791 DOI: 10.1111/cpr.13057] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/25/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a common clinical degenerative disease of the spine. A series of factors, such as inflammation, oxidative stress and mechanical stress, promote degradation of the extracellular matrix (ECM) of the intervertebral discs (IVD), leading to dysfunction and structural destruction of the IVD. Nuclear factor-κB (NF-κB) transcription factor has long been regarded as a pathogenic factor of IDD. Therefore, NF-κB may be an ideal therapeutic target for IDD. As NF-κB is a multifunctional functional transcription factor with roles in a variety of biological processes, a comprehensive understanding of the function and regulatory mechanism of NF-κB in IDD pathology will be useful for the development of targeted therapeutic strategies for IDD, which can prevent the progression of IDD and reduce potential risks. This review discusses the role of the NF-κB signalling pathway in the nucleus pulposus (NP) in the process of IDD to understand pathological NP degeneration further and provide potential therapeutic targets that may interfere with NF-κB signalling for IDD therapy.
Collapse
Affiliation(s)
- Guang‐Zhi Zhang
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Ming‐Qiang Liu
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Hai‐Wei Chen
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Zuo‐Long Wu
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Yi‐Cheng Gao
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Zhan‐Jun Ma
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Xue‐Gang He
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Xue‐Wen Kang
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal DisordersLanzhouChina
| |
Collapse
|
36
|
Cui H, Zhang J, Li Z, Chen F, Cui H, Du X, Liu H, Wang J, Diwan AD, Zheng Z. Growth differentiation factor-6 attenuates inflammatory and pain-related factors and degenerated disc-induced pain behaviors in rat model. J Orthop Res 2021; 39:959-970. [PMID: 32617997 DOI: 10.1002/jor.24793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 02/04/2023]
Abstract
Previous studies have indicated that growth differentiation factor 6 (GDF6) is a potential candidate for intervertebral disc (IVD) degeneration (IDD) treatment. Here, we investigated the effect of GDF6 on IDD by examining changes in disc structure and the expression of inflammatory and pain-related factors. A rat posterior disc puncture model of single segments and three consecutive segments was constructed, and GDF6 or phosphate-buffered solution was administered via intradiscal injection 1 or 2 weeks after surgery. Magnetic resonance imaging showed a clear degeneration signal in the punctured disc, which was inhibited by GDF6. Histological staining revealed that GDF6 did not significantly improve the structure of IVDs in rats 8 weeks after puncture surgery, but it had an inhibitory effect on expression of the tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-1β in the IVD. Furthermore, GDF6 was found to protect the morphology and structure of the IVD 32 weeks after surgery. Mechanical and thermal hyperalgesia tests suggested that GDF6 injection can significantly improve mechanical and thermal-stimulated pain behavior in rats and inhibit the expression of inflammatory factors TNF-α and IL-1β and the pain factor calcitonin gene-related peptide in the dorsal root ganglion. A rat protein array test indicated that GDF6 could reduce the expression of cytokines IL-6, intercellular cell adhesion molecule-1, matrix metalloproteinase-13, IL-1β, and TNF-α and increase the expression of tissue inhibitor of metalloproteinases 1, Transforming growth factor-beta 2, IL-10, and resistin in a TNF-α-induced IDD cell model. Thus, our study demonstrates that GDF6 can improve the structure of the IVD, inhibit the expression of inflammatory and pain-related factors, and improve pain behavior in rats. Clinical Significance: To establish further preclinical research and clinical trials, comprehensive data are needed to validate the regenerative properties of GDF6. Ideally, a regenerative agent should also be able to relieve discogenic pain, achieving the best clinical outcomes.
Collapse
Affiliation(s)
- Haowen Cui
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Spine Surgery, Shenzhen Second People's Hospital, The 1st Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Zemin Li
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fan Chen
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haitao Cui
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xianfa Du
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Liu
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianru Wang
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ashish D Diwan
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia.,Department of Orthopaedic Surgery, Spine Service, St. George Hospital Campus, Kogarah, New South Wales, Australia
| | - Zhaomin Zheng
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Pain Research Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Wu ZL, Xie QQ, Liu TC, Yang X, Zhang GZ, Zhang HH. Role of the Wnt pathway in the formation, development, and degeneration of intervertebral discs. Pathol Res Pract 2021; 220:153366. [PMID: 33647863 DOI: 10.1016/j.prp.2021.153366] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Intervertebral disc degeneration (IVDD) is an age-related degenerative disease that is the main cause of low back pain. It seriously affects the quality of life of patients and places a heavy economic burden on families and society. The Wnt pathway plays an important role in the growth, development, and degeneration of intervertebral discs (IVDs). In the embryonic stage, the Wnt pathway participates in the growth and development of IVD by promoting the transformation of progenitor cells into notochord cells and the extension of the notochord. However, the activation of the Wnt pathway after birth promotes IVD cell senescence, apoptosis, and degradation of the extracellular matrix and induces the production of inflammatory factors, thereby accelerating the IVDD process. This article reviews the relationship between the Wnt pathway and IVD, emphasizing its influence on IVD growth, development, and degeneration. Targeting this pathway may become an effective strategy for the treatment of IVDD.
Collapse
Affiliation(s)
- Zuo-Long Wu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China
| | - Qi-Qi Xie
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China
| | - Tai-Cong Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China
| | - Xing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China
| | - Guang-Zhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China
| | - Hai-Hong Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China.
| |
Collapse
|
38
|
Lyu FJ, Cui H, Pan H, MC Cheung K, Cao X, Iatridis JC, Zheng Z. Painful intervertebral disc degeneration and inflammation: from laboratory evidence to clinical interventions. Bone Res 2021; 9:7. [PMID: 33514693 PMCID: PMC7846842 DOI: 10.1038/s41413-020-00125-x] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Low back pain (LBP), as a leading cause of disability, is a common musculoskeletal disorder that results in major social and economic burdens. Recent research has identified inflammation and related signaling pathways as important factors in the onset and progression of disc degeneration, a significant contributor to LBP. Inflammatory mediators also play an indispensable role in discogenic LBP. The suppression of LBP is a primary goal of clinical practice but has not received enough attention in disc research studies. Here, an overview of the advances in inflammation-related pain in disc degeneration is provided, with a discussion on the role of inflammation in IVD degeneration and pain induction. Puncture models, mechanical models, and spontaneous models as the main animal models to study painful disc degeneration are discussed, and the underlying signaling pathways are summarized. Furthermore, potential drug candidates, either under laboratory investigation or undergoing clinical trials, to suppress discogenic LBP by eliminating inflammation are explored. We hope to attract more research interest to address inflammation and pain in IDD and contribute to promoting more translational research.
Collapse
Affiliation(s)
- Feng-Juan Lyu
- grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, China
| | - Haowen Cui
- grid.12981.330000 0001 2360 039XDepartment of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hehai Pan
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XBreast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kenneth MC Cheung
- grid.194645.b0000000121742757Department of Orthopedics & Traumatology, The University of Hong Kong, Hong Kong, SAR China
| | - Xu Cao
- grid.21107.350000 0001 2171 9311Department of Orthopedic Surgery, Johns Hopkins University, Baltimore, MD USA
| | - James C. Iatridis
- grid.59734.3c0000 0001 0670 2351Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Zhaomin Zheng
- grid.12981.330000 0001 2360 039XDepartment of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XPain Research Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Jing X, Luan Z, Liu B. miR-558 Reduces the Damage of HBE Cells Exposed to Cigarette Smoke Extract by Targeting TNFRSF1A and Inactivating TAK1/MAPK/NF-κB Pathway. Immunol Invest 2021; 51:787-801. [PMID: 33459100 DOI: 10.1080/08820139.2021.1874977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a chronic smoking-related lung disease associated with higher mortality and morbidity. Herein, we attempted to investigate the function of miR-558/TNF Receptor Superfamily Member 1A (TNFRSF1A) in the progression of COPD. METHODS GEO database was applied to filtrate the differentially expressed mRNAs and miRNAs. KEGG enrichment was used to select the meaningful pathway related to the differentially expressed genes. TargetScan was used to predict the upstream regulator of TNFRSF1A, which was further affirmed by dual luciferase assay. HBE cells were stimulated by 20 μg/mL cigarette smoke extract (CSE) to mimic the COPD in vitro. The activity, apoptosis and inflammatory factors of HBE cells were evaluated by biological experiments. The levels of proteins related to TAK1/MAPK/NF-κB pathway were measured by Western blot. RESULTS TNFRSF1A is found to be highly expressed in COPD samples and enriched in TNF signaling pathway through bioinformatics analysis. miR-558 was verified as an upstream regulator of TNFRSF1A and negatively regulated TNFRSF1A expression. Up-regulation of miR-558 alleviated CSE-induced damage on HBE cells. The alleviative effect of miR-558 mimic on CSE-induced damage was suppressed by TNFRSF1A overexpression. The elevated expression of p-TAK1/p-p38 MAPK/p-NF-κB P65 in CSE condition was suppressed by miR-558 up-regulation. However, the results were reversed by TNFRSF1A overexpression. TAK1 inhibitor blocked the activation of TAK1/MAPK/NF-κB pathway, which was consistent with the results from miR-558 up-regulation. CONCLUSIONS Up-regulation of miR-558 relieved the damage of HBE cells-triggered by CSE via reducing TNFRSF1A and inactivating TAK1/MAPK/NF-κB pathway, affording novel molecules for COPD treatment.
Collapse
Affiliation(s)
- Xubo Jing
- Department of Infectious Disease, Yantai Mountain Hospital of Yantai, Yantai, Shandong, P. R. China
| | - Zhaoji Luan
- Department of Respiratory and Critical Care Medicine, Zibo First Hospital, Zibo, Shandong, P. R. China
| | - Baoliang Liu
- Department of Respiratory and Critical Care Medicine, Zibo First Hospital, Zibo, Shandong, P. R. China
| |
Collapse
|
40
|
Liu D, Zhang X, Liu X, Zhang A, Zhu B. Roles of a small GTPase Sar1 in ecdysteroid signaling and immune response of red swamp crayfish Procambarus clarkii. Int J Biol Macromol 2020; 166:550-556. [PMID: 33137382 DOI: 10.1016/j.ijbiomac.2020.10.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
Secretion-associated and ras-related protein 1 (Sar1) is a small GTPase that plays an important role in the transport of protein coated with coat protein complex II vesicles. However, its alternative roles in the biological processes of Procambarus clarkii remain unclear. Here, a sar1 gene (named as Pc-sar1) with an open reading frame of 582 bp from P. clarkii was identified. Pc-sar1 was expressed in all examined tissues with highest expression levels in muscle, which was determined by real-time PCR and western blotting. After the induction of lipopolysaccharide (LPS) and polycytidylic acid (Poly I: C), the transcriptional levels of Pc-sar1 differed in hepatopancreas, gill, muscle and intestine. In contrast, the expression of Pc-sar1 was upregulated by 20-hydroxyecdysone in these four tissues. In addition, the RNA interference of Pc-sar1 significantly affected the expression levels of immune and hormone-related genes. These results indicate that Pc-sar1 is involved in the innate immune response and ecdysteroid signaling pathway.
Collapse
Affiliation(s)
- Die Liu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaojiao Zhang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoxiao Liu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Awei Zhang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Baojian Zhu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
41
|
Wang Y, Che M, Xin J, Zheng Z, Li J, Zhang S. The role of IL-1β and TNF-α in intervertebral disc degeneration. Biomed Pharmacother 2020; 131:110660. [PMID: 32853910 DOI: 10.1016/j.biopha.2020.110660] [Citation(s) in RCA: 359] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Low back pain (LBP), a prevalent and costly disease around the world, is predominantly caused by intervertebral disc (IVD) degeneration (IDD). LBP also presents a substantial burden to public health and the economy. IDD is mainly caused by aging, trauma, genetic susceptibility, and other factors. It is closely associated with changes in tissue structure and function, including progressive destruction of the extracellular matrix (ECM), enhanced senescence, disc cell death, and impairment of tissue biomechanical function. The inflammatory process, exacerbated by cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), are considered to be the key mediators of IDD and LBP. IL-1β and TNF-α are the most important proinflammatory cytokines, as they have powerful proinflammatory activities and can promote the secretion of a variety of proinflammatory mediators. They are also upregulated in the degenerative IVDs, and they are closely related to various pathological IDD processes, including inflammatory response, matrix destruction, cellular senescence, autophagy, apoptosis, pyroptosis, and proliferation. Therefore, anti-IL-1β and anti-TNF-α therapies may have the potential to alleviate disc degeneration and LBP. In this paper, we reviewed the expression pattern and signal transduction pathways of IL-1β and TNF-α, and we primarily focused on their similar and different roles in IDD. Because IL-1β and TNF-α inhibition have the potential to alleviate IDD, an in-depth understanding of the role of IL-1β and TNF-α in IDD will benefit the development of new treatment methods for disc degeneration with IL-1β and TNF-α at the core.
Collapse
Affiliation(s)
- Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Mingxue Che
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jiangbi Li
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
42
|
khorshid Sofyani E, sharifi R. Synergistic Effect of Docetaxel Combined with Quinacrine on Induction of Apoptosis and Reduction of Cell proliferation in a Lung Cancer Cell Line. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.29252/mlj.14.4.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
43
|
Zhao Y, Qiu C, Wang W, Peng J, Cheng X, Shangguan Y, Xu M, Li J, Qu R, Chen X, Jia S, Luo D, Liu L, Li P, Guo F, Vasilev K, Liu L, Hayball J, Dong S, Pan X, Li Y, Guo L, Cheng L, Li W. Cortistatin protects against intervertebral disc degeneration through targeting mitochondrial ROS-dependent NLRP3 inflammasome activation. Theranostics 2020; 10:7015-7033. [PMID: 32550919 PMCID: PMC7295059 DOI: 10.7150/thno.45359] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Intervertebral disc (IVD) degeneration is a common degenerative disease that can lead to collapse or herniation of the nucleus pulposus (NP) and result in radiculopathy in patients. Methods: NP tissue and cells were isolated from patients and mice, and the expression profile of cortistatin (CST) was analysed. In addition, ageing of the NP was compared between 6-month-old WT and CST-knockout (CST-/-) mice. Furthermore, NP tissues and cells were cultured to validate the role of CST in TNF-α-induced IVD degeneration. Moreover, in vitro and in vivo experiments were performed to identify the potential role of CST in mitochondrial dysfunction, mitochondrial ROS generation and activation of the NLRP3 inflammasome during IVD degeneration. In addition, NF-κB signalling pathway activity was tested in NP tissues and cells from CST-/- mice. Results: The expression of CST in NP cells was diminished in the ageing- and TNF-α-induced IVD degeneration process. In addition, compared with WT mice, aged CST-/- mice displayed accelerated metabolic imbalance and enhanced apoptosis, and these mice showed a disorganized NP tissue structure. Moreover, TNF-α-mediated catabolism and apoptosis were alleviated by exogenous CST treatment. Furthermore, CST inhibited mitochondrial dysfunction in NP cells through IVD degeneration and suppressed activation of the NLRP3 inflammasome. In vitro and ex vivo experiments indicated that increased NF-κB pathway activity might have been associated with the IVD degeneration observed in CST-/- mice. Conclusion: This study suggests the role of CST in mitochondrial ROS and activation of the NLRP3 inflammasome in IVD degeneration, which might shed light on therapeutic targets for IVD degeneration.
Collapse
|
44
|
Obaidi I, Cassidy H, Ibáñez Gaspar V, McCaul J, Higgins M, Halász M, Reynolds AL, Kennedy BN, McMorrow T. Curcumin Sensitizes Kidney Cancer Cells to TRAIL-Induced Apoptosis via ROS Mediated Activation of JNK-CHOP Pathway and Upregulation of DR4. BIOLOGY 2020; 9:E92. [PMID: 32370057 PMCID: PMC7284747 DOI: 10.3390/biology9050092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), is a selective anticancer cytokine capable of exerting a targeted therapy approach. Disappointingly, recent research has highlighted the development of TRAIL resistance in cancer cells, thus minimising its usefulness in clinical settings. However, several recent studies have demonstrated that cancer cells can be sensitised to TRAIL through the employment of a combinatorial approach, utilizing TRAIL in conjunction with other natural or synthetic anticancer agents. In the present study, the chemo-sensitising effect of curcumin on TRAIL-induced apoptosis in renal carcinoma cells (RCC) was investigated. The results indicate that exposure of kidney cancer ACHN cells to curcumin sensitised the cells to TRAIL, with the combination treatment of TRAIL and curcumin synergistically targeting the cancer cells without affecting the normal renal proximal tubular epithelial cells (RPTEC/TERT1) cells. Furthermore, this combination treatment was shown to induce caspase-dependent apoptosis, inhibition of the proteasome, induction of ROS, upregulation of death receptor 4 (DR4), alterations in mitogen-activated protein kinase (MAPK) signalling and induction of endoplasmic reticulum stress. An in vivo zebrafish embryo study demonstrated the effectiveness of the combinatorial regime to inhibit tumour formation without affecting zebrafish embryo viability or development. Overall, the results arising from this study demonstrate that curcumin has the ability to sensitise TRAIL-resistant ACHN cells to TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Ismael Obaidi
- NIBRT|National Institute for Bioprocessing, Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co., A94 X099 Dublin, Ireland
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
- College of Pharmacy, University of Babylon, Babylon 51002, Iraq
| | - Hilary Cassidy
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, 4 Dublin, Ireland;
| | - Verónica Ibáñez Gaspar
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Jasmin McCaul
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Michael Higgins
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Melinda Halász
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, 4 Dublin, Ireland;
| | - Alison L. Reynolds
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
- UCD School of Veterinary Medicine, Rm 232, University College Dublin, Belfield, 4 Dublin, Ireland
| | - Breandan N. Kennedy
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Tara McMorrow
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| |
Collapse
|
45
|
Xiao J, Yao R, Xu B, Wen H, Zhong J, Li D, Zhou Z, Xu J, Wang H. Inhibition of PDE4 Attenuates TNF-α-Triggered Cell Death Through Suppressing NF-κB and JNK Activation in HT-22 Neuronal Cells. Cell Mol Neurobiol 2020; 40:421-435. [PMID: 31659561 PMCID: PMC11448866 DOI: 10.1007/s10571-019-00745-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor-α (TNF-α) is a critical pro-inflammatory cytokine regulating neuroinflammation. At high concentrations, it is toxic to neurons, and such damage is positively correlated with acute and chronic neurological diseases. Our previous studies showed that inhibition of phosphodiesterase 4 (PDE4) attenuated the production of TNF-α induced by lipopolysaccharides in microglial cells. However, whether PDE4 inhibition can block the neurotoxic effects of TNF-α in neuronal cells is unknown. In this study, we investigated the protective effects of FCPR16, a novel PDE4 inhibitor, against TNF-α-induced cellular apoptosis in HT-22 hippocampal neuronal cells. We demonstrated that FCPR16 dose-dependently increased the viability of HT-22 cells exposed to TNF-α insult. Propidium iodide/calcein staining and flow cytometry analysis showed that FCPR16 decreased cell apoptosis triggered by TNF-α. Western blot analysis showed that FCPR16 decreased the level of cleaved caspase 3 and caspase 8, but had no effect on caspase 9. Mechanistically, FCPR16 blocked the TNF-α-induced phosphorylation of c-Jun N-terminal kinase (JNK) in HT-22 cells, and inhibition of JNK showed a similar protective effect as FCPR16. Furthermore, FCPR16 decreased the translocation of nuclear factor-κB (NF-κB) p65 from the cytosol into the nucleus. In addition, FCPR16 decreased the expression of inducible nitric oxide synthase and the production of reactive oxygen species in HT-22 cells exposed to TNF-α. Moreover, knockdown of PDE4B by specific small interfering RNA reduced the apoptosis of HT-22 cells treated with TNF-α. Taken together, our findings suggest that FCPR16 promotes the survival of neuronal cells exposed to TNF-α by suppressing the activation of JNK and NF-κB.
Collapse
Affiliation(s)
- Jiao Xiao
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Rumeng Yao
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingtian Xu
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Huizhen Wen
- Central Laboratory, Southern Medical University, Guangzhou, 510515, China
| | - Jiahong Zhong
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Dan Li
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhongzhen Zhou
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiangping Xu
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Central Laboratory, Southern Medical University, Guangzhou, 510515, China.
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.
| | - Haitao Wang
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
46
|
Chen F, Jiang G, Liu H, Li Z, Pei Y, Wang H, Pan H, Cui H, Long J, Wang J, Zheng Z. Melatonin alleviates intervertebral disc degeneration by disrupting the IL-1β/NF-κB-NLRP3 inflammasome positive feedback loop. Bone Res 2020; 8:10. [PMID: 32133213 PMCID: PMC7028926 DOI: 10.1038/s41413-020-0087-2] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/30/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
The inflammatory response is induced by the overexpression of inflammatory cytokines, mainly interleukin (IL)-1β, and is one of the main causes of intervertebral disc degeneration (IVDD). NLR pyrin domain containing 3 (NLRP3) inflammasome activation is an important source of IL-1β. As an anti-inflammatory neuroendocrine hormone, melatonin plays various roles in different pathophysiological conditions. However, its roles in IVDD are still not well understood and require more examination. First, we demonstrated that melatonin delayed the progression of IVDD and relieved IVDD-related low back pain in a rat needle puncture IVDD model; moreover, NLRP3 inflammasome activation (NLRP3, p20, and IL-1β levels) was significantly upregulated in severely degenerated human discs and a rat IVDD model. Subsequently, an IL-1β/NF-κB-NLRP3 inflammasome activation positive feedback loop was found in nucleus pulposus (NP) cells that were treated with IL-1β. In these cells, expression of NLRP3 and p20 was significantly increased, NF-κB signaling was involved in this regulation, and mitochondrial reactive oxygen species (mtROS) production increased. Furthermore, we found that melatonin disrupted the IL-1β/NF-κB-NLRP3 inflammasome activation positive feedback loop in vitro and in vivo. Melatonin treatment decreased NLRP3, p20, and IL-1β levels by inhibiting NF-κB signaling and downregulating mtROS production. Finally, we showed that melatonin mediated the disruption of the positive feedback loop of IL-1β in vivo. In this study, we showed for the first time that IL-1β promotes its own expression by upregulating NLRP3 inflammasome activation. Furthermore, melatonin disrupts the IL-1β positive feedback loop and may be a potential therapeutic agent for IVDD.
Collapse
Affiliation(s)
- Fan Chen
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Guowei Jiang
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Hui Liu
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Zemin Li
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Yuxin Pei
- 2Department of Pediatric Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Hua Wang
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Hehai Pan
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Haowen Cui
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Jun Long
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Jianru Wang
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Zhaomin Zheng
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
- 3Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080 China
| |
Collapse
|