1
|
Nelson BB, Mäkelä JTA, Lawson TB, Patwa AN, Snyder BD, McIlwraith CW, Grinstaff MW, Seabaugh KA, Barrett MF, Goodrich LR, Kawcak CE. Longitudinal in vivo cationic contrast-enhanced computed tomography classifies equine articular cartilage injury and repair. J Orthop Res 2024; 42:2264-2276. [PMID: 38715519 DOI: 10.1002/jor.25869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 10/19/2024]
Abstract
Cationic contrast-enhanced computed tomography (CECT) capitalizes on increased contrast agent affinity to the charged proteoglycans in articular cartilage matrix to provide quantitative assessment of proteoglycan content with enhanced images. While high resolution microCT has demonstrated success, we investigate cationic CECT use in longitudinal in vivo imaging at clinical resolution. We hypothesize that repeated administration of CA4+ will have no adverse side effects or complications, and that sequential in vivo imaging assessments will distinguish articular cartilage repair tissue from early degenerative and healthy cartilage in critically sized chondral defects. In an established equine translational preclinical model, lameness and synovial effusion scores are similar to controls after repeated injections of CA4+ (eight injections over 16 weeks) compared to controls. Synovial fluid total protein, leukocyte concentration, and sGAG and PGE2 concentrations and articular cartilage and synovial membrane scores are also equivalent to controls. Longitudinal in vivo cationic CECT attenuation in repair tissue is significantly lower than peripheral to (adjacent) and distantly from defects (remote sites) by 4 weeks (p < 0.001), and this difference persists until 16 weeks. At the 6- and 8-week time points, the adjacent locations exhibit significantly lower cationic CECT attenuation compared with the remote sites, reflecting peri-defect degeneration (p < 0.01). Cationic CECT attenuation at clinical resolution significantly correlates with cationic CECT (microCT) (r = 0.69, p < 0.0001), sGAG (r = 0.48, p < 0.0001), and ICRS II histology score (r = 0.63, p < 0.0001). In vivo cationic CECT imaging at clinical resolution distinguishes fibrous repair tissue from degenerative and healthy hyaline cartilage and correlates with molecular tissue properties of articular cartilage.
Collapse
Affiliation(s)
- Brad B Nelson
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Janne T A Mäkelä
- Harvard Medical School, Beth Israel Deaconess Medical Center, Center for Advanced Orthopaedic Studies, Boston, Massachusetts, USA
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Taylor B Lawson
- Harvard Medical School, Beth Israel Deaconess Medical Center, Center for Advanced Orthopaedic Studies, Boston, Massachusetts, USA
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Amit N Patwa
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Deparment of Chemistry, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Brian D Snyder
- Harvard Medical School, Beth Israel Deaconess Medical Center, Center for Advanced Orthopaedic Studies, Boston, Massachusetts, USA
| | - C Wayne McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Mark W Grinstaff
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Kathryn A Seabaugh
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Myra F Barrett
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Laurie R Goodrich
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Christopher E Kawcak
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
A Cationic Contrast Agent in X-ray Imaging of Articular Cartilage: Pre-Clinical Evaluation of Diffusion and Attenuation Properties. Diagnostics (Basel) 2022; 12:diagnostics12092111. [PMID: 36140512 PMCID: PMC9497730 DOI: 10.3390/diagnostics12092111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was the preliminary assessment of a new cationic contrast agent, the CA4+, via the analysis of spatial distribution in cartilage of ex vivo bovine samples, at micrometer and millimeter scale. Osteochondral plugs (n = 18) extracted from bovine stifle joints (n = 2) were immersed in CA4+ solution up to 26 h. Planar images were acquired at different time points, using a microCT apparatus. The CA4+ distribution in cartilage and saturation time were evaluated. Tibial plates from bovine stifle joints (n = 3) were imaged with CT, before and after 24 h-CA4+ bath immersion, at different concentrations. Afterward, potential CA4+ washout from cartilage was investigated. From microCT acquisitions, the CA4+ distribution differentiated into three distinct layers inside the cartilage, reflecting the spatial distribution of proteoglycans. After 24 h of diffusion, the iodine concentration reached in cartilage was approximately seven times that of the CA4+ bath. The resulting saturation time was 1.9 ± 0.9 h and 2.6 ± 2.9 h for femoral and tibial samples, respectively. Analysis of clinical CT acquisitions confirmed overall contrast enhancement of cartilage after 24 h immersion, observed for each CA4+ concentration. Distinct contrast enhancement was reached in different cartilage regions, depending on tissue’s local features. Incomplete but remarkable washout of cartilage was observed. CA4+ significantly improved cartilage visualization and its qualitative analysis.
Collapse
|
3
|
Gao X, Patwa AN, Deng Z, Utsunomiya H, Grinstaff MW, Ruzbarsky JJ, Snyder BD, Ravuri S, Philippon MJ, Huard J. Influence of fixation on CA4+ contrast enhanced microCT of articular cartilage and subsequent feasibility for histological evaluation. Am J Transl Res 2021; 13:8921-8937. [PMID: 34540005 PMCID: PMC8430171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
CA4+ is a novel cationic iodinated contrast agent utilized for contrast-enhanced microCT (CECT). In this study, we compared CA4+ CECT for cartilage quantification of unfixed and neutral buffered formalin (NBF)-fixed rabbit distal femur cartilage after 8-, 24- and 30-hours of contrast agent diffusion. The stability of CA4+ binding to cartilage after PBS soak and decalcification was also investigated by CECT. We further assessed the feasibility of cartilage histology and immunohistochemistry after CA4+ CECT. Contrast-enhanced CA4+ labeled unfixed and NBF-fixed cartilage tissues facilitate articular cartilage quantification and accurate morphological assessment. The NBF fixed tissues demonstrate higher cartilage intensity and imaging characteristics distinct from subchondral bone than unfixed tissues while maintaining stable binding even after decalcification with 10% EDTA. The unfixed tissues labeled with CA4+, after CECT imaging and decalcification, are amenable to H&E, Alcian blue, and Safranin O staining, as well as Col2 immunohistochemistry. In contrast, only H&E and Alcian blue staining can be accomplished with CA4+ labeled NBF fixed cartilage, and CA4+ labeling interferes with downstream immunohistochemistry and Safranin O staining, likely due to its positive charge. In conclusion, CA4+ CECT of NBF fixed tissues provides high quality microCT cartilage images and allows for convenient quantification along with feasible downstream H&E and Alcian blue staining after decalcification. CA4+ CECT of unfixed tissues enables researchers to obtain both quantitative microCT as well as cartilage histology and immunohistochemistry data from one set of animals in a cost-, time-, and labor-efficient manner.
Collapse
Affiliation(s)
- Xueqin Gao
- Steadman Philippon Research InstituteVail, CO, USA
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at HoustonHouston, TX, USA
| | - Amit N Patwa
- Department of Biomedical Engineering, Boston UniversityBoston, MA, USA
- Current Institution, School of Science, Navrachana UniversityVadodara, Gujarat, India
| | - Zhenhan Deng
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at HoustonHouston, TX, USA
| | | | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston UniversityBoston, MA, USA
| | | | - Brian D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | | | | | - Johnny Huard
- Steadman Philippon Research InstituteVail, CO, USA
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at HoustonHouston, TX, USA
| |
Collapse
|
4
|
Cresswell EN, Ruspi BD, Wollman CW, Peal BT, Deng S, Toler AB, McDonough SP, Palmer SE, Reesink HL. Determination of correlation of proximal sesamoid bone osteoarthritis with high-speed furlong exercise and catastrophic sesamoid bone fracture in Thoroughbred racehorses. Am J Vet Res 2021; 82:467-477. [PMID: 34032482 DOI: 10.2460/ajvr.82.6.467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To examine whether proximal sesamoid bone (PSB) articular cartilage and bone osteoarthritic changes or palmar osteochondral disease (POD) scores were associated with exercise history and catastrophic PSB fracture in Thoroughbred racehorses. SAMPLES PSBs from 16 Thoroughbred racehorses (8 with and 8 without PSB fracture). PROCEDURES Exercise history was collected, and total career high-speed furlongs was used as the measure of total exercise per horse. At necropsy, medial and lateral condyles of the third metacarpus from each forelimb were assigned a POD score, followed by imaging with micro-CT for evaluation of osteophyte size. Three investigators that were blinded to the type of PSB (fracture or no fracture) used the Osteoarthritis Research Society International (OARSI) scoring system to evaluate acellularity, chondrocyte necrosis, cartilage fibrillation, chondrone formation, safranin O stain uptake, and tidemark advancement of 1 central sagittal tissue section/PSB (4 PSBs/horse). Cartilage thickness and bone necrosis were scored on the basis of histologic examination. RESULTS POD score, osteophyte size score, percentage of bone necrosis, tidemark advancement, chondrone formation, and total OARSI score were greater in horses with more accrued total career high-speed furlongs. Scores for POD, osteophyte size, fibrillation, acellularity, chondrone formation, and total OARSI were greater for horses with PSB fracture. CONCLUSIONS AND CLINICAL REVELANCE OARSI scoring revealed that more advanced osteoarthritic changes strongly correlated with total career high-speed furlongs and PSB fracture. However, the effect of exercise was dominant, suggesting that exercise history will be important to include in future models that aim to assess risk factors for catastrophic PSB fracture.
Collapse
|