1
|
Luo S, Chen Y, Zhou W, Canavese F, Li L. Pioneering a chick embryo model to explore the intrauterine etiology of developmental dysplasia of the hip in oligohydramnios conditions. Osteoarthritis Cartilage 2024; 32:869-880. [PMID: 38588889 DOI: 10.1016/j.joca.2024.03.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVE To explore the impact of oligohydramnios on fetal movement and hip development, given its association with developmental dysplasia of the hip (DDH) but unclear mechanisms. METHODS Chick embryos were divided into four groups based on the severity of oligohydramnios induced by amniotic fluid aspiration (control, 0.2 mL, 0.4 mL, 0.6 mL). Fetal movement was assessed by detection of movement and quantification of residual amniotic fluid volume. Hip joint development was assessed by gross anatomic analysis, micro-computed tomography (micro-CT) for cartilage assessment, and histologic observation at multiple time points. In addition, a subset of embryos from the 0.4 mL aspirated group underwent saline reinfusion and subsequent evaluation. RESULTS Increasing volumes of aspirated amniotic fluid resulted in worsening of fetal movement restrictions (e.g., 0.4 mL aspirated and control group at E10: frequency difference -7.765 [95% CI: -9.125, -6.404]; amplitude difference -0.343 [95% CI: -0.588, -0.097]). The 0.4 mL aspirated group had significantly smaller hip measurements compared to controls, with reduced acetabular length (-0.418 [95% CI: -0.575, -0.261]) and width (-0.304 [95% CI: -0.491, -0.117]) at day E14.5. Histological analysis revealed a smaller femoral head (1.084 ± 0.264 cm) and shallower acetabulum (0.380 ± 0.106 cm) in the 0.4 mL group. Micro-CT showed cartilage matrix degeneration (13.6% [95% CI: 0.6%, 26.7%], P = 0.043 on E14.5). Saline reinfusion resulted in significant improvements in the femoral head to greater trochanter (0.578 [95% CI: 0.323, 0.833], P = 0.001). CONCLUSIONS Oligohydramnios can cause DDH by restricting fetal movement and disrupting hip morphogenesis in a time-dependent manner. Timely reversal of oligohydramnios during the fetal period may prevent DDH.
Collapse
Affiliation(s)
- Shaoting Luo
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China
| | - Yufan Chen
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China
| | - Weizheng Zhou
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China
| | - Federico Canavese
- Department of Pediatric Orthopedic Surgery, Lille University Centre, Jeanne de Flandre Hospital, 59000 Lille, France
| | - Lianyong Li
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China.
| |
Collapse
|
2
|
Godivier J, Lawrence EA, Wang M, Hammond CL, Nowlan NC. Compressive stress gradients direct mechanoregulation of anisotropic growth in the zebrafish jaw joint. PLoS Comput Biol 2024; 20:e1010940. [PMID: 38330044 PMCID: PMC10880962 DOI: 10.1371/journal.pcbi.1010940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/21/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Mechanical stimuli arising from fetal movements are critical factors underlying joint growth. Abnormal fetal movements negatively affect joint shape features with important implications for joint health, but the mechanisms by which mechanical forces from fetal movements influence joint growth are still unclear. In this research, we quantify zebrafish jaw joint growth in 3D in free-to-move and immobilised fish larvae between four and five days post fertilisation. We found that the main changes in size and shape in normally moving fish were in the ventrodorsal axis, while growth anisotropy was lost in the immobilised larvae. We next sought to determine the cell level activities underlying mechanoregulated growth anisotropy by tracking individual cells in the presence or absence of jaw movements, finding that the most dramatic changes in growth rates due to jaw immobility were in the ventrodorsal axis. Finally, we implemented mechanobiological simulations of joint growth with which we tested hypotheses relating specific mechanical stimuli to mechanoregulated growth anisotropy. Different types of mechanical stimulation were incorporated into the simulation to provide the mechanoregulated component of growth, in addition to the baseline (non-mechanoregulated) growth which occurs in the immobilised animals. We found that when average tissue stress over the opening and closing cycle of the joint was used as the stimulus for mechanoregulated growth, joint morphogenesis was not accurately predicted. Predictions were improved when using the stress gradients along the rudiment axes (i.e., the variation in magnitude of compression to magnitude of tension between local regions). However, the most accurate predictions were obtained when using the compressive stress gradients (i.e., the variation in compressive stress magnitude) along the rudiment axes. We conclude therefore that the dominant biophysical stimulus contributing to growth anisotropy during early joint development is the gradient of compressive stress experienced along the growth axes under cyclical loading.
Collapse
Affiliation(s)
- Josepha Godivier
- Department of Bioengineering, Imperial College London, London, United Kingdom
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Elizabeth A. Lawrence
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Mengdi Wang
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Chrissy L. Hammond
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London, United Kingdom
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Collins JM, Lang A, Parisi C, Moharrer Y, Nijsure MP, Thomas Kim JH, Ahmed S, Szeto GL, Qin L, Gottardi R, Dyment NA, Nowlan NC, Boerckel JD. YAP and TAZ couple osteoblast precursor mobilization to angiogenesis and mechanoregulation in murine bone development. Dev Cell 2024; 59:211-227.e5. [PMID: 38141609 PMCID: PMC10843704 DOI: 10.1016/j.devcel.2023.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/07/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Fetal bone development occurs through the conversion of avascular cartilage to vascularized bone at the growth plate. This requires coordinated mobilization of osteoblast precursors with blood vessels. In adult bone, vessel-adjacent osteoblast precursors are maintained by mechanical stimuli; however, the mechanisms by which these cells mobilize and respond to mechanical cues during embryonic development are unknown. Here, we show that the mechanoresponsive transcriptional regulators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) spatially couple osteoblast precursor mobilization to angiogenesis, regulate vascular morphogenesis to control cartilage remodeling, and mediate mechanoregulation of embryonic murine osteogenesis. Mechanistically, YAP and TAZ regulate a subset of osteoblast-lineage cells, identified by single-cell RNA sequencing as vessel-associated osteoblast precursors, which regulate transcriptional programs that direct blood vessel invasion through collagen-integrin interactions and Cxcl12. Functionally, in 3D human cell co-culture, CXCL12 treatment rescues angiogenesis impaired by stromal cell YAP/TAZ depletion. Together, these data establish functions of the vessel-associated osteoblast precursors in bone development.
Collapse
Affiliation(s)
- Joseph M Collins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annemarie Lang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cristian Parisi
- Department of Bioengineering, Imperial College London, London, UK
| | - Yasaman Moharrer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Mechanical Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P Nijsure
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jong Hyun Thomas Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saima Ahmed
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Ling Qin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Riccardo Gottardi
- Department of Pediatrics, Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nathaniel A Dyment
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London, UK; School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Joel D Boerckel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Song T, McNamara JW, Baby A, Ma W, Landim-Vieira M, Natesan S, Pinto JR, Lorenz JN, Irving TC, Sadayappan S. Unlocking the Role of sMyBP-C: A Key Player in Skeletal Muscle Development and Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563591. [PMID: 38076858 PMCID: PMC10705270 DOI: 10.1101/2023.10.23.563591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Skeletal muscle is the largest organ in the body, responsible for gross movement and metabolic regulation. Recently, variants in the MYBPC1 gene have been implicated in a variety of developmental muscle diseases, such as distal arthrogryposis. How MYBPC1 variants cause disease is not well understood. Here, through a collection of novel gene-edited mouse models, we define a critical role for slow myosin binding protein-C (sMyBP-C), encoded by MYBPC1, across muscle development, growth, and maintenance during prenatal, perinatal, postnatal and adult stages. Specifically, Mybpc1 knockout mice exhibited early postnatal lethality and impaired skeletal muscle formation and structure, skeletal deformity, and respiratory failure. Moreover, a conditional knockout of Mybpc1 in perinatal, postnatal and adult stages demonstrates impaired postnatal muscle growth and function secondary to disrupted actomyosin interaction and sarcomere structural integrity. These findings confirm the essential role of sMyBP-C in skeletal muscle and reveal specific functions in both prenatal embryonic musculoskeletal development and postnatal muscle growth and function.
Collapse
Affiliation(s)
- Taejeong Song
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - James W. McNamara
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Akhil Baby
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - John N. Lorenz
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Thomas C. Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
5
|
Tsinman T, Huang Y, Ahmed S, Levillain A, Evans MK, Jiang X, Nowlan N, Dyment N, Mauck R. Lack of skeletal muscle contraction disrupts fibrous tissue morphogenesis in the developing murine knee. J Orthop Res 2023; 41:2305-2314. [PMID: 37408453 PMCID: PMC10528502 DOI: 10.1002/jor.25659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Externally applied forces, such as those generated through skeletal muscle contraction, are important to embryonic joint formation, and their loss can result in gross morphologic defects including joint fusion. While the absence of muscle contraction in the developing chick embryo leads to dissociation of dense connective tissue structures of the knee and ultimately joint fusion, the central knee joint cavitates whereas the patellofemoral joint does not in murine models lacking skeletal muscle contraction, suggesting a milder phenotype. These differential results suggest that muscle contraction may not have as prominent of a role in the growth and development of dense connective tissues of the knee. To explore this question, we investigated the formation of the menisci, tendon, and ligaments of the developing knee in two murine models that lack muscle contraction. We found that while the knee joint does cavitate, there were multiple abnormalities in the menisci, patellar tendon, and cruciate ligaments. The initial cellular condensation of the menisci was disrupted and dissociation was observed at later embryonic stages. The initial cell condensation of the tendon and ligaments were less affected than the meniscus, but these tissues contained cells with hyper-elongated nuclei and displayed diminished growth. Interestingly, lack of muscle contraction led to the formation of an ectopic ligamentous structure in the anterior region of the joint as well. These results indicate that muscle forces are essential for the continued growth and maturation of these structures during this embryonic period.
Collapse
Affiliation(s)
- T.K. Tsinman
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Y. Huang
- Department of Bioengineering, Imperial College London, London, UK
| | - S. Ahmed
- Department of Bioengineering, Imperial College London, London, UK
| | - A.L. Levillain
- Department of Bioengineering, Imperial College London, London, UK
| | - MK. Evans
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - X. Jiang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
| | - N.C. Nowlan
- Department of Bioengineering, Imperial College London, London, UK
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - N.A. Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - R.L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA
| |
Collapse
|
6
|
Wernlé KK, Sonnenfelt MA, Leek CC, Ganji E, Sullivan AL, Offutt C, Shuff J, Ornitz DM, Killian ML. Loss of Fgfr1 and Fgfr2 in Scleraxis-lineage cells leads to enlarged bone eminences and attachment cell death. Dev Dyn 2023; 252:1180-1188. [PMID: 37212424 PMCID: PMC10524747 DOI: 10.1002/dvdy.600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Tendons and ligaments attach to bone are essential for joint mobility and stability in vertebrates. Tendon and ligament attachments (ie, entheses) are found at bony protrusions (ie, eminences), and the shape and size of these protrusions depend on both mechanical forces and cellular cues during growth. Tendon eminences also contribute to mechanical leverage for skeletal muscle. Fibroblast growth factor receptor (FGFR) signaling plays a critical role in bone development, and Fgfr1 and Fgfr2 are highly expressed in the perichondrium and periosteum of bone where entheses can be found. RESULTS AND CONCLUSIONS We used transgenic mice for combinatorial knockout of Fgfr1 and/or Fgfr2 in tendon/attachment progenitors (ScxCre) and measured eminence size and shape. Conditional deletion of both, but not individual, Fgfr1 and Fgfr2 in Scx progenitors led to enlarged eminences in the postnatal skeleton and shortening of long bones. In addition, Fgfr1/Fgfr2 double conditional knockout mice had more variation collagen fibril size in tendon, decreased tibial slope, and increased cell death at ligament attachments. These findings identify a role for FGFR signaling in regulating growth and maintenance of tendon/ligament attachments and the size and shape of bony eminences.
Collapse
Affiliation(s)
- Kendra K. Wernlé
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
- Institute of Anatomy, University of Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| | - Michael A. Sonnenfelt
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
| | - Connor C. Leek
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI 48109
| | - Elahe Ganji
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI 48109
- Department of Mechanical Engineering, University of Delaware, 130 Academy St, Newark, DE 19716
| | - Anna Lia Sullivan
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
| | - Claudia Offutt
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
| | - Jordan Shuff
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, Missouri, 63110
| | - Megan L. Killian
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI 48109
| |
Collapse
|
7
|
Khatib NS, Monsen J, Ahmed S, Huang Y, Hoey DA, Nowlan NC. Mechanoregulatory role of TRPV4 in prenatal skeletal development. SCIENCE ADVANCES 2023; 9:eade2155. [PMID: 36696489 PMCID: PMC9876556 DOI: 10.1126/sciadv.ade2155] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Biophysical cues are essential for guiding skeletal development, but the mechanisms underlying the mechanical regulation of cartilage and bone formation are unknown. TRPV4 is a mechanically sensitive ion channel involved in cartilage and bone cell mechanosensing, mutations of which lead to skeletal developmental pathologies. We tested the hypothesis that loading-driven prenatal skeletal development is dependent on TRPV4 activity. We first establish that mechanically stimulating mouse embryo hindlimbs cultured ex vivo stimulates knee cartilage growth, morphogenesis, and expression of TRPV4, which localizes to areas of high biophysical stimuli. We then demonstrate that loading-driven joint cartilage growth and shape are dependent on TRPV4 activity, mediated via control of cell proliferation and matrix biosynthesis, indicating a mechanism by which mechanical loading could direct growth and morphogenesis during joint formation. We conclude that mechanoregulatory pathways initiated by TRPV4 guide skeletal development; therefore, TRPV4 is a valuable target for the development of skeletal regenerative and repair strategies.
Collapse
Affiliation(s)
- Nidal S. Khatib
- Department of Bioengineering, Imperial College London, London, UK
| | - James Monsen
- Department of Bioengineering, Imperial College London, London, UK
| | - Saima Ahmed
- Department of Bioengineering, Imperial College London, London, UK
| | - Yuming Huang
- Department of Bioengineering, Imperial College London, London, UK
| | - David A. Hoey
- Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London, UK
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Collins JM, Lang A, Parisi C, Moharrer Y, Nijsure MP, Kim JH(T, Szeto GL, Qin L, Gottardi RL, Dyment NA, Nowlan NC, Boerckel JD. YAP and TAZ couple osteoblast precursor mobilization to angiogenesis and mechanoregulated bone development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524918. [PMID: 36711590 PMCID: PMC9882292 DOI: 10.1101/2023.01.20.524918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Endochondral ossification requires coordinated mobilization of osteoblast precursors with blood vessels. During adult bone homeostasis, vessel adjacent osteoblast precursors respond to and are maintained by mechanical stimuli; however, the mechanisms by which these cells mobilize and respond to mechanical cues during embryonic development are unknown. Previously, we found that deletion of the mechanoresponsive transcriptional regulators, YAP and TAZ, from Osterix-expressing osteoblast precursors and their progeny caused perinatal lethality. Here, we show that embryonic YAP/TAZ signaling couples vessel-associated osteoblast precursor mobilization to angiogenesis in developing long bones. Osterix-conditional YAP/TAZ deletion impaired endochondral ossification in the primary ossification center but not intramembranous osteogenesis in the bone collar. Single-cell RNA sequencing revealed YAP/TAZ regulation of the angiogenic chemokine, Cxcl12, which was expressed uniquely in vessel-associated osteoblast precursors. YAP/TAZ signaling spatially coupled osteoblast precursors to blood vessels and regulated vascular morphogenesis and vessel barrier function. Further, YAP/TAZ signaling regulated vascular loop morphogenesis at the chondro-osseous junction to control hypertrophic growth plate remodeling. In human cells, mesenchymal stromal cell co-culture promoted 3D vascular network formation, which was impaired by stromal cell YAP/TAZ depletion, but rescued by recombinant CXCL12 treatment. Lastly, YAP and TAZ mediated mechanotransduction for load-induced osteogenesis in embryonic bone.
Collapse
Affiliation(s)
- Joseph M. Collins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annemarie Lang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cristian Parisi
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Yasaman Moharrer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Mechanical Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P. Nijsure
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jong Hyun (Thomas) Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ling Qin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Riccardo L. Gottardi
- Department of Pediatrics, Division of Pulmonary Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nathanial A. Dyment
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London, United Kingdom
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Joel D. Boerckel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Murphy P, Rolfe RA. Building a Co-ordinated Musculoskeletal System: The Plasticity of the Developing Skeleton in Response to Muscle Contractions. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:81-110. [PMID: 37955772 DOI: 10.1007/978-3-031-38215-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The skeletal musculature and the cartilage, bone and other connective tissues of the skeleton are intimately co-ordinated. The shape, size and structure of each bone in the body is sculpted through dynamic physical stimuli generated by muscle contraction, from early development, with onset of the first embryo movements, and through repair and remodelling in later life. The importance of muscle movement during development is shown by congenital abnormalities where infants that experience reduced movement in the uterus present a sequence of skeletal issues including temporary brittle bones and joint dysplasia. A variety of animal models, utilising different immobilisation scenarios, have demonstrated the precise timing and events that are dependent on mechanical stimulation from movement. This chapter lays out the evidence for skeletal system dependence on muscle movement, gleaned largely from mouse and chick immobilised embryos, showing the many aspects of skeletal development affected. Effects are seen in joint development, ossification, the size and shape of skeletal rudiments and tendons, including compromised mechanical function. The enormous plasticity of the skeletal system in response to muscle contraction is a key factor in building a responsive, functional system. Insights from this work have implications for our understanding of morphological evolution, particularly the challenging concept of emergence of new structures. It is also providing insight for the potential of physical therapy for infants suffering the effects of reduced uterine movement and is enhancing our understanding of the cellular and molecular mechanisms involved in skeletal tissue differentiation, with potential for informing regenerative therapies.
Collapse
Affiliation(s)
- Paula Murphy
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Rebecca A Rolfe
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|
10
|
Egawa S, Griffin CT, Bishop PJ, Pintore R, Tsai HP, Botelho JF, Smith-Paredes D, Kuratani S, Norell MA, Nesbitt SJ, Hutchinson JR, Bhullar BAS. The dinosaurian femoral head experienced a morphogenetic shift from torsion to growth along the avian stem. Proc Biol Sci 2022; 289:20220740. [PMID: 36196539 PMCID: PMC9532989 DOI: 10.1098/rspb.2022.0740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Significant evolutionary shifts in locomotor behaviour often involve comparatively subtle anatomical transitions. For dinosaurian and avian evolution, medial overhang of the proximal femur has been central to discussions. However, there is an apparent conflict with regard to the evolutionary origin of the dinosaurian femoral head, with neontological and palaeontological data suggesting seemingly incongruent hypotheses. To reconcile this, we reconstructed the evolutionary history of morphogenesis of the proximal end of the femur from early archosaurs to crown birds. Embryological comparison of living archosaurs (crocodylians and birds) suggests the acquisition of the greater overhang of the femoral head in dinosaurs results from additional growth of the proximal end in the medial-ward direction. On the other hand, the fossil record suggests that this overhang was acquired by torsion of the proximal end, which projected in a more rostral direction ancestrally. We reconcile this apparent conflict by inferring that the medial overhang of the dinosaur femoral head was initially acquired by torsion, which was then superseded by mediad growth. Details of anatomical shifts in fossil forms support this hypothesis, and their biomechanical implications are congruent with the general consensus regarding broader morpho-functional evolution on the avian stem.
Collapse
Affiliation(s)
- Shiro Egawa
- Department of Earth & Planetary Sciences and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA.,Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Christopher T Griffin
- Department of Earth & Planetary Sciences and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| | - Peter J Bishop
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms AL9 7TA, UK.,Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Geosciences Program, Queensland Museum, Brisbane, Australia
| | - Romain Pintore
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms AL9 7TA, UK.,Mécanismes adaptatifs et évolution (MECADEV)/UMR 7179, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Henry P Tsai
- Department of Biomedical Sciences, Missouri State University, Springfield, MO 65897, USA
| | - João F Botelho
- Department of Earth & Planetary Sciences and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA.,Department of Biology, Southern Connecticut State University, New Haven, CT 06515, USA.,Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Smith-Paredes
- Department of Earth & Planetary Sciences and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Mark A Norell
- Division of Vertebrate Paleontology, American Museum of Natural History, New York, NY, USA
| | | | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms AL9 7TA, UK
| | - Bhart-Anjan S Bhullar
- Department of Earth & Planetary Sciences and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
11
|
Comellas E, Farkas JE, Kleinberg G, Lloyd K, Mueller T, Duerr TJ, Muñoz JJ, Monaghan JR, Shefelbine SJ. Local mechanical stimuli correlate with tissue growth in axolotl salamander joint morphogenesis. Proc Biol Sci 2022; 289:20220621. [PMID: 35582804 PMCID: PMC9114971 DOI: 10.1098/rspb.2022.0621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 01/04/2023] Open
Abstract
Movement-induced forces are critical to correct joint formation, but it is unclear how cells sense and respond to these mechanical cues. To study the role of mechanical stimuli in the shaping of the joint, we combined experiments on regenerating axolotl (Ambystoma mexicanum) forelimbs with a poroelastic model of bone rudiment growth. Animals either regrew forelimbs normally (control) or were injected with a transient receptor potential vanilloid 4 (TRPV4) agonist during joint morphogenesis. We quantified growth and shape in regrown humeri from whole-mount light sheet fluorescence images of the regenerated limbs. Results revealed significant differences in morphology and cell proliferation between groups, indicating that TRPV4 desensitization has an effect on joint shape. To link TRPV4 desensitization with impaired mechanosensitivity, we developed a finite element model of a regenerating humerus. Local tissue growth was the sum of a biological contribution proportional to chondrocyte density, which was constant, and a mechanical contribution proportional to fluid pressure. Computational predictions of growth agreed with experimental outcomes of joint shape, suggesting that interstitial pressure driven from cyclic mechanical stimuli promotes local tissue growth. Predictive computational models informed by experimental findings allow us to explore potential physical mechanisms involved in tissue growth to advance our understanding of the mechanobiology of joint morphogenesis.
Collapse
Affiliation(s)
- Ester Comellas
- Serra Húnter Fellow, Department of Physics, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA USA
| | | | - Giona Kleinberg
- Department of Bioengineering, Northeastern University, Boston, MA USA
| | - Katlyn Lloyd
- Department of Bioengineering, Northeastern University, Boston, MA USA
| | - Thomas Mueller
- Department of Bioengineering, Northeastern University, Boston, MA USA
| | | | - Jose J. Muñoz
- Department of Mathematics, Laboratori de Càlcul Numeric (LaCàN), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, Spain
- Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Barcelona, Spain
| | - James R. Monaghan
- Department of Biology, Northeastern University, Boston, MA USA
- Institute for Chemical Imaging of Living Systems, Northeastern University, Boston, MA USA
| | - Sandra J. Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA USA
- Department of Bioengineering, Northeastern University, Boston, MA USA
| |
Collapse
|
12
|
Zhou W, Luo W, Liu D, Canavese F, Li L, Zhao Q. Fluoride increases the susceptibility of developmental dysplasia of the hip via increasing capsular laxity triggered by cell apoptosis and oxidative stress in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113408. [PMID: 35298972 DOI: 10.1016/j.ecoenv.2022.113408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/26/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The etiology of developmental dysplasia of the hip (DDH) is multifactorial, including breech presentation and hip capsular laxity. In particular, hip laxity is the main contributor to DDH by changing the ratio and distribution of collagens. Also, fluoride (F) affects collagens from various tissue besides bone and tooth. To investigate the association of DDH and excessive F intake, we conducted this research in lab on cell and animal model simultaneously. We established animal model of combination of DDH and F toxicity. The incidence of DDH in each group was calculated, and hip capsules were collected for testing histopathological and ultrastructural changes. The primary fibroblasts were further extracted from hip capsule and treated with F. The expression of collagen type I and III was both examined in vivo and in vitro, and the level of oxidative stress and apoptosis was also tested identically. We revealed that the incidence of DDH increased with F concentration. Furthermore, the oxidative stress and apoptosis levels of hip capsules and fibroblasts both increased after F exposure. Therefore, this study shows that excessive F intake increases susceptibility to DDH by altering hip capsular laxity in vivo and in vitro respectively. We believe that F might be a risk factor for DDH by increasing hip laxity induced by triggering fibroblast oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Weizheng Zhou
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Federico Canavese
- Department of Pediatric Orthopedics, Lille University Center, Jeanne de Flandres Hospital, Avenue Eugène-Avinée, Lille 59037, France
| | - Lianyong Li
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China.
| | - Qun Zhao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| |
Collapse
|
13
|
Shea CA, Murphy P. The Primary Cilium on Cells of Developing Skeletal Rudiments; Distribution, Characteristics and Response to Mechanical Stimulation. Front Cell Dev Biol 2021; 9:725018. [PMID: 34490272 PMCID: PMC8418538 DOI: 10.3389/fcell.2021.725018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Embryo movement is important for tissue differentiation and the formation of functional skeletal elements during embryonic development: reduced mechanical stimulation results in fused joints and misshapen skeletal rudiments with concomitant changes in the signaling environment and gene expression profiles in both mouse and chick immobile embryos. Despite the clear relationship between movement and skeletogenesis, the precise mechanisms by which mechanical stimuli influence gene regulatory processes are not clear. The primary cilium enables cells to sense mechanical stimuli in the cellular environment, playing a crucial mechanosensory role during kidney development and in articular cartilage and bone but little is known about cilia on developing skeletal tissues. Here, we examine the occurrence, length, position, and orientation of primary cilia across developing skeletal rudiments in mouse embryos during a period of pronounced mechanosensitivity and we report differences and similarities between wildtype and muscle-less mutant (Pax3Spd/Spd) rudiments. Strikingly, joint regions tend to have cilia positioned and oriented away from the joint, while there was a less obvious, but still significant, preferred position on the posterior aspect of cells within the proliferative and hypertrophic zones. Regions of the developing rudiments have characteristic proportions of ciliated cells, with more cilia in the resting and joint zones. Comparing wildtype to muscle-less mutant embryos, cilia are shorter in the mutant with no significant difference in the proportion of ciliated cells. Cilia at the mutant joint were also oriented away from the joint line.
Collapse
Affiliation(s)
- Claire A Shea
- Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Paula Murphy
- Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Rolfe RA, Scanlon O'Callaghan D, Murphy P. Joint development recovery on resumption of embryonic movement following paralysis. Dis Model Mech 2021; 14:dmm048913. [PMID: 33771841 PMCID: PMC8084573 DOI: 10.1242/dmm.048913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
Fetal activity in utero is a normal part of pregnancy and reduced or absent movement can lead to long-term skeletal defects, such as Fetal Akinesia Deformation Sequence, joint dysplasia and arthrogryposis. A variety of animal models with decreased or absent embryonic movements show a consistent set of developmental defects, providing insight into the aetiology of congenital skeletal abnormalities. At developing joints, defects include reduced joint interzones with frequent fusion of cartilaginous skeletal rudiments across the joint. At the spine, defects include shortening and a spectrum of curvature deformations. An important question, with relevance to possible therapeutic interventions for human conditions, is the capacity for recovery with resumption of movement following short-term immobilisation. Here, we use the well-established chick model to compare the effects of sustained immobilisation from embryonic day (E)4-10 to two different recovery scenarios: (1) natural recovery from E6 until E10 and (2) the addition of hyperactive movement stimulation during the recovery period. We demonstrate partial recovery of movement and partial recovery of joint development under both recovery conditions, but no improvement in spine defects. The joints examined (elbow, hip and knee) showed better recovery in hindlimb than forelimb, with hyperactive mobility leading to greater recovery in the knee and hip. The hip joint showed the best recovery with improved rudiment separation, tissue organisation and commencement of cavitation. This work demonstrates that movement post paralysis can partially recover specific aspects of joint development, which could inform therapeutic approaches to ameliorate the effects of human fetal immobility. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rebecca A. Rolfe
- Department of Zoology, School of Natural Sciences, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
15
|
Zhou H. Embryonic movement stimulates joint formation and development: Implications in arthrogryposis multiplex congenita. Bioessays 2021; 43:e2000319. [PMID: 33634512 DOI: 10.1002/bies.202000319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022]
Abstract
Arthrogryposis multiplex congenita (AMC) is a heterogeneous syndrome where multiple joints have reduced range of motion due to contracture formation prior to birth. A common cause of AMC is reduced embryonic movement in utero. This reduction in embryonic movement can perturb molecular mechanisms and signaling pathways involved in the formation of joints during development. The absence of mechanical stimuli can impair joint cavitation, resulting in joint fusion, and ultimately eliminate function. In turn, mechanical stimuli are critical for proper joint formation during development and for mitigating AMC. Studies in experimental animal models have provided a greater understanding on the molecular pathophysiology of congenital contracture formation as a consequence of embryonic immobilization. Elucidation of how the mechanical signaling environment is transduced to initiate a biological response will be necessary to gain a deeper understanding of how mechanical stimuli are intertwined in the molecular regulation of joint development.
Collapse
Affiliation(s)
- Haodong Zhou
- Faculty of Science, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Shea CA, Rolfe RA, McNeill H, Murphy P. Localization of YAP activity in developing skeletal rudiments is responsive to mechanical stimulation. Dev Dyn 2019; 249:523-542. [PMID: 31747096 DOI: 10.1002/dvdy.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Normal skeletal development, in particular ossification, joint formation and shape features of condyles, depends on appropriate mechanical input from embryonic movement but it is unknown how such physical stimuli are transduced to alter gene regulation. Hippo/Yes-Associated Protein (YAP) signalling has been shown to respond to the physical environment of the cell and here we specifically investigate the YAP effector of the pathway as a potential mechanoresponsive mediator in the developing limb skeleton. RESULTS We show spatial localization of YAP protein and of pathway target gene expression within developing skeletal rudiments where predicted biophysical stimuli patterns and shape are affected in immobilization models, coincident with the period of sensitivity to movement, but not coincident with the expression of the Hippo receptor Fat4. Furthermore, we show that under reduced mechanical stimulation, in immobile, muscle-less mouse embryos, this spatial localization is lost. In culture blocking YAP reduces chondrogenesis but the effect differs depending on the timing and/or level of YAP reduction. CONCLUSIONS These findings implicate YAP signalling, independent of Fat4, in the transduction of mechanical signals during key stages of skeletal patterning in the developing limb, in particular endochondral ossification and shape emergence, as well as patterning of tissues at the developing synovial joint.
Collapse
Affiliation(s)
- Claire A Shea
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Rebecca A Rolfe
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Helen McNeill
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|