1
|
Wang P, Rong Z, Li F, Ma S, Qiu H, Lian W, Li Z, Chen T, Zhong Q, Wang W, Sun G, Liu C, Ni L, Di X. Optimal injection sites for therapeutic angiogenesis: HGF-mediated regulation of HIF-1α via MAPK/PI3K pathways in hypoxic endothelial cells. Tissue Cell 2025; 95:102871. [PMID: 40132390 DOI: 10.1016/j.tice.2025.102871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/18/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
Therapeutic angiogenesis offers a promising strategy for patients with critical limb-threatening ischemia (CLTI) who are unsuitable candidates for revascularization. However, the optimal administration sites for gene therapy agents, such as pCK-HGF-X7, remains undefined. Clinical trials commonly employ multiple intramuscular injections at sites of arterial occlusion; yet the necessity and efficacy of such extensive and repetitive protocols remains unclear. Targeted injections into ischemic tissues or their margins may improve therapeutic outcomes. Moreover, the molecular mechanisms by which hepatocyte growth factor (HGF)/c-Met signaling regulates hypoxia-inducible factor-1α (HIF-1α) expression under hypoxic conditions are not fully understood. This study aims to elucidate these molecular mechanisms in endothelial cells under hypoxic conditions and to identify the most effective injection sites for therapeutic angiogenesis agents. The effects of various HGF isoforms/complexes on human aortic endothelial cells (HAECs) were evaluated under normoxic and hypoxic conditions, focusing on proliferation, migration, and tube formation. Pathway inhibitors were used to explore the underlying mechanisms in hypoxic HAECs, and the findings were validated in a rat hindlimb ischemia model. Results demonstrated that HGF723 and HGF728 activated the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways, regulating HIF expression and significantly enhanced endothelial cell proliferation, migration, and tube formation, particularly under hypoxia. Despite these cellular effects, HGF treatment did not significantly improve tissue perfusion or neovascularization in normal rat hindlimbs. However, in ischemic rat hindlimbs, it markedly promoted angiogenesis and improved tissue perfusion in the gastrocnemius muscle. These findings indicate that therapeutic angiogenesis agents should primarily target hypoxic tissues, extending to the interface between normoxic and hypoxic regions, to optimize treatment efficacy.
Collapse
Affiliation(s)
- Peng Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuaifuyuan Hutong, Dongcheng District, Beijing 100730, China
| | - Zhihua Rong
- Department of Vascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Fengshi Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - ShanShan Ma
- Department of R&D Center, Beijing Northland Biotech co., LTD, No.5, Shangdi Kaituo Road,Haidian, Beijing 100085, China
| | - Hongjuan Qiu
- Department of R&D Center, Beijing Northland Biotech co., LTD, No.5, Shangdi Kaituo Road,Haidian, Beijing 100085, China
| | - Wenzhuo Lian
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuaifuyuan Hutong, Dongcheng District, Beijing 100730, China
| | - Zongshu Li
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tianqi Chen
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Qing Zhong
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wenjing Wang
- Laboratory Animal Research Facility, National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Guoqiang Sun
- Department of Information Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuaifuyuan Hutong, Dongcheng District, Beijing 100730, China
| | - ChangWei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuaifuyuan Hutong, Dongcheng District, Beijing 100730, China
| | - Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuaifuyuan Hutong, Dongcheng District, Beijing 100730, China.
| | - Xiao Di
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuaifuyuan Hutong, Dongcheng District, Beijing 100730, China.
| |
Collapse
|
2
|
Huang Y, Zhang Q, Wang J, Luan T, Guo L, Hao Z, Shi G, Chen R, Wu Z, Zhou X, Zhou S, Shen Q, Li J. Potential Molecular Mechanism of Bajitian-Niuxi Formula Delays Intervertebral Disc Degeneration: An Animal Experiment and Network Pharmacology. Chem Biodivers 2025:e202500048. [PMID: 40091422 DOI: 10.1002/cbdv.202500048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/16/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
Intervertebral disc degeneration (IDD) continues to be a major health concern. The combination of Bajitian and Niuxi (B&N) is commonly used to treat musculoskeletal degenerative diseases. This study aimed to explore the potential of B&N in treating IDD through in vivo experiments and bioinformatics approaches. In vivo experiments found that the process of IDD in rats treated with B&N extracts was delayed. Through database screening and network pharmacology analysis, it was discovered that multiple key drug-active ingredients (DAIs) of B&N, such as wogonin, baicalein, 1-hydroxy-3-methoxy-9,10-anthraquinone, and beta-sitosterol, might play a role in the treatment of IDD, among which signaling pathways, such as PI3K-AKT, MAPK, and senescence signaling, might be the main drug-regulated pathways. The binding potential and position of the main DAIs to the core targets were verified by structural bioinformatics. Immunohistochemistry and qRT-PCR results indicated that B&N treatment could improve the expressions of Type II collagen (Col-2) and aggrecan (ACAN) in IDD rats, which might be related to the phosphorylation levels of AKT and p38. Therefore, the B&N formula might delay IDD in rats by regulating multiple signaling pathways through DAIs, which provides new approaches for further exploring the prevention and treatment strategies of IDD with traditional Chinese medicine.
Collapse
Affiliation(s)
- Yilong Huang
- Department of Orthopedics, ZhongNan Hospital of Wuhan University, Wuhan, China
| | - Qi Zhang
- Department of Orthopedics, ZhongNan Hospital of Wuhan University, Wuhan, China
| | - Junwu Wang
- Department of Orthopedics, ZhongNan Hospital of Wuhan University, Wuhan, China
| | - Tian Luan
- Department of Orthopedics, ZhongNan Hospital of Wuhan University, Wuhan, China
| | - Lanhong Guo
- Department of Orthopedics, ZhongNan Hospital of Wuhan University, Wuhan, China
| | - Zhuowen Hao
- Department of Orthopedics, ZhongNan Hospital of Wuhan University, Wuhan, China
| | - Guang Shi
- Department of Orthopedics, ZhongNan Hospital of Wuhan University, Wuhan, China
| | - Renxin Chen
- Department of Orthopedics, ZhongNan Hospital of Wuhan University, Wuhan, China
| | - Zijian Wu
- Department of Orthopedics, ZhongNan Hospital of Wuhan University, Wuhan, China
| | - Xuan'ang Zhou
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Shifeng Zhou
- Department of Orthopedics, Taizhou People's Hospital Affiliated with Nanjing Medical University, Taizhou, China
| | - Qixiao Shen
- Department of Orthopedics, Yangxin People's Hospital, Huangshi, China
| | - Jingfeng Li
- Department of Orthopedics, ZhongNan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Ding L, Sun D, Wang Z, Gao T, Wei J, Li X, Chen L, Liu B, Li J, Liu C. Microfluidic Device with an Oxygen Gradient Generator for Investigating Effects of Specific Hypoxia Conditions on Responses of Tumor Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19316-19323. [PMID: 39217623 DOI: 10.1021/acs.langmuir.4c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The oxygen level in the tumor microenvironment (TME) plays a critical role in regulating cell fates such as proliferation, migration, apoptosis, and so forth. To better elucidate how hypoxia affects tumor cell behaviors, a series of microfluidic strategies have been utilized to generate an oxygen gradient covering both hypoxia and normoxia conditions. However, in most studies, some chemicals are introduced into microfluidic chips, causing the potential of their poor biocompatibility. The common oxygen gradient with linear variation does not allow the effects of specific oxygen concentrations on tumor cells to be analyzed accurately. In this paper, based on the physical method of gas diffusion, a microfluidic device integrated with an oxygen gradient generator is proposed for investigating effects of different hypoxia levels on responses of tumor cells. This device consists of three layers, i.e., upper layer, thin film layer, and bottom layer. The upper layer is used for introducing the initial gas and generating an oxygen gradient in the form of gas. The bottom layer is used for introducing cells and culture medium. The thin film layer separates the former two layers, allowing the gas to diffuse from the top to the bottom through it. The oxygen gradient in the bottom layer is finally generated in the form of dissolved oxygen. The device is fabricated using microfabrication technology. The effects of structural and working parameters of the device on the oxygen gradient are evaluated by finite element simulation. The oxygen gradient in cell culture channels is characterized by using oxygen-sensitive fluorescence materials. The proliferation and morphology of HeLa cells under specific oxygen levels are compared after culturing for 48 h. The oxygen gradient with a ladder-like distribution demonstrates that this microfluidic device can provide a prospective experimental platform for in vitro cell studies and revelation of the mechanism of tumor metastasis associated with a specific hypoxic microenvironment.
Collapse
Affiliation(s)
- Laiqian Ding
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China, 116024
| | - Dexian Sun
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China, 116024
| | - Zhongyu Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China, 116024
| | - Tianyu Gao
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China, 116024
| | - Juan Wei
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, China, 255000
| | - Xudong Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China, 116024
| | - Li Chen
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China, 116024
| | - Bo Liu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China, 116024
| | - Jingmin Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China, 116024
| | - Chong Liu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China, 116024
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, China, 116024
| |
Collapse
|
4
|
Wang P, Li T, Niu C, Sun S, Liu D. ROS-activated MAPK/ERK pathway regulates crosstalk between Nrf2 and Hif-1α to promote IL-17D expression protecting the intestinal epithelial barrier under hyperoxia. Int Immunopharmacol 2023; 116:109763. [PMID: 36736221 DOI: 10.1016/j.intimp.2023.109763] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS) damage to the intestinal barrier is a side effect of prolonged hyperoxia therapy in neonates, which impairs growth and development of the intestine and promotes intestinal diseases. However, the research on clinical prevention and treatment is lacking. Therefore, we investigated the molecular mechanisms of the neonate intestinal response against hyperoxia-derived ROS to find targets for intestinal barrier damage prevention. Human intestinal epithelial cells were incubated under hyperoxia (85% oxygen) to build an in vitro model. ROS and the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway were inhibited to detect the MAPK/ERK pathway, nuclear factor erythroid factor 2-related factor 2 (Nrf2), hypoxia-inducible factor-1α (Hif-1α), and interleukin-17D (IL-17D) expression. Nrf2 was inhibited to detect Hif-1α and IL-17D expression. Hif-1α was inhibited to detect Nrf2, IL-17D, and tight junction proteins expression and apoptosis. Cells were treated with human recombinant IL-17D to detect TNF-α, IL-1β, IL-10, and tight junction proteins expression. ROS, Nrf2, Hif-1α, and IL-17D were upregulated and the MAPK/ERK pathway was activated under hyperoxia. But ROS inhibition downregulated the MAPK/ERK pathway, Nrf2, Hif-1α, and IL-17D. MAPK/ERK pathway inhibition downregulated Nrf2, Hif-1α, and IL-17D. Nrf2 inhibition downregulated Hif-1α and IL-17D. Hif-1α inhibition downregulated Nrf2, IL-17D, tight junction proteins, and exacerbated apoptosis. The recombinant IL-17D downregulated TNF-α, IL-1β, but upregulated IL-10 and tight junction proteins. We concluded that Hyperoxia-generated ROS activated the MAPK/ERK pathway to regulate Nrf2, Hif-1α, and IL-17D expression. Nrf2 and Hif-1α were interdependent and promoted IL-17D. Importantly, Hif-1α and IL-17D expression protected the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Pingchuan Wang
- ShengJing Hospital of China Medical University, Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, SanHao Street No.36, HePing District, ShenYang, Liaoning 110000, China
| | - Tianming Li
- ShengJing Hospital of China Medical University, Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, SanHao Street No.36, HePing District, ShenYang, Liaoning 110000, China
| | - Changping Niu
- ShengJing Hospital of China Medical University, Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, SanHao Street No.36, HePing District, ShenYang, Liaoning 110000, China
| | - Siyu Sun
- ShengJing Hospital of China Medical University, Department of Gastroenterology, SanHao Street No.36, HePing District, ShenYang, Liaoning 110000, China
| | - Dongyan Liu
- ShengJing Hospital of China Medical University, Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, SanHao Street No.36, HePing District, ShenYang, Liaoning 110000, China.
| |
Collapse
|
5
|
Zhang C, Joseph KM, Khan NM, Diaz‐Hernandez ME, Drissi H, Illien‐Junger S. PHLPP1 deficiency protects against age-related intervertebral disc degeneration. JOR Spine 2022; 5:e1224. [PMID: 36601379 PMCID: PMC9799085 DOI: 10.1002/jsp2.1224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/21/2022] [Accepted: 09/07/2022] [Indexed: 01/07/2023] Open
Abstract
Background Intervertebral disc (IVD) degeneration is strongly associated with low back pain and is highly prevalent in the elderly population. Hallmarks of IVD degeneration include cell loss and extracellular matrix degradation. The PH domain leucine-rich-repeats protein phosphatase (PHLPP1) is highly expressed in diseased cartilaginous tissues where it is linked to extracellular matrix degradation. This study explored the ability of PHLPP1 deficiency to protect against age-related spontaneous IVD degeneration. Methods Lumbar IVDs of global Phlpp1 knockout (KO) and wildtype (WT) mice were collected at 5 months (young) and 20 months (aged). Picrosirius red-alcian blue staining (PR-AB) was performed to examine IVD structure and histological score. The expression of aggrecan, ADAMTS5, KRT19, FOXO1 and FOXO3 was analyzed through immunohistochemistry. Cell apoptosis was assessed by TUNEL assay. Human nucleus pulposus (NP) samples were obtained from patients diagnosed with IVD degeneration. PHLPP1 knockdown in human degenerated NP cells was conducted using small interfering RNA (siRNA) transfection. The expression of PHLPP1 regulated downstream targets was analyzed via immunoblot and real time quantitative PCR. Results Histological analysis showed that Phlpp1 KO decreased the prevalence and severity of age-related IVD degeneration. The deficiency of PHLPP1 promoted the increased expression of NP phenotypic marker KRT19, aggrecan and FOXO1, and decreased levels of ADMATS5 and cell apoptosis in the NP of aged mice. In degenerated human NP cells, PHLPP1 knockdown induced FOXO1 protein levels while FOXO1 inhibition offset the beneficial effects of PHLPP1 knockdown on KRT19 gene and protein expression. Conclusions Our findings indicate that Phlpp1 deficiency protected against NP phenotypic changes, extracellular matrix degradation, and cell apoptosis in the process of IVD degeneration, probably through FOXO1 activation, making PHLPP1 a promising therapeutic target for treating IVD degeneration.
Collapse
Affiliation(s)
- Changli Zhang
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Katherine M. Joseph
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Nazir M. Khan
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | | | - Hicham Drissi
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | | |
Collapse
|
6
|
Li Y, Jia Y, Cui T, Zhang J. IL-6/STAT3 signaling pathway regulates the proliferation and damage of intestinal epithelial cells in patients with ulcerative colitis via H3K27ac. Exp Ther Med 2021; 22:890. [PMID: 34194568 PMCID: PMC8237277 DOI: 10.3892/etm.2021.10322] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to investigate the effect of the IL-6/STAT3 signaling pathway on intestinal epithelial barrier injury in patients with ulcerative colitis (UC). Fifty-two patients with UC and 21 healthy subjects were recruited. The expression level of IL-6 in plasma was determined by ELISA. Normal human colon mucosal epithelial NCM460 cells were treated with IL-6 or plasma from the patients with UC. Then, the transepithelial electrical resistance value, fluorescein yellow permeability and zonulin release were evaluated. Using reverse transcription-quantitative (q)PCR and western blotting, claudin (CLDN) 1 and CLDN2 expression levels were analyzed. Furthermore, western blotting was used to detect phosphorylation of STAT3. Chromatin immunoprecipitation-qPCR was performed to investigate the enrichment of H3K27ac in the promoter regions of CLDN1 and CLDN2. The present study revealed that IL-6 content was elevated in the plasma from patients with UC and increased with the progression of the disease. IL-6 was also observed to induce intestinal epithelial cell barrier injury and regulate barrier function by influencing the expression of tight junction-related proteins, as well as STAT3. The IL-6/STAT3 signaling pathway regulated transcription of CLDN1 and CLDN2 by affecting the enrichment of histone H3K27ac in their promoter regions. Thus, the significantly increased expression level of IL-6 in the peripheral blood of patients with UC indicates a positive association with the development of UC. Furthermore, the IL-6/STAT3 signaling pathway influences the function of the intestinal barrier by affecting the H3K27ac level in intestinal epithelial cells.
Collapse
Affiliation(s)
- Yanrong Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Yujie Jia
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Tingfang Cui
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Jiayuan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
7
|
Huang L, Xu Y, Fang J, Liu W, Chen J, Liu Z, Xu Q. Targeting STAT3 Abrogates Tim-3 Upregulation of Adaptive Resistance to PD-1 Blockade on Regulatory T Cells of Melanoma. Front Immunol 2021; 12:654749. [PMID: 33936081 PMCID: PMC8082190 DOI: 10.3389/fimmu.2021.654749] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background Less than 20% of melanoma patients respond to programmed cell death-1 (PD-1) blockade immunotherapies. Thus, it is crucial to understand the dynamic changes in the tumor microenvironment (TME) after PD-1 blockade, for developing immunotherapy efficacy. Methods A genomic analysis was conducted by The Cancer Genome Atlas (TCGA) datasets and web platform TIMER2.0 datasets. Pathway enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Peripheral blood mononuclear cells (PBMCs), regulatory T (Treg) cells, and B16-F10 melanoma mice were used as models. The cellular and molecular characteristics and mechanisms of Treg cells in melanoma were assessed by performing gene expression studies, immunohistochemistry, RNA sequencing, and flow cytometry. Results Here, we evaluate the countenance of T cell immunoglobulin and mucin-domain containing-3 (Tim-3), and various immunosuppressive factors within tumor-infiltrated Treg cells after treatment with anti-PD-1 or the indicator transduction and activator of transcription 3 (STAT3) inhibitors. Increased expression of Tim-3 is markedly observed within the tissues of the PD-1 blockade resistance of melanoma patients. Targeting STAT3 significantly boosts the response of resistant-PD-1 therapy within the melanoma mouse model. Mechanistically, the manifestation of STAT3 decreases the expression of Tim-3 and various cytokines in the purified Treg cells from individual PBMCs and the murine melanoma model, limiting the immunosuppression of Treg cells. Conclusions Our findings indicate that Tim-3 expression on Treg cells within the TME is STAT3-dependent, providing support to STAT3 as a target and enhancing the immunotherapy for patients suffering from melanoma.
Collapse
Affiliation(s)
- Lili Huang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China
| | - Yu Xu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Juemin Fang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China
| | - Weixing Liu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China
| | - Jianhua Chen
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China
| | - Zhuqing Liu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China
| |
Collapse
|
8
|
Tonomura H, Nagae M, Takatori R, Ishibashi H, Itsuji T, Takahashi K. The Potential Role of Hepatocyte Growth Factor in Degenerative Disorders of the Synovial Joint and Spine. Int J Mol Sci 2020; 21:ijms21228717. [PMID: 33218127 PMCID: PMC7698933 DOI: 10.3390/ijms21228717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023] Open
Abstract
This paper aims to provide a comprehensive review of the changing role of hepatocyte growth factor (HGF) signaling in the healthy and diseased synovial joint and spine. HGF is a multifunctional growth factor that, like its specific receptor c-Met, is widely expressed in several bone and joint tissues. HGF has profound effects on cell survival and proliferation, matrix metabolism, inflammatory response, and neurotrophic action. HGF plays an important role in normal bone and cartilage turnover. Changes in HGF/c-Met have also been linked to pathophysiological changes in degenerative joint diseases, such as osteoarthritis (OA) and intervertebral disc degeneration (IDD). A therapeutic role of HGF has been proposed in the regeneration of osteoarticular tissues. HGF also influences bone remodeling and peripheral nerve activity. Studies aimed at elucidating the changing role of HGF/c-Met signaling in OA and IDD at different pathophysiological stages, and their specific molecular mechanisms are needed. Such studies will contribute to safe and effective HGF/c-Met signaling-based treatments for OA and IDD.
Collapse
|