1
|
Abstract
Keyhole limpet hemocyanin (KLH) is a glycosylated multi-subunit metalloprotein that elicits a strong nonspecific immune activation, thus inducing both cellular and humoral immune responses. The exceptional immunogenicity of this protein can be leveraged to vaccinate mice against self-antigens that otherwise would not induce an autoimmune response. This protocol describes the covalent conjugation of KLH with acyl-coenzyme A-binding protein (ACBP), the autovaccination of mice with ACBP-KLH conjugate together with a potent adjuvant, and the detection of the produced anti-ACBP autoantibodies. For complete details on the use and execution of this profile, please refer to Bravo-San Pedro et al. (2019c). ACBP can be glutaraldehyde-conjugated to the large immunogenic protein KLH When coinjected with adjuvant, KLH-ACBP elicits autoantibodies against ACBP Circulating ACBP protein can be quantified by a specific ELISA Bioavailable ACBP decreases after successful autovaccination
Collapse
|
2
|
Zhang C, Zhu J, Jia J, Guan Z, Sun T, Zhang W, Yuan W, Wang H, Song C. Long-term pretreatment with alendronate inhibits calvarial defect healing in an osteoporotic rat model. J Bone Miner Metab 2021; 39:925-933. [PMID: 34091742 DOI: 10.1007/s00774-021-01235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION This study aimed to observe the effects of long-term alendronate pretreatment on the healing of osteoporotic calvarial defects, and further investigate the effect of alendronate combined with once-weekly parathyroid hormone following 12 weeks of alendronate treatment in ovariectomized rats. MATERIALS AND METHODS Thirty 3-month-old female rats were ovariectomized, and 24 rats received alendronate for 12 weeks. Then, a critical defect was created in the calvaria of all animals. Immediately after osteotomy, the animals received one of five treatments for 8 weeks: (1) continuation of vehicle (group E), (2) alendronate followed by vehicle (group A), (3) continuation of alendronate (group B), (4) alendronate followed by once-weekly parathyroid hormone alone (group C), or (5) continuation of alendronate combined with once-weekly parathyroid hormone (group D). Calvarial defect healing was assessed using dual-energy X-ray absorptiometry, micro-computed tomography, histology, and sequential fluorescence labeling. RESULTS Group E showed a significantly higher volume of newly formed bone than groups A, B, C, and D. Evidence of new dense bone formation in group E was observed histologically. In addition, the immunohistochemical expression of runt-related transcription factor 2 was increased in group E but inhibited in groups A, B, C, and D. Sequential immunofluorescence also showed inhibited mineral apposition in groups A, B, C, and D compared with group E. CONCLUSION The present study shows that long-term pretreatment with alendronate inhibited calvarial defect healing in osteoporotic rats, and this effect could not be reversed by stopping alendronate, switching to parathyroid hormone, or combining with once-weekly parathyroid hormone.
Collapse
Affiliation(s)
- Chenggui Zhang
- Department of Orthopedics, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Junxiong Zhu
- Department of Orthopedics, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Jialin Jia
- Department of Orthopedics, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Zhiyuan Guan
- Department of Orthopedics, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Tiantong Sun
- Department of Orthopedics, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Wang Zhang
- Department of Orthopedics, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Hong Wang
- Department of Orthopedics, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, China.
- Beijing Key Laboratory of Spinal Diseases, Beijing, China.
| |
Collapse
|