1
|
Al-Khatib Y, Tyas B, Kalson NS, Agni N, Bhutani P, Petheram T, Carluke I, Partington P. Quantification and severity grading of femoral vessel compression by adverse reactions to metal debris in metal-on-metal total hip arthroplasty. Hip Int 2024; 34:215-220. [PMID: 37545332 DOI: 10.1177/11207000231190738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
INTRODUCTION Metal-on-metal (MoM) total hip arthroplasty (THA) may cause adverse reactions to metal debris (ARMD). ARMD causing femoral vessel compression with serious complications has been described in case reports, but the rate of compression by ARMD is not known. This study aims to investigate the rate, and quantify the severity, of femoral vessel compression in MoM hips with ARMD lesions. METHODS Patients under surveillance for MoM THA investigated with MRI were studied. In patients with confirmed ARMD, femoral artery (FA) and vein (FV) diameters were measured at the point of maximal compression and compared to contralateral vessels. The primary outcome measure was presence or absence of compression. Cases were then classified by compression ratios. Secondary outcome measures were rates of deep vein thrombosis, revision surgery and time to ARMD from index procedure. RESULTS MRI scans for 436 patients with MoM THA were screened. Of these, 211/436 (48.4%) showed evidence of ARMD. Measurements were obtained on 133/211 (63.0%) patients. The FV was compressed in 102/133 (76.7%) and FA in 58/133 (43.6%), while 31/133 (23.3%) patients had no compression. In FVs, 42 demonstrated mild compression, 39 moderate and 21 severe. In FAs, none were severely compressed, 6 were moderate and 52 showed mild compression. There were 3 DVT cases, 2 in patients with moderate FV compression and 1 in patients without FV compression. Revision rates were highest in patients with severe FV compression (14/21, 66.7%). The mean time for MRI-diagnosed ARMD from index procedure was 8 years and 1 month (range 11 months-14.5 years). CONCLUSIONS Extra-luminal compression of the femoral vessels was found in >75% of patients with ARMD. Although it is not clear whether revision for femoral vessel compression is required, quantification of FV compression may be useful for surgeons and radiologists considering revision for ARMD.
Collapse
Affiliation(s)
| | - Ben Tyas
- Trauma and Orthopaedics, Health Education North East, Newcastle Upon Tyne, UK
| | - Nicholas S Kalson
- Department of Orthopaedics, Northumbria Healthcare NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Nickil Agni
- Department of Orthopaedics, Northumbria Healthcare NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Priyesh Bhutani
- Department of Radiology, Northumbria Healthcare NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Timothy Petheram
- Department of Orthopaedics, Northumbria Healthcare NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Ian Carluke
- Department of Orthopaedics, Northumbria Healthcare NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Paul Partington
- Department of Orthopaedics, Northumbria Healthcare NHS Foundation Trust, Newcastle Upon Tyne, UK
| |
Collapse
|
2
|
Chen A, Kurmis AP. Understanding immune-mediated cobalt/chromium allergy to orthopaedic implants: a meta-synthetic review. ARTHROPLASTY 2024; 6:1. [PMID: 38303027 PMCID: PMC10835847 DOI: 10.1186/s42836-023-00227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND The frequency of primary joint replacement surgery continues to increase worldwide. While largely considered biologically inert entities, an increasing body of evidence continues to validate a not insignificant incidence of allergic reactions to such implants. Little previous work has explored genuinely immune-mediated reactivity in this context. In the absence of a contemporary published summary on the topic, this paper explored the current state of understanding of cobalt/chromium allergy and proposes a patient management algorithm whereby such immune reactions are clinically suggested. METHODS A structured, systematic literature review was performed by following PRISMA search principles to provide an updated review of this area. RESULTS Thirty-six topic-related articles were identified, the majority reflecting lower tiers of scientific evidence with a lack of homogeneous quantitative data to facilitate valid cohort comparisons. Largely, the available literature represented small case series' or expert opinions. CONCLUSIONS Despite increasing clinical awareness and acknowledgement of true allergy to joint replacement components, this review highlighted that the evidence base underpinning the diagnosis and management of such patients is limited. Both patient-reported metal allergy or skin patch testing are grossly unreliable methods and show almost no correlation with true immune reactivity. Recent studies suggested a potential role for patient-specific in vitro cellular activation testing and/or targeted genetic testing when cobalt/chromium allergy is clinically suspected. However, while likely representing the contemporary "best available" approaches both can be costly undertakings, are not yet universally available, and still require broader validation in non-research settings before wider uptake can be championed.
Collapse
Affiliation(s)
- Arnold Chen
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Andrew P Kurmis
- Discipline of Medical Specialties, University of Adelaide, Adelaide, SA, 5000, Australia.
- Department of Orthopaedic Surgery, Lyell McEwin Hospital, Elizabeth Vale, SA, 5112, Australia.
- College of Medicine & Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
3
|
Cheng P, Gong S, Guo C, Kong P, Li C, Yang C, Zhang T, Peng J. Exploration of effective biomarkers and infiltrating Immune cells in Osteoarthritis based on bioinformatics analysis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:242-254. [PMID: 37140355 DOI: 10.1080/21691401.2023.2185627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Osteoarthritis (OA) is a multi-factorial chronic joint disease mainly identified by synovial inflammation, cartilage damage, and degeneration. Our study applied bioinformatics analysis to uncover the immunity in OA and tried to explore the underlying immune-related molecular mechanism. First, OA-related gene-expression profiling data were retrieved from GEO database. Then, we analysed a series of datadata with using the xCell algorithm, GEO2R, enrichment analysis of SangerBox website, CytoHubba, ROC logistic regression and correlation analysis. Finally, Nine infiltrating immune cells with differential abundance between OA and normal samples were obtained. There were 42 IODEGs in OA, and their functions were associated with immune cells and corresponding biological processes. Moreover, 5 hub genes, including GREM1, NRP1, VEGFA, FYN and IL6R, were identified. Correlation analysis demonstrated that NRP1 was negatively associated with NKT cells, NRP1 and GREM1 were positively associated with aDC, VEGFA was positively associated with CD8+ naïve T cells, while VEGFA, FYN and IL6R were negatively associated with Macrophages M1. The 5 hub genes could be employed as effective diagnostic biomarkers for OA. In addition, they may participate in OA pathogenesis via interactions with infiltrating immune cells.
Collapse
Affiliation(s)
- Piaotao Cheng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shouhang Gong
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Caopei Guo
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Kong
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chencheng Li
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chengbing Yang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiachen Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center, Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| |
Collapse
|
4
|
Eltit F, Robinson N, Yu PLI, Pandey M, Lozada J, Guo Y, Sharma M, Ozturan D, Ganier L, Belanger E, Lack NA, Perrin DM, Cox ME, Goldenberg SL. The "Ins and Outs" of Prostate Specific Membrane Antigen (PSMA) as Specific Target in Prostate Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:291-308. [PMID: 37093434 DOI: 10.1007/978-3-031-26163-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is expressed in epithelial cells of the prostate gland and is strongly upregulated in prostatic adenocarcinoma, with elevated expression correlating with metastasis, progression, and androgen independence. Because of its specificity, PSMA is a major target of prostate cancer therapy; however, detectable levels of PSMA are also found in other tissues, especially in salivary glands and kidney, generating bystander damage of these tissues. Antibody target therapy has been used with relative success in reducing tumor growth and prostate specific antigen (PSA) levels. However, since antibodies are highly stable in plasma, they have prolonged time in circulation and accumulate in organs with an affinity for antibodies such as bone marrow. For that reason, a second generation of PSMA targeted therapeutic agents has been developed. Small molecules and minibodies have had promising clinical trial results, but concerns about their specificity had arisen with side effects due to accumulation in salivary glands and kidneys. Herein we study the specificity of small molecules and minibodies that are currently being clinically tested. We observed a high affinity of these molecules for PSMA in prostate, kidney and salivary gland, suggesting that their effect is not prostate specific. The search for specific prostate target agents must continue so as to optimally treat patients with prostate cancer, while minimizing deleterious effects in other PSMA expressing tissues.
Collapse
Affiliation(s)
- Felipe Eltit
- Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Nicole Robinson
- Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Pak Lok Ivan Yu
- Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Mitali Pandey
- Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Jerome Lozada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Yubin Guo
- Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Manju Sharma
- Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Dogancan Ozturan
- Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Laetitia Ganier
- Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Eric Belanger
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Nathan A Lack
- Vancouver Prostate Centre, Vancouver, Canada
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - David M Perrin
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Michael E Cox
- Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - S Larry Goldenberg
- Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada.
- Vancouver Prostate Centre, Vancouver, Canada.
| |
Collapse
|
5
|
Serum Indicators of Oxidative Damage from Embedded Metal Fragments in a Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5394303. [PMID: 35154566 PMCID: PMC8828353 DOI: 10.1155/2022/5394303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/04/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
Abstract
Injuries suffered in armed conflicts often result in embedded metal fragments. Standard surgical guidance recommends leaving embedded fragments in place except under certain circumstances in an attempt to avoid the potential morbidity that extensive surgery often brings. However, technological advances in weapon systems and insurgent use of improvised explosive devices now mean that practically any metal can be found in these types of wounds. Unfortunately, in many cases, the long-term toxicological properties of embedded metals are not known, further complicating treatment decisions. Because of concerns over embedded metal fragment injuries, the U.S. Departments of Defense and Veterans' Affairs developed a list of “metals of concern” for these types of injuries. In this study, we selected eight of these metals including tungsten, nickel, cobalt, iron, copper, aluminum, lead, and depleted uranium to investigate the long-term health effects using a rodent model developed in our Institute to study embedded fragment injuries. In this report, we show that metals surgically implanted into the gastrocnemius muscle of laboratory rats to simulate a shrapnel wound induce a variety of cytokines including IFN-γ, IL-4, IL-5, IL-6, IL-10, and IL-13. TNF-α and KC/GRO were not affected, and IL-1β was below the limit of detection. Serum levels of C-reactive protein were also affected, increasing with some metals and decreasing with others. The TBARS assay, an assessment of lipid peroxidation, demonstrated that implanted aluminum and lead increased markers of lipid peroxidation in serum. Taken together, the results suggest that serum cytokine levels, as well as other indicators of oxidative damage, may prove useful in identifying potential adverse health effects of embedded metals.
Collapse
|
6
|
Eltit F, Noble J, Sharma M, Benam N, Haegert A, Bell RH, Simon F, Duncan CP, Garbuz DS, Greidanus NV, Masri BA, Ng TL, Wang R, Cox ME. Cobalt ions induce metabolic stress in synovial fibroblasts and secretion of cytokines/chemokines that may be diagnostic markers for adverse local tissue reactions to hip implants. Acta Biomater 2021; 131:581-594. [PMID: 34192572 DOI: 10.1016/j.actbio.2021.06.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Adverse local tissue reactions (ALTRs) are a prominent cause of hip implant failure. ALTRs are characterized by aseptic necrosis and leukocyte infiltration of synovial tissue. The prevalence of ALTRs in hips with failing metal implants, with highest rates occurring in patients with metal-on-metal articulations, suggests a role for CoCrMo corrosion in ALTR formation. Although hypersensitivity reactions are the most accepted etiology, the precise cellular mechanism driving ALTR pathogenesis remains enigmatic. Here we show that cobalt ions released by failing hip implants induce mitochondrial stress and cytokine secretion by synovial fibroblasts: the presumptive initiators of ALTR pathogenesis. We found that in-vitro treatment of synovial fibroblasts with cobalt, but not chromium, generated gene expression changes indicative of hypoxia and mitophagy responses also observed in ALTRs biopsies. Inflammatory factors secreted by cobalt-exposed synovial fibroblasts were among those most concentrated in ALTR synovial fluid. Furthermore, both conditioned media from cobalt-exposed synovial fibroblasts, and synovial fluid from ALTRs patients, elicit endothelial activation and monocyte migration. Finally, we identify the IL16/CTACK ratio in synovial fluid as a possible diagnostic marker of ALTRs. Our results provide evidence suggesting that metal ions induce cell stress in synovial fibroblasts that promote an inflammatory response consistent with initiating ALTR formation. STATEMENT OF SIGNIFICANCE: We demonstrate that the cytotoxic effects of cobalt ions on the synovial cells (fibroblast) is sufficient to trigger inflammation on hip joints with metal implants. Cobalt ions affect mitochondrial function, leading to the auto phagocytosis of mitochondria and trigger a hypoxic response. The cell's hypoxic response includes secretion of cytokines that are capable of trigger inflammation by activating blood vessels and enhancing leukocyte migration. Among the secreted cytokines is IL-16, which is highly concentrated in the synovial fluid of the patients with adverse local tissue reactions and could be use as diagnostic marker. In conclusion we define the cells of the hip joint as key players in triggering the adverse reactions to hip implants and providing biomarkers for early diagnosis of adverse reactions to hip implants.
Collapse
|