1
|
Paakkari P, Inkinen SI, Jäntti J, Tuppurainen J, Fugazzola MC, Joenathan A, Ylisiurua S, Nieminen MT, Kröger H, Mikkonen S, van Weeren R, Snyder BD, Töyräs J, Honkanen MKM, Matikka H, Grinstaff MW, Honkanen JTJ, Mäkelä JTA. Dual-Contrast Agent with Nanoparticle and Molecular Components in Photon-Counting Computed Tomography: Assessing Articular Cartilage Health. Ann Biomed Eng 2025; 53:1423-1438. [PMID: 40155520 PMCID: PMC12075350 DOI: 10.1007/s10439-025-03715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/14/2025] [Indexed: 04/01/2025]
Abstract
PURPOSE Photon-counting detectors (PCDs) are cutting-edge technology that enable spectral computed tomography (CT) imaging with a single scan. Spectral imaging is particularly effective in contrast-enhanced CT (CECT) imaging, especially when multiple contrast agents are utilized, as materials are distinguishable based on their unique X-ray absorption. One application of CECT is joint imaging, where it assesses the structure and composition of articular cartilage soft tissue. This evaluates articular cartilage and reveals compositional changes associated with early-stage osteoarthritis (OA) using a photon-counting detector CT (PCD-CT) technique combined with a dual-contrast agent method. METHODS A dual-contrast agent combination was used, consisting of proteoglycan-binding cationic tantalum oxide nanoparticles, developed in our lab, and a commercial non-ionic iodinated iodixanol agent. Ex vivo equine stifle joint cartilage samples (N = 30) were immersed in the contrast agent bath for 96 hours and imaged at multiple timepoints for analysis of proteoglycan, collagen, and water contents as well as collagen orientation, histological scoring, and biomechanical parameters. RESULTS By analyzing contrast agent concentrations, the technique provided a simultaneous assessment of the solid constituents and function of cartilage. Contrast agent diffusion depended on contrast agent composition and was significantly different between healthy and early-stage OA groups within 12 hours. CONCLUSION The present study shows the promising utility of the dual-contrast PCD-CT technique for articular cartilage assessment and early-stage OA detection.
Collapse
Affiliation(s)
- Petri Paakkari
- Department of Technical Physics, University of Eastern Finland, 70211, Kuopio, Finland.
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| | - Satu I Inkinen
- Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jiri Jäntti
- Department of Technical Physics, University of Eastern Finland, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Juuso Tuppurainen
- Department of Technical Physics, University of Eastern Finland, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Maria C Fugazzola
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anisha Joenathan
- Departments of Biomedical Engineering, Chemistry and Medicine, Boston University, Boston, MA, USA
| | - Sampo Ylisiurua
- Oulu University Hospital, Oulu, Finland
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Miika T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Heikki Kröger
- Department of Orthopaedics and Traumatology, Kuopio University Hospital, Kuopio, Finland
- Musculoskeletal Research Unit, University of Eastern Finland, Kuopio, Finland
| | - Santtu Mikkonen
- Department of Technical Physics, University of Eastern Finland, 70211, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Juha Töyräs
- Department of Technical Physics, University of Eastern Finland, 70211, Kuopio, Finland
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Australia
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Hanna Matikka
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry and Medicine, Boston University, Boston, MA, USA
| | - Juuso T J Honkanen
- Radiotherapy Department, Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Janne T A Mäkelä
- Department of Technical Physics, University of Eastern Finland, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
2
|
Nelson BB, Mäkelä JTA, Lawson TB, Patwa AN, Snyder BD, McIlwraith CW, Grinstaff MW, Seabaugh KA, Barrett MF, Goodrich LR, Kawcak CE. Longitudinal in vivo cationic contrast-enhanced computed tomography classifies equine articular cartilage injury and repair. J Orthop Res 2024; 42:2264-2276. [PMID: 38715519 DOI: 10.1002/jor.25869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 10/19/2024]
Abstract
Cationic contrast-enhanced computed tomography (CECT) capitalizes on increased contrast agent affinity to the charged proteoglycans in articular cartilage matrix to provide quantitative assessment of proteoglycan content with enhanced images. While high resolution microCT has demonstrated success, we investigate cationic CECT use in longitudinal in vivo imaging at clinical resolution. We hypothesize that repeated administration of CA4+ will have no adverse side effects or complications, and that sequential in vivo imaging assessments will distinguish articular cartilage repair tissue from early degenerative and healthy cartilage in critically sized chondral defects. In an established equine translational preclinical model, lameness and synovial effusion scores are similar to controls after repeated injections of CA4+ (eight injections over 16 weeks) compared to controls. Synovial fluid total protein, leukocyte concentration, and sGAG and PGE2 concentrations and articular cartilage and synovial membrane scores are also equivalent to controls. Longitudinal in vivo cationic CECT attenuation in repair tissue is significantly lower than peripheral to (adjacent) and distantly from defects (remote sites) by 4 weeks (p < 0.001), and this difference persists until 16 weeks. At the 6- and 8-week time points, the adjacent locations exhibit significantly lower cationic CECT attenuation compared with the remote sites, reflecting peri-defect degeneration (p < 0.01). Cationic CECT attenuation at clinical resolution significantly correlates with cationic CECT (microCT) (r = 0.69, p < 0.0001), sGAG (r = 0.48, p < 0.0001), and ICRS II histology score (r = 0.63, p < 0.0001). In vivo cationic CECT imaging at clinical resolution distinguishes fibrous repair tissue from degenerative and healthy hyaline cartilage and correlates with molecular tissue properties of articular cartilage.
Collapse
Affiliation(s)
- Brad B Nelson
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Janne T A Mäkelä
- Harvard Medical School, Beth Israel Deaconess Medical Center, Center for Advanced Orthopaedic Studies, Boston, Massachusetts, USA
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Taylor B Lawson
- Harvard Medical School, Beth Israel Deaconess Medical Center, Center for Advanced Orthopaedic Studies, Boston, Massachusetts, USA
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Amit N Patwa
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Deparment of Chemistry, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Brian D Snyder
- Harvard Medical School, Beth Israel Deaconess Medical Center, Center for Advanced Orthopaedic Studies, Boston, Massachusetts, USA
| | - C Wayne McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Mark W Grinstaff
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Kathryn A Seabaugh
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Myra F Barrett
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Laurie R Goodrich
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Christopher E Kawcak
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Orava H, Paakkari P, Jäntti J, Honkanen MKM, Honkanen JTJ, Virén T, Joenathan A, Tanska P, Korhonen RK, Grinstaff MW, Töyräs J, Mäkelä JTA. Triple contrast computed tomography reveals site-specific biomechanical differences in the human knee joint-A proof of concept study. J Orthop Res 2024; 42:415-424. [PMID: 37593815 DOI: 10.1002/jor.25683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Cartilage and synovial fluid are challenging to observe separately in native computed tomography (CT). We report the use of triple contrast agent (bismuth nanoparticles [BiNPs], CA4+, and gadoteridol) to image and segment cartilage in cadaveric knee joints with a clinical CT scanner. We hypothesize that BiNPs will remain in synovial fluid while the CA4+ and gadoteridol will diffuse into cartilage, allowing (1) segmentation of cartilage, and (2) evaluation of cartilage biomechanical properties based on contrast agent concentrations. To investigate these hypotheses, triple contrast agent was injected into both knee joints of a cadaver (N = 1), imaged with a clinical CT at multiple timepoints during the contrast agent diffusion. Knee joints were extracted, imaged with micro-CT (µCT), and biomechanical properties of the cartilage surface were determined by stress-relaxation mapping. Cartilage was segmented and contrast agent concentrations (CA4+ and gadoteridol) were compared with the biomechanical properties at multiple locations (n = 185). Spearman's correlation between cartilage thickness from clinical CT and reference µCT images verifies successful and reliable segmentation. CA4+ concentration is significantly higher in femoral than in tibial cartilage at 60 min and further timepoints, which corresponds to the higher Young's modulus observed in femoral cartilage. In this pilot study, we show that (1) large BiNPs do not diffuse into cartilage, facilitating straightforward segmentation of human knee joint cartilage in a clinical setting, and (2) CA4+ concentration in cartilage reflects the biomechanical differences between femoral and tibial cartilage. Thus, the triple contrast agent CT shows potential in cartilage morphology and condition estimation in clinical CT.
Collapse
Affiliation(s)
- Heta Orava
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Petri Paakkari
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Jiri Jäntti
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Miitu K M Honkanen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Tuomas Virén
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Anisha Joenathan
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts, USA
| | - Petri Tanska
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts, USA
| | - Juha Töyräs
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Australia
| | - Janne T A Mäkelä
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
4
|
Recent strategies of collagen-based biomaterials for cartilage repair: from structure cognition to function endowment. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00085-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractCollagen, characteristic in biomimetic composition and hierarchical structure, boasts a huge potential in repairing cartilage defect due to its extraordinary bioactivities and regulated physicochemical properties, such as low immunogenicity, biocompatibility and controllable degradation, which promotes the cell adhesion, migration and proliferation. Therefore, collagen-based biomaterial has been explored as porous scaffolds or functional coatings in cell-free scaffold and tissue engineering strategy for cartilage repairing. Among those forming technologies, freeze-dry is frequently used with special modifications while 3D-printing and electrospinning serve as the structure-controller in a more precise way. Besides, appropriate cross-linking treatment and incorporation with bioactive substance generally help the collagen-based biomaterials to meet the physicochemical requirement in the defect site and strengthen the repairing performance. Furthermore, comprehensive evaluations on the repair effects of biomaterials are sorted out in terms of in vitro, in vivo and clinical assessments, focusing on the morphology observation, characteristic production and critical gene expression. Finally, the challenge of biomaterial-based therapy for cartilage defect repairing was summarized, which is, the adaption to the highly complex structure and functional difference of cartilage.
Graphical abstract
Collapse
|