1
|
Dembicka-Mączka D, Gryka-Deszczyńska M, Sitkiewicz J, Makara A, Fiegler-Rudol J, Wiench R. Evaluation of the Disinfection Efficacy of Er-YAG Laser Light on Single-Species Candida Biofilms: Systematic Review. Microorganisms 2025; 13:942. [PMID: 40284778 PMCID: PMC12029142 DOI: 10.3390/microorganisms13040942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
The relevance of the current study is to increase the resistance of fungal biofilms to traditional disinfection methods. The aim of the study was to determine how effectively Er:YAG laser light inhibits single-species Candida biofilms. The study involved a systematic review of 57 scientific publications (2015-2024) selected according to specific criteria, followed by an assessment of quantitative and qualitative indicators of colony-forming unit reduction. The results show that under optimal parameters (power 1.5-3.9 W and duration 60-90 s), the Er:YAG laser can reduce the number of viable Candida albicans cells by an average of 70-90%, and when combined with sodium hypochlorite or chlorhexidine solutions, this figure can exceed 90%. Separate in vitro tests show that Candida glabrata and Candida tropicalis require higher power or longer exposure to achieve a similar effect, while the use of the Er:YAG laser on titanium and dental surfaces minimizes damage to the substrate and effectively removes the biofilm matrix. In addition, laser treatment accelerates tissue regeneration and helps reduce the number of cases of reinfection, which is confirmed by the positive dynamics in clinical practice. Data analysis using confocal microscopy and microbiological seeding indicates a significant disruption of the biofilm structure and increased permeability to antimycotics after laser exposure. Er:YAG laser disinfection method is promising in counteracting fungal biofilms, especially for surfaces with a high risk of microbial colonization. The practical value lies in the possibility of developing standard protocols for the clinical use of the laser, which will increase the effectiveness of treatment and prevention of Candidal lesions.
Collapse
Affiliation(s)
| | | | | | | | - Jakub Fiegler-Rudol
- Department of Periodontal and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (J.F.-R.); (R.W.)
| | - Rafał Wiench
- Department of Periodontal and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (J.F.-R.); (R.W.)
| |
Collapse
|
2
|
Liu Z, Wang L, Ren S, Sun J. Comparison of the effect of the pulsed Er: YAG laser and topical corticosteroid on erosive oral lichen planus: a randomized clinical controlled trial. Lasers Med Sci 2025; 40:180. [PMID: 40198390 PMCID: PMC11978539 DOI: 10.1007/s10103-025-04419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 03/15/2025] [Indexed: 04/10/2025]
Abstract
The formation mechanism of OLP is very complicated, and its treatment has always been a difficult problem. This study was to explore the feasibility of pulsed Er: YAG laser in the treatment of erosive OLP by comparing its effect with that of Triamcinolone Acetonide ointment(TA) of OLP, in order to provide new ideas for the clinical treatment of erosive OLP. Forty patients who were clinically and histopathologically diagnosed as OLP at the Department of Periodontics and Oral Mucosa Disease of Dalian Stomatological Hospital were selected, all lesions accompanied by erosion. The included patients were randomly divided into two groups: Er: YAG group and TA group, with 20 cases in each group. The visual analogue scale (VAS), mean lesion area, clinical sign score, and function score in both groups were evaluated at baseline, 1 week, 2 weeks, 1 month and 3 months after treatment, and the recurrence rate of cured patients in both groups was evaluated at 3 months after treatment. Er: YAG laser was superior to TA in relieving pain at 1 week(1.50 ± 0.946 vs. 2.10 ± 0.912, P < 0.05) and improving function at all stages(P < 0.05). But TA was superior to the pulsed Er: YAG laser in promoting the healing of erosive lesions at 2 weeks(0.07 ± 0.223 vs. 0.31 ± 0.549, P < 0.05). There was no significant difference in recurrence between the two groups(P > 0.05). There is no significant difference between pulsed Er: YAG laser and TA in the treatment of erosive OLP. The use of pulsed Er: YAG laser represents a viable and effective therapeutic option for erosive OLP.
Collapse
Affiliation(s)
| | - Lin Wang
- Dalian Stomatological Hospital, Dalian, China
| | - Song Ren
- Dalian Stomatological Hospital, Dalian, China
| | - Jiang Sun
- Dalian Stomatological Hospital, Dalian, China.
| |
Collapse
|
3
|
Grzech-Leśniak Z, Pyrkosz J, Szwach J, Kosidło P, Matys J, Wiench R, Pajączkowska M, Nowicka J, Dominiak M, Grzech-Leśniak K. Antibacterial Effects of Er:YAG Laser Irradiation on Candida-Streptococcal Biofilms. Life (Basel) 2025; 15:474. [PMID: 40141818 PMCID: PMC11943470 DOI: 10.3390/life15030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
In contemporary dentistry, laser-based interventions have become one of the mainstays of care for patients with oral biofilm diseases, such as candidiasis, periodontal disease and peri-implantitis. The purpose of this study was to evaluate the effectiveness of Er:YAG laser (LightWalker, Ljubljana, Fotona, Slovenia) irradiation at varying irradiance levels (T1: 11.3 W/cm2 and T2: 120.54 W/cm2) on microbial viability in single- and dual-species biofilm models, focusing on Candida albicans, Candida glabrata and Streptococcus mutans, to address challenges in managing complex oral biofilms in clinically relevant settings. The results showed substantial microbial reduction, with C. albicans being the most susceptible microorganism (93-99.9%), while C. glabrata exhibited marked resistance at higher irradiance levels. Interestingly, S. mutans demonstrated varying reductions based on the biofilm composition, highlighting the influence of microbial interactions. This study concluded that the Er:YAG laser effectively reduced biofilm viability, with its efficacy depending on the microbial composition and irradiance settings. These findings highlight the need for tailored erbium laser parameters to optimize clinical outcomes, underscoring the need for individualized polymicrobial biofilm management, particularly in periodontal and peri-implant therapies.
Collapse
Affiliation(s)
| | - Jakub Pyrkosz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.P.); (J.S.); (P.K.)
| | - Jagoda Szwach
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.P.); (J.S.); (P.K.)
| | - Patrycja Kosidło
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.P.); (J.S.); (P.K.)
| | - Jacek Matys
- Laser Laboratory, Dental Surgery Department, Faculty of Dentistry, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.M.); (M.D.)
| | - Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Magdalena Pajączkowska
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.P.); (J.N.)
| | - Joanna Nowicka
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.P.); (J.N.)
| | - Marzena Dominiak
- Laser Laboratory, Dental Surgery Department, Faculty of Dentistry, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.M.); (M.D.)
| | - Kinga Grzech-Leśniak
- Laser Laboratory, Dental Surgery Department, Faculty of Dentistry, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.M.); (M.D.)
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University VCU, Richmond, VA 23298, USA
| |
Collapse
|
4
|
Melo-Soares V, Gazott-Simões I, Dos Reis AC, Valente MLDC. Effect of surface pre-treatment with Er: YAG laser on hydroxyapatite coating adhesion and mechanical properties of titanium alloy discs. Lasers Med Sci 2025; 40:130. [PMID: 40055212 DOI: 10.1007/s10103-025-04347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/05/2025] [Indexed: 05/13/2025]
Abstract
The use of hydroxyapatite (HAp) as a surface coating enhances the properties of titanium (Ti) by ensuring bioactivity and inducing bone apposition. The coating's limited adhesion to metal surfaces is a challenge, so improving it prevents delamination, inflammatory responses and mechanical failure of implants. The aim of this in vitro study was to evaluate the influence of Erbium-Doped Yttrium Aluminum Garnet (Er: YAG) laser irradiation as a pre-treatment on Ti-6Al-4 V surfaces on the adhesion of HAp coatings. Two groups of Ti-6Al-4 V discs (G1: machined + HAp coated and G2: laser irradiated + HAp coated) were evaluated by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and the crystalline phases of the coating by X-ray Diffraction (XRD). The physical properties were analyzed by microhardness, surface roughness and adhesion according to ASTM-D3359. Microhardness results were subjected to the t-test and surface roughness to the Mann-Whitney test. A 5% significance level was adopted. The characterization analyses were evaluated qualitatively. Laser treatment increased hardness (p = 0.013) and surface roughness (p = 0.002), while the untreated machined surface showed better coating adhesion. XRD, SEM and EDS analysis confirmed the formation of the HAp coating. Using the Er: YAG laser at the parameters determined in this study, no better adhesion of the coating was observed. However, laser irradiation provided greater hardness and roughness compared to films deposited on machined surfaces.
Collapse
Affiliation(s)
- Victor Melo-Soares
- Department of Dental Material and Prosthetics, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isadora Gazott-Simões
- Department of Dental Material and Prosthetics, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andréa Cândido Dos Reis
- Department of Dental Material and Prosthetics, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mariana Lima da Costa Valente
- Department of Dental Material and Prosthetics, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
5
|
Costa RC, Takeda TTS, Dini C, Bertolini M, Ferreira RC, Pereira G, Sacramento CM, Ruiz KGS, Feres M, Shibli JA, Barāo VAR, Souza JGS. Efficacy of a novel three-step decontamination protocol for titanium-based dental implants: An in vitro and in vivo study. Clin Oral Implants Res 2024; 35:268-281. [PMID: 38131526 DOI: 10.1111/clr.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/05/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
AIM The aim of the study was to evaluate several mechanical and chemical decontamination methods associated with a newly introduced biofilm matrix disruption strategy for biofilm cleaning and preservation of implant surface features. MATERIALS AND METHODS Titanium (Ti) discs were obtained by additive manufacturing. Polymicrobial biofilm-covered Ti disc surfaces were decontaminated with mechanical [Ti curette, Teflon curette, Ti brush, water-air jet device, and Er:YAG laser] or chemical [iodopovidone (PVPI) 0.2% to disrupt the extracellular matrix, along with amoxicillin; minocycline; tetracycline; H2 O2 3%; chlorhexidine 0.2%; NaOCl 0.95%; hydrocarbon-oxo-borate-based antiseptic] protocols. The optimal in vitro mechanical/chemical protocol was then tested in combination using an in vivo biofilm model with intra-oral devices. RESULTS Er:YAG laser treatment displayed optimum surface cleaning by biofilm removal with minimal deleterious damage to the surface, smaller Ti release, good corrosion stability, and improved fibroblast readhesion. NaOCl 0.95% was the most promising agent to reduce in vitro and in vivo biofilms and was even more effective when associated with PVPI 0.2% as a pre-treatment to disrupt the biofilm matrix. The combination of Er:YAG laser followed by PVPI 0.2% plus NaOCl 0.95% promoted efficient decontamination of rough Ti surfaces by disrupting the biofilm matrix and killing remnants of in vivo biofilms formed in the mouth (the only protocol to lead to ~99% biofilm eradication). CONCLUSION Er:YAG laser + PVPI 0.2% + NaOCl 0.95% can be a reliable decontamination protocol for Ti surfaces, eliminating microbial biofilms without damaging the implant surface.
Collapse
Affiliation(s)
- Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Thais Terumi Sadamitsu Takeda
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Raquel Carla Ferreira
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Gabriele Pereira
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Catharina Marques Sacramento
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Karina Gonzales S Ruiz
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Jamil A Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Valentim A R Barāo
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Joāo Gabriel S Souza
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| |
Collapse
|
6
|
Hart I, Wells C, Tsigarida A, Bezerra B. Effectiveness of mechanical and chemical decontamination methods for the treatment of dental implant surfaces affected by peri-implantitis: A systematic review and meta-analysis. Clin Exp Dent Res 2024; 10:e839. [PMID: 38345466 PMCID: PMC10847712 DOI: 10.1002/cre2.839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE To assess which decontamination method(s) used for the debridement of titanium surfaces (disks and dental implants) contaminated with bacterial, most efficiently eliminate bacterial biofilms. MATERIAL AND METHODS A systematic search was conducted in four electronic databases between January 1, 2010 and October 31, 2022. The search strategy followed the PICOS format and included only in vitro studies completed on either dental implant or titanium disk samples. The assessed outcome variable consisted of the most effective method(s)-chemical or mechanical- removing bacterial biofilm from titanium surfaces. A meta-analysis was conducted, and data was summarized through single- and multi-level random effects model (p < .05). RESULTS The initial search resulted in 5260 articles after the removal of duplicates. After assessment by title, abstract, and full-text review, a total of 13 articles met the inclusion criteria for this review. Different decontamination methods were assessed, including both mechanical and chemical, with the most common method across studies being chlorhexidine (CHX). Significant heterogeneity was noted across the included studies. The meta-analyses only identified a significant difference in biofilm reduction when CHX treatment was compared against PBS. The remaining comparisons did not identify significant differences between the various decontamination methods. CONCLUSIONS The present results do not demonstrate that one method of decontamination is superior in eliminating bacterial biofilm from titanium disk and implant surfaces.
Collapse
Affiliation(s)
- Iain Hart
- Department of Periodontology, Eastman Institute for Oral HealthUniversity of RochesterRochesterNew YorkUSA
| | - Christine Wells
- Statistical Methods and Data AnalyticsUCLA Office of Advanced Research ComputingLos AngelesCaliforniaUSA
| | - Alexandra Tsigarida
- Department of Periodontology, Eastman Institute for Oral HealthUniversity of RochesterRochesterNew YorkUSA
| | - Beatriz Bezerra
- Section of Periodontics, Division of Regenerative and Reconstructive SciencesUCLA School of DentistryLos AngelesCaliforniaUSA
| |
Collapse
|
7
|
Zhang L, Li Y, Yuan L, Zhang Q, Yan Y, Dong F, Tang J, Wang Y. Advanced and Readily-Available Wireless-Powered Blue-Light-Implant for Non-Invasive Peri-Implant Disinfection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203472. [PMID: 36935373 DOI: 10.1002/advs.202203472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/12/2023] [Indexed: 05/18/2023]
Abstract
Non-invasive light-based antibacterial therapy has a good prospect in non-surgical treatment of peri-implant infections. However, its applications are severely limited by poor penetration of light into human tissues, leading to unsatisfying outcomes. Moreover, as an essential prerequisite for traditional light therapy, lasers can no longer meet the patients' needs for convenient treatment at any time. To break through the spatial and temporal limitations of traditional light therapy, a wireless-powered blue-light zirconia implant for readily available treatment of peri-implant infection is proposed. In space, complete irradiation to complex peri-implant structure is realized by the built-in wireless-powered light source, thus improving the efficacy. In time, wireless-powering allows timely and controllable anti-infection treatment. Blue micro-light emitting diodes are used as therapeutic light sources, which effectively kill peri-implant infection-related bacteria without exogenous photosensitive agents. Porphyromonas gingivalis biofilm on implant surface can be completely killed after 20 min irradiation in vitro. The bactericidal rate of peri-implant methicillin-resistant Staphylococcus aureus infection reaches 99.96 ± 0.03% under 30 min per day blue light exposure in vivo. Within the scope of this study, the treatment of peri-implant infection with blue-light implant has preliminary feasibility, giving a new approach to non-invasive treatment of deep oral infections, including peri-implant infections.
Collapse
Affiliation(s)
- Ludan Zhang
- Center of Digital Dentistry/ Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Yamin Li
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Integrated Circuits, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Lintian Yuan
- Center of Digital Dentistry/ Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Qianyi Zhang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuqing Yan
- Beijing Taia Technology Co. LTD, Beijing, 100089, P. R. China
| | - Fan Dong
- Center of Digital Dentistry/ Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Jun Tang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Integrated Circuits, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yuguang Wang
- Center of Digital Dentistry/ Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| |
Collapse
|
8
|
Assunção MA, Botelho J, Machado V, Proença L, Matos APA, Mendes JJ, Bessa LJ, Taveira N, Santos A. Dental Implant Surface Decontamination and Surface Change of an Electrolytic Method versus Mechanical Approaches: A Pilot In Vitro Study. J Clin Med 2023; 12:jcm12041703. [PMID: 36836238 PMCID: PMC9967341 DOI: 10.3390/jcm12041703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
Dental implants are the preferred fixed oral rehabilitation for replacing lost teeth. When peri-implant tissues become inflamed, the removal of plaque accumulating around the implant becomes imperative. Recently, several new strategies have been developed for this purpose, with electrolytic decontamination showing increased potential compared to traditional mechanical strategies. In this in vitro pilot study, we compare the efficacy of an electrolytic decontaminant (Galvosurge®) with an erythritol jet system (PerioFlow®) and two titanium brushes (R-Brush™ and i-Brush™) in removing Pseudomonas aeruginosa PAO1 biofilms from implants. Changes in the implant surface after each approach were also evaluated. Twenty titanium SLA implants were inoculated with P. aeruginosa and then randomly assigned to each treatment group. After treatment, decontamination efficacy was assessed by quantifying colony-forming units (log10 CFU/cm2) from each implant surface. Scanning electron microscopy was used to analyse changes in the implant surface. With the exception of R-Brush, all treatment strategies were similarly effective in removing P. aeruginosa from implants. Major surface changes were observed only in implants treated with titanium brushes. In conclusion, this pilot study suggests that electrolytic decontamination, erythritol-chlorhexidine particle jet system and i-Brush™ brushing have similar performance in removing P. aeruginosa biofilm from dental implants. Further studies are needed to evaluate the removal of more complex biofilms. Titanium brushes caused significant changes to the implant surface, the effects of which need to be evaluated.
Collapse
Affiliation(s)
| | - João Botelho
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
| | - Vanessa Machado
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
| | - Luís Proença
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
| | - António P. A. Matos
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
| | - José João Mendes
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
| | - Lucinda J. Bessa
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
| | - Nuno Taveira
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
- Correspondence: (N.T.); (A.S.)
| | - Alexandre Santos
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
- Correspondence: (N.T.); (A.S.)
| |
Collapse
|
9
|
Wang J, Geng T, Wang Y, Yuan C, Wang P. Efficacy of antibacterial agents combined with erbium laser and photodynamic therapy in reducing titanium biofilm vitality: an in vitro study. BMC Oral Health 2023; 23:32. [PMID: 36658553 PMCID: PMC9854221 DOI: 10.1186/s12903-023-02730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The emergence of peri-implant diseases has prompted various methods for decontaminating the implant surface. This study compared the effectiveness of three different approaches, chlorhexidine digluconate (CHX) combined with erbium-doped yttrium-aluminum-garnet (Er:YAG) laser, photodynamic therapy (PDT), and CHX only, for reducing biofilm vitality from implant-like titanium surfaces. STUDY DESIGN/MATERIALS AND METHODS The study involved eight volunteers, each receiving a custom mouth device containing eight titanium discs. The volunteers were requested to wear the device for 72 h for biofilm development. Fluorescence microscopy was used to evaluate the remaining biofilm with a two-component nucleic acid dye kit. The vital residual biofilm was quantified as a percentage of the surface area using image analysis software. Sixty-four titanium discs were assigned randomly to one of four treatment groups. RESULTS The percentage of titanium disc area covered by vital residual biofilm was 43.9% (7.7%), 32.2% (7.0%), 56.6% (3.6%), and 73.2% (7.8%) in the PDT, Er:YAG, CHX, and control groups, respectively (mean (SD)). Compared to the control group, the treatment groups showed significant differences in the area covered by residual biofilm (P < 0.001). CHX combined with Er:YAG laser treatment was superior to CHX combined with PDT, and CHX only was better than the control. CONCLUSION Within the current in vitro model's limitations, CHX combined with Er:YAG laser treatment is a valid method to reduce biofilm vitality on titanium discs.
Collapse
Affiliation(s)
- Jing Wang
- grid.417303.20000 0000 9927 0537School of Stomatology, Xuzhou Medical University, Xuzhou, China ,grid.417303.20000 0000 9927 0537Center of Implant Dentistry, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tengyu Geng
- grid.417303.20000 0000 9927 0537School of Stomatology, Xuzhou Medical University, Xuzhou, China ,grid.417303.20000 0000 9927 0537Department of Prosthodontics, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuzhuo Wang
- grid.417303.20000 0000 9927 0537School of Stomatology, Xuzhou Medical University, Xuzhou, China ,grid.417303.20000 0000 9927 0537Center of Implant Dentistry, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Changyong Yuan
- grid.417303.20000 0000 9927 0537School of Stomatology, Xuzhou Medical University, Xuzhou, China ,grid.417303.20000 0000 9927 0537Center of Implant Dentistry, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Penglai Wang
- grid.417303.20000 0000 9927 0537School of Stomatology, Xuzhou Medical University, Xuzhou, China ,grid.417303.20000 0000 9927 0537Center of Implant Dentistry, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Stein JM, Conrads G, Abdelbary MMH, Yekta-Michael SS, Buttler P, Glock J, Sadvandi G, Kaufmann R, Apel C. Antimicrobial efficiency and cytocompatibility of different decontamination methods on titanium and zirconium surfaces. Clin Oral Implants Res 2023; 34:20-32. [PMID: 36259118 DOI: 10.1111/clr.14014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/18/2022] [Accepted: 10/13/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES The purpose of this study was to investigate the efficiency of different implant-decontamination methods regarding biofilm modification and potential cytotoxic effects. Therefore, the amount of biofilm reduction, cytocompatibility, and elementary surface alterations were evaluated after decontamination of titanium and zirconium surfaces. MATERIAL AND METHODS Titanium and zirconium disks were contaminated with a newly developed high-adherence biofilm consisting of six microbial species. Decontaminations were performed using titanium curette, stainless steel ultrasonic scaler (US), glycine (GPAP) and erythritol (EPAP) powder air-polishing, Er:YAG laser, 1% chlorhexidine (CHX), 10% povidone-iodine (PVI), 14% doxycycline (doxy), and 0.95% NaOCl solution. Microbiologic analysis was done using real-time qPCR. For assessment of cytocompatibility, a multiplex assay for the detection of cytotoxicity, viability, and apoptosis on human gingival fibroblasts was performed. X-ray photoelectron spectroscopy (XPS) was used to evaluate chemical alterations on implant surfaces. RESULTS Compared with untreated control disks, only GPAP, EPAP, US, and Er:YAG laser significantly reduced rRNA counts (activity) on titanium and zirconium (p < .01), whereas NaOCl decreased rRNA count on titanium (p < .01). Genome count (bacterial presence) was significantly reduced by GPAP, EPAP, and US on zirconium only (p < .05). X-ray photoelectron spectroscopy analyses revealed relevant re-exposure of implant surface elements after GPAP, EPAP, and US treatment on both materials, however, not after Er:YAG laser application. Cytocompatibility was impaired by CHX, PVI, doxy, and NaOCl. CHX and PVI resulted in the lowest viability and doxy in the highest apoptosis. CONCLUSIONS Within the limits of this in vitro study, air-polishing methods and ultrasonic device resulted in effective biofilm inactivation with surface re-exposure and favorable cytocompatibility on titanium and zirconium. Chemical agents, when applied on implant surfaces, may cause potential cytotoxic effects.
Collapse
Affiliation(s)
- Jamal M Stein
- Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital (RWTH), Aachen, Germany.,Private Practice, Aachen, Germany
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
| | - Mohamed M H Abdelbary
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
| | | | - Patricia Buttler
- Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital (RWTH), Aachen, Germany
| | - Joanna Glock
- Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital (RWTH), Aachen, Germany
| | - Gelareh Sadvandi
- Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital (RWTH), Aachen, Germany
| | - Robert Kaufmann
- DWI - Leibnitz-Institut für Interaktive Materialien, Aachen, Germany
| | - Christian Apel
- Department of Biohybrid & Medical Textiles (BioTex), Institute of Applied Medical Engineering, RWTH Aachen University & Hospital, Germany
| |
Collapse
|
11
|
Zhao M, Qiu F, Song J, Zhang C, Liu T, Wu M. The effects of Twinlight laser treatment on the titanium surface proliferation and osteogenic differentiation of mesenchymal stem cells. BMC Oral Health 2022; 22:409. [PMID: 36123683 PMCID: PMC9484218 DOI: 10.1186/s12903-022-02448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study aimed to observe the effects of a Twinlight laser on the titanium surface proliferation of inflammatory Mesenchymal stem cells (MSCs), inflammatory cytokine expression, and osteogenic differentiation. METHODS The MSCs were collected from bone tissue of healthy individuals.The cellular inflammatory model was established with 1 μg/mL lipopolysaccharide (LPS).Under the cellular inflammatory model,divided into five groups: the normal control group (C); the inflammatory control group (L); Er:YAG laser group (L + E); Nd:YAG laser group (L + N); Er:YAG laser and Nd:YAG laser group (L + E + N). The treated cells were inoculated onto titanium disks.The normal and inflammatory MSCs on the surface of titanium surface were examined by CCK-8, scanning election microscopy (SEM), quantitative real-time polymerase chain reaction (qRT‑PCR) and other methods for their proliferation, growth pattern, expression of inflammatory factors Interleukin-6 (IL-6), Interleukin-8 (IL-8) and osteogenic genes Runx2 (Runt-related transcription factor 2) and alkaline phosphatase (ALP), providing the theoretical basis and experimental data for the Twinlight laser-assisted treatment of peri-implantitis. Statistical analyses were performed using a Student's t test with SPSS 17.0 software. RESULTS Through observation using SEM, the cell densities of the L + E + N, L + E, and L + N groups were similar, but cell bodies in the L + E + N group were fuller and each had more than two pseudopodia. The expression level of IL-6 mRNA in the L, L + N, L + E, and L + E + N groups was higher than in group C (P < 0.05), and the expression level of IL-8 mRNA in the L + E + N group was significantly lower than in group L (P < 0.0001). On day 7, the expression level of ALP mRNA in the L, L + N, L + E, and L + E + N groups was lower than in group C (P < 0.05). On day 14, there was no significant difference in the expression level of ALP mRNA among the L + N, L + E + N, and C groups (P > 0.05). On day 7, the expression level of RUNX2 mRNA in the L + E + N group was higher than in group L (P < 0.001). On day 14, the expression level of RUNX2 mRNA in the L + E + N group was higher than in group L (P < 0.01). CONCLUSION Twinlight laser treatment promoted cell proliferation, inhibited the expression of inflammatory cytokines, and effectively enhanced the osteogenic differentiation of cells on a titanium surface.
Collapse
Affiliation(s)
- Mengzhen Zhao
- Hebei Key Laboratory of Stomatology, Department of Periodontology (II), Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Zhongshan East Road 383, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Stomatology, Department of Laser Medicine, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Feng Qiu
- Hebei Medical University, Zhongshan East Road 361, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Jianing Song
- Hebei Key Laboratory of Stomatology, Department of Periodontology (II), Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Zhongshan East Road 383, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Stomatology, Department of Laser Medicine, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Congcong Zhang
- Hebei Key Laboratory of Stomatology, Department of Periodontology (II), Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Zhongshan East Road 383, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Stomatology, Department of Laser Medicine, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Taohong Liu
- Hebei Key Laboratory of Stomatology, Department of Periodontology (II), Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Zhongshan East Road 383, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Stomatology, Department of Laser Medicine, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Mingxuan Wu
- Hebei Key Laboratory of Stomatology, Department of Periodontology (II), Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Zhongshan East Road 383, Shijiazhuang, 050017, Hebei, People's Republic of China.
- Hebei Key Laboratory of Stomatology, Department of Laser Medicine, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China.
| |
Collapse
|
12
|
Characterization of Hydroxyapatite Film Obtained by Er:YAG Pulsed Laser Deposition on Sandblasted Titanium: An In Vitro Study. MATERIALS 2022; 15:ma15062306. [PMID: 35329758 PMCID: PMC8955651 DOI: 10.3390/ma15062306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022]
Abstract
The surface of titanium (Ti) dental implants must be modified to improve their applicability, owing to the biological inertness of Ti. This study aims to use sandblasting as a pretreatment method and prepare a hydroxyapatite (HA) coating on Ti to improve its biocompatibility and induce bone bonding and osteogenesis. In this paper, sandblasted Ti discs were coated with α-tricalcium phosphate (α-TCP) via Er:YAG pulsed laser deposition (Er:YAG-PLD). An HA coating was then obtained via the hydrothermal treatment of the discs at 90 °C for 10 h. The surface characteristics of the samples were evaluated by SEM, SPM, XPS, XRD, FTIR, and tensile tests. Rat bone marrow mesenchymal stem cells were seeded on the HA-coated discs to determine cellular responses in vitro. The surface characterization results indicated the successful transformation of the HA coating with a nanorod-like morphology, and its surface roughness increased. In vitro experiments revealed increased cell attachment on the HA-coated discs, as did the cell morphology of fluorescence staining and SEM analysis; in contrast, there was no increase in cell proliferation. This study confirms that Er:YAG-PLD could be used as an implant surface-modification technique to prepare HA coatings with a nanorod-like morphology on Ti discs.
Collapse
|
13
|
Hou X, Yuan K, Huang Z, Ma R. Effects of Bleaching Associated with Er:YAG and Nd:YAG Laser on Enamel Structure and Bacterial Biofilm Formation. SCANNING 2021; 2021:6400605. [PMID: 35003484 PMCID: PMC8712178 DOI: 10.1155/2021/6400605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To compare the effects of bleaching associated with Er:YAG and Nd:YAG laser on enamel structure and mixed biofilm formation on teeth surfaces. MATERIALS AND METHODS Sixty-eight enamel samples were randomly divided into four groups (n = 17), control, Opalescence Boost only, Opalescence Boost plus Er: YAG laser, and Opalescence Boost plus Nd:YAG laser. The structure was observed using SEM after bleaching. Subsequently, the treated enamel samples were also cultured in suspensions of Streptococcus mutans, Streptococcus sanguis, Actinomyces viscosus, and Fusobacterium nucleatum (Fn) for 24 and 48 h. Biofilm formation was quantified by crystal violet staining, and the structure was visualized by confocal laser scanning microscopy. The data were analyzed using the Kruskal-Wallis method. RESULTS The enamel structure significantly changed after bleaching. There was no obvious difference in the biofilm formation after 24 h; however, after 48 hours, the amount of biofilm increased significantly. Remarkably, the amount was significantly higher on enamel bleached only, however, there was no significant difference between samples bleached with Er:YAG or Nd:YAG laser compared to the control. CONCLUSIONS Bleaching only appeared to markedly promote biofilm formation after 48 h, and the biofilms on samples bleached with Er:YAG or Nd:YAG laser did not change significantly, showing that bleaching with Er:YAG or Nd:YAG laser can be safely applied in clinical practice.
Collapse
Affiliation(s)
- Xiuxiu Hou
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Keyong Yuan
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Rui Ma
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
14
|
Bertl K, Stavropoulos A. A Mini Review on Non-augmentative Surgical Therapy of Peri-Implantitis—What Is Known and What Are the Future Challenges? FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.659361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Non-augmentative surgical therapy of peri-implantitis is indicated for cases with primarily horizontal bone loss or wide defects with limited potential for bone regeneration and/or re-osseointegration. This treatment approach includes a variety of different techniques (e.g., open flap debridement, resection of peri-implant mucosa, apically positioned flaps, bone re-contouring, implantoplasty, etc.) and various relevant aspects should be considered during treatment planning. The present mini review provides an overview on what is known for the following components of non-augmentative surgical treatment of peri-implantitis and on potential future research challenges: (1) decontamination of the implant surface, (2) need of implantoplasty, (3) prescription of antibiotics, and (4) extent of resective measures.
Collapse
|