1
|
Sulaiman S, Gershkovich P, Hoad CL, Calladine M, Spiller RC, Stolnik S, Marciani L. Application of In Vivo MRI Imaging to Track a Coated Capsule and Its Disintegration in the Gastrointestinal Tract in Human Volunteers. Pharmaceutics 2022; 14:pharmaceutics14020270. [PMID: 35214003 PMCID: PMC8879863 DOI: 10.3390/pharmaceutics14020270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Oral specially coated formulations have the potential to improve treatment outcomes of a range of diseases in distal intestinal tract whilst limiting systemic drug absorption and adverse effects. Their development is challenging, partly because of limited knowledge of the physiological and pathological distal gastrointestinal factors, including colonic chyme fluid distribution and motor function. Recently, non-invasive techniques such as magnetic resonance imaging (MRI) have started to provide novel important insights. In this feasibility study, we formulated a coated capsule consisting of a hydroxypropyl methylcellulose (HPMC) shell, coated with a synthetic polymer based on polymethacrylate-based copolymer (Eudragit®) that can withstand the upper gastrointestinal tract conditions. The capsule was filled with olive oil as MRI-visible marker fluid. This allowed us to test the ability of MRI to track such a coated capsule in the gastrointestinal tract and to assess whether it is possible to image its loss of integrity by exploiting the ability of MRI to image fat and water separately and in combination. Ten healthy participants were administered capsules with varying amounts of coating and underwent MRI imaging of the gastrointestinal tract at 45 min intervals. The results indicate that it is feasible to track the capsules present in the gastrointestinal tract at different locations, as they were detected in all 10 participants. By the 360 min endpoint of the study, in nine participants the capsules were imaged in the small bowel, in eight participants in the terminal ileum, and in four in the colon. Loss of capsule integrity was observed in eight participants, occurring predominantly in distal intestinal regions. The data indicate that the described approach could be applied to assess performance of oral formulations in undisturbed distal gastrointestinal regions, without the need for ionizing radiation or contrast agents.
Collapse
Affiliation(s)
- Sarah Sulaiman
- Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham NG7 2UH, UK; (S.S.); (R.C.S.)
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, Nottingham NG7 2QL, UK; (P.G.); (M.C.); (S.S.)
| | - Caroline L. Hoad
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2QX, UK;
| | - Matthew Calladine
- School of Pharmacy, University of Nottingham, Nottingham NG7 2QL, UK; (P.G.); (M.C.); (S.S.)
| | - Robin C. Spiller
- Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham NG7 2UH, UK; (S.S.); (R.C.S.)
| | - Snow Stolnik
- School of Pharmacy, University of Nottingham, Nottingham NG7 2QL, UK; (P.G.); (M.C.); (S.S.)
| | - Luca Marciani
- Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham NG7 2UH, UK; (S.S.); (R.C.S.)
- Correspondence: ; Tel.: +44-11-5823-1248
| |
Collapse
|
2
|
Vrbanac H, Trontelj J, Kalčič Š, Legen I. Mechanistic study of model drug release from HPMC matrices in fed gastric media. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Effects of Diurnal Variation and Food on Gastrointestinal Transit of 111In-Labeled Hydrogel Matrix Extended-Release Tablets and 99mTc-Labeled Pellets in Humans. J Pharm Sci 2020; 109:1020-1025. [DOI: 10.1016/j.xphs.2019.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/21/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022]
|
4
|
The mechanisms of pharmacokinetic food-drug interactions - A perspective from the UNGAP group. Eur J Pharm Sci 2019; 134:31-59. [PMID: 30974173 DOI: 10.1016/j.ejps.2019.04.003] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
The simultaneous intake of food and drugs can have a strong impact on drug release, absorption, distribution, metabolism and/or elimination and consequently, on the efficacy and safety of pharmacotherapy. As such, food-drug interactions are one of the main challenges in oral drug administration. Whereas pharmacokinetic (PK) food-drug interactions can have a variety of causes, pharmacodynamic (PD) food-drug interactions occur due to specific pharmacological interactions between a drug and particular drinks or food. In recent years, extensive efforts were made to elucidate the mechanisms that drive pharmacokinetic food-drug interactions. Their occurrence depends mainly on the properties of the drug substance, the formulation and a multitude of physiological factors. Every intake of food or drink changes the physiological conditions in the human gastrointestinal tract. Therefore, a precise understanding of how different foods and drinks affect the processes of drug absorption, distribution, metabolism and/or elimination as well as formulation performance is important in order to be able to predict and avoid such interactions. Furthermore, it must be considered that beverages such as milk, grapefruit juice and alcohol can also lead to specific food-drug interactions. In this regard, the growing use of food supplements and functional food requires urgent attention in oral pharmacotherapy. Recently, a new consortium in Understanding Gastrointestinal Absorption-related Processes (UNGAP) was established through COST, a funding organisation of the European Union supporting translational research across Europe. In this review of the UNGAP Working group "Food-Drug Interface", the different mechanisms that can lead to pharmacokinetic food-drug interactions are discussed and summarised from different expert perspectives.
Collapse
|
5
|
Albertini B, Bertoni S, Perissutti B, Passerini N. An investigation into the release behavior of solid lipid microparticles in different simulated gastrointestinal fluids. Colloids Surf B Biointerfaces 2019; 173:276-285. [DOI: 10.1016/j.colsurfb.2018.09.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/10/2018] [Accepted: 09/22/2018] [Indexed: 12/23/2022]
|
6
|
Koziolek M, Kostewicz E, Vertzoni M. Physiological Considerations and In Vitro Strategies for Evaluating the Influence of Food on Drug Release from Extended-Release Formulations. AAPS PharmSciTech 2018; 19:2885-2897. [PMID: 30155808 DOI: 10.1208/s12249-018-1159-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/18/2018] [Indexed: 02/08/2023] Open
Abstract
Food effects on oral drug bioavailability are a consequence of the complex interplay between drug, formulation and human gastrointestinal (GI) physiology. Accordingly, the prediction of the direction and the extent of food effects is often difficult. With respect to novel formulations, biorelevant in vitro methods can be extremely powerful tools to simulate the effect of food-induced changes on the physiological GI conditions on drug release and absorption. However, the selection of suitable in vitro methods should be based on a thorough understanding not only of human GI physiology but also of the drug and formulation properties. This review focuses on in vitro methods that can be applied to evaluate the effect of food intake on drug release from extended release (ER) products during preclinical formulation development. With the aid of different examples, it will be demonstrated that the combined and targeted use of various biorelevant in vitro methods can be extremely useful for understanding drug release from ER products in the fed state and to be able to forecast formulation-associated risks such as dose dumping in early stages of formulation development.
Collapse
|
7
|
Pentafragka C, Symillides M, McAllister M, Dressman J, Vertzoni M, Reppas C. The impact of food intake on the luminal environment and performance of oral drug products with a view to in vitro and in silico simulations: a PEARRL review. J Pharm Pharmacol 2018; 71:557-580. [DOI: 10.1111/jphp.12999] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/04/2018] [Indexed: 01/24/2023]
Abstract
Abstract
Objectives
Using the type of meal and dosing conditions suggested by regulatory agencies as a basis, this review has two specific objectives: first, to summarize our understanding on the impact of food intake on luminal environment and drug product performance and second, to summarize the usefulness and limitations of available in vitro and in silico methodologies for the evaluation of drug product performance after food intake.
Key findings
Characterization of the luminal environment and studies evaluating product performance in the lumen, under conditions suggested by regulatory agencies for simulating the fed state, are limited. Various in vitro methodologies have been proposed for evaluating drug product performance in the fed state, but systematic validation is lacking. Physiologically based pharmacokinetic (PBPK) modelling approaches require the use of in vitro biorelevant data and, to date, have been used primarily for investigating the mechanisms via which an already observed food effect is mediated.
Summary
Better understanding of the impact of changes induced by the meal administration conditions suggested by regulatory agencies on the luminal fate of the drug product is needed. Relevant information will be useful for optimizing the in vitro test methods and increasing the usefulness of PBPK modelling methodologies.
Collapse
Affiliation(s)
- Christina Pentafragka
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Mira Symillides
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt/Main, Germany
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Patel RB, Yalkowsky SH. A rule of unity for human intestinal absorption 3: Application to pharmaceuticals. Biopharm Drug Dispos 2018; 39:67-74. [DOI: 10.1002/bdd.2113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Raj B. Patel
- Department of Pharmaceutical Sciences, College of Pharmacy; The University of Arizona; Tucson Arizona USA
| | - Samuel H. Yalkowsky
- Department of Pharmaceutical Sciences, College of Pharmacy; The University of Arizona; Tucson Arizona USA
| |
Collapse
|
9
|
Chang RK, Mathias N, Hussain MA. Biopharmaceutical Evaluation and CMC Aspects of Oral Modified Release Formulations. AAPS JOURNAL 2017; 19:1348-1358. [PMID: 28681160 DOI: 10.1208/s12248-017-0112-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/07/2017] [Indexed: 11/30/2022]
Abstract
This article discusses the range of outcomes from biopharmaceutical studies of specific modified release (MR) product examples in preclinical models and humans. It touches upon five major biopharmaceutical areas for MR drug products: (1) evidence for regional permeability throughout the GI tract, (2) susceptibility to food-effect, (3) susceptibility to pH-effect, (4) impact of chronopharmacology in designing MR products, and (5) implications to narrow therapeutic index products. Robust bioperformance requires that product quality is met through a thorough understanding of the appropriate critical quality attributes that ensure reliable and robust manufacture of a MR dosage form. The quality-by-design (QbD) aspects of MR dosage form design and development are discussed with the emphasis on the regulatory view of the data required to support dosage form development.
Collapse
Affiliation(s)
- Rong-Kun Chang
- Office of Life Cycle Products, Office of Pharmaceutical Quality, Center of Drug Evaluation and Research, US Food and Drug Administrations, Silver Spring, Maryland, USA
| | - Neil Mathias
- Drug Product Science & Technology, Bristol-Myers Squibb Co., P.O. Box Bldg. 105/Room 2474, One Squibb Drive, New Brunswick, New Jersey, 08903, USA
| | - Munir A Hussain
- Drug Product Science & Technology, Bristol-Myers Squibb Co., P.O. Box Bldg. 105/Room 2474, One Squibb Drive, New Brunswick, New Jersey, 08903, USA.
| |
Collapse
|
10
|
Verstraete G, De Jaeghere W, Vercruysse J, Grymonpré W, Vanhoorne V, Stauffer F, De Beer T, Bezuijen A, Remon J, Vervaet C. The use of partially hydrolysed polyvinyl alcohol for the production of high drug-loaded sustained release pellets via extrusion-spheronisation and coating: In vitro and in vivo evaluation. Int J Pharm 2017; 517:88-95. [DOI: 10.1016/j.ijpharm.2016.11.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
|
11
|
A comparative study between melt granulation/compression and hot melt extrusion/injection molding for the manufacturing of oral sustained release thermoplastic polyurethane matrices. Int J Pharm 2016; 513:602-611. [DOI: 10.1016/j.ijpharm.2016.09.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 02/01/2023]
|
12
|
Advances in mechanistic understanding of release rate control mechanisms of extended-release hydrophilic matrix tablets. Ther Deliv 2016; 7:553-72. [DOI: 10.4155/tde-2016-0026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Approaches to characterizing and developing understanding around the mechanisms that control the release of drugs from hydrophilic matrix tablets are reviewed. While historical context is provided and direct physical characterization methods are described, recent advances including the role of percolation thresholds, the application on magnetic resonance and other spectroscopic imaging techniques are considered. The influence of polymer and dosage form characteristics are reviewed. The utility of mathematical modeling is described. Finally, how all the information derived from applying the developed mechanistic understanding from all of these tools can be brought together to develop a robust and reliable hydrophilic matrix extended-release tablet formulation is proposed.
Collapse
|
13
|
Mason LM, Chessa S, Huatan H, Storey DE, Gupta P, Burley J, Melia CD. Use of the Dynamic Gastric Model as a tool for investigating fed and fasted sensitivities of low polymer content hydrophilic matrix formulations. Int J Pharm 2016; 510:210-20. [DOI: 10.1016/j.ijpharm.2016.06.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
|
14
|
Kuentz M, Holm R, Elder DP. Methodology of oral formulation selection in the pharmaceutical industry. Eur J Pharm Sci 2016; 87:136-63. [DOI: 10.1016/j.ejps.2015.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/24/2015] [Accepted: 12/06/2015] [Indexed: 12/30/2022]
|
15
|
Analysis of small intestinal transit and colon arrival times of non-disintegrating tablets administered in the fasted state. Eur J Pharm Sci 2015; 75:131-41. [PMID: 25769525 DOI: 10.1016/j.ejps.2015.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/12/2015] [Accepted: 03/02/2015] [Indexed: 11/21/2022]
Abstract
In this study individual data on tablet gastrointestinal transit times (i.e. gastric emptying, small intestinal transit, ileocecal junction residence, and colon arrival times) were obtained from literature in order to present and analyze their distributions and relationships. The influence of the time of food intake after tablet administration in fasted state on gastrointestinal transit times was additionally evaluated. There were 114 measurements from subjects who received the first meal at 4h after tablet administration. Approximately 32% of the tablets arrived into the colon before the meal intake at 4h. An evident increase in the frequency of colon arrival of tablets within 40min after the meal intake at 4h post-dose was observed, where approximately 39% of all tablets arrived into the colon. This is in accordance with findings described in literature where a meal ingested several hours post-dose accelerates tablet transit through the terminal ileum and shortens the transit through the small intestine. The median (min, max) of gastric emptying, small intestinal transit, and colon arrival times in the group where the first meal intake was at 4h post-dose is 35 (0,192), 215 (60,544), and 254 (117,604) minutes, respectively. The dependence of colon arrival times on gastric emptying times was described by the nonparametric regression curve, and compared with the presumed interval of colon arrival times, calculated by summation of observed gastric emptying times and frequently cited small intestinal transit time interval, i.e. 3-4h. For shorter gastric emptying times the trend of colon arrival times was within the presumed interval. At short gastric emptying times many observation points are also within the presumed interval since this interval coincides with short period after meal intake at 4h post-dose. Additionally, in numerous occasions relatively long ileocecal junction residence times were obtained, which may be important information from the point of view of drug absorption. The findings of gastrointestinal transit times are important and should be taken into consideration when predicting the in vivo performance of dosage forms after oral administration.
Collapse
|
16
|
Marzorati M, Possemiers S, Verhelst A, Cadé D, Madit N, Van de Wiele T. A novel hypromellose capsule, with acid resistance properties, permits the targeted delivery of acid-sensitive products to the intestine. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.08.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Jain AK, Söderlind E, Viridén A, Schug B, Abrahamsson B, Knopke C, Tajarobi F, Blume H, Anschütz M, Welinder A, Richardson S, Nagel S, Abrahmsén-Alami S, Weitschies W. The influence of hydroxypropyl methylcellulose (HPMC) molecular weight, concentration and effect of food on in vivo erosion behavior of HPMC matrix tablets. J Control Release 2014; 187:50-8. [PMID: 24818771 DOI: 10.1016/j.jconrel.2014.04.058] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
Abstract
Four different hydrophilic matrix formulations based on hydroxypropyl methylcellulose (HPMC) were investigated for erosion properties in vivo. Three formulations contained a fixed amount of HPMC (40%) with varying proportions of two HPMC grades with different molecular weights (Methocel K100LV and K4M), and a fourth formulation contained a lower amount of the HPMC of lower molecular weight (20%). The effect of food on the in vivo erosion behavior was investigated on two formulations containing different contents of the same HPMC grade. The in vivo erosion behavior and gastrointestinal transit were investigated using magnetic marker monitoring (MMM). The in vitro and in vivo erosion-time profiles show that the erosion was strongly dependent on the composition of the formulation. The formulations containing a larger proportion of high molecular weight HPMC or higher content of HPMC exhibit relatively slower erosion rate and vice versa. In vivo erosion rates were significantly higher under postprandial administration as compared to fasted state administration. No rapid disintegration of any of the formulations (i.e. formulation failure that can potentially cause dose dumping) was observed.
Collapse
Affiliation(s)
- Arun Kumar Jain
- Institute of Pharmacy, Ernst-Moritz-Arndt-University of Greifswald, 17487 Greifswald, Germany
| | - Erik Söderlind
- Pharmaceutical Development, AstraZeneca R&D, 431 83 Mölndal, Sweden
| | - Anna Viridén
- Pharmaceutical Development, AstraZeneca R&D, 431 83 Mölndal, Sweden
| | | | | | | | - Farhad Tajarobi
- Pharmaceutical Development, AstraZeneca R&D, 431 83 Mölndal, Sweden
| | | | | | - Anette Welinder
- Pharmaceutical Development, AstraZeneca R&D, 431 83 Mölndal, Sweden
| | - Sara Richardson
- Pharmaceutical Development, AstraZeneca R&D, 431 83 Mölndal, Sweden
| | - Stefan Nagel
- Institute of Pharmacy, Ernst-Moritz-Arndt-University of Greifswald, 17487 Greifswald, Germany
| | | | - Werner Weitschies
- Institute of Pharmacy, Ernst-Moritz-Arndt-University of Greifswald, 17487 Greifswald, Germany.
| |
Collapse
|
18
|
Koziolek M, Grimm M, Garbacz G, Kühn JP, Weitschies W. Intragastric volume changes after intake of a high-caloric, high-fat standard breakfast in healthy human subjects investigated by MRI. Mol Pharm 2014; 11:1632-9. [PMID: 24697247 DOI: 10.1021/mp500022u] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of this magnetic resonance imaging (MRI) study was to investigate gastric emptying after intake of a high-caloric and high-fat standard meal as recommended by FDA and EMA for food-effect bioavailability and fed bioequivalence studies. Twelve healthy human subjects (7 male, 5 female) received the standard meal after an overnight fast. MRI was performed before as well as 15, 25, 35, 45, 55, 65, 105, 195, 275, and 375 min after meal intake using strong T2-weighted sequences and chemical shift imaging. In addition, 30 min after the beginning of meal intake subjects ingested 240 mL of water representing the recommended coadministration of water during drug intake. Gastric content volume was assessed using T2-weighted images, and fat fraction was estimated using a calculation of fat fraction in chemical shift imaging. In addition, the existence of a mechanism allowing fast gastric emptying of water in the fed state was investigated. After a lag phase of 50-90 min, gastric content volume decreased constantly with a rate of 1.7 mL/min. The water ingested 30 min after the start of the meal intake directly reached the antrum and subsequently was emptied quickly from the human stomach. Complete gastric emptying within 6 h was observed in only one out of 12 subjects. The fat fraction of the intragastric chyme decreased from 9.5% directly after meal intake to 6.3% at the end of the experiments. Moreover, the fat fraction in fundus was significantly higher compared to the antrum. This study contributes fundamental data for the assessment of food effects of solid oral dosage forms.
Collapse
Affiliation(s)
- Mirko Koziolek
- Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), Ernst Moritz Arndt University of Greifswald , Felix-Hausdorff-Straße 3, D-17487 Greifswald, Germany
| | | | | | | | | |
Collapse
|
19
|
Koziolek M, Garbacz G, Neumann M, Weitschies W. Simulating the Postprandial Stomach: Biorelevant Test Methods for the Estimation of Intragastric Drug Dissolution. Mol Pharm 2013; 10:2211-21. [DOI: 10.1021/mp300607e] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mirko Koziolek
- Institute of Pharmacy, Department
of Biopharmaceutics and Pharmaceutical Technology, Center of Drug
Absorption and Transport, University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
| | - Grzegorz Garbacz
- Physiolution GmbH, Walther-Rathenau-Str. 49a, 17489 Greifswald, Germany
| | - Marco Neumann
- Institute of Pharmacy, Department
of Biopharmaceutics and Pharmaceutical Technology, Center of Drug
Absorption and Transport, University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
| | - Werner Weitschies
- Institute of Pharmacy, Department
of Biopharmaceutics and Pharmaceutical Technology, Center of Drug
Absorption and Transport, University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
| |
Collapse
|
20
|
Barbre Pedersen P, Pajander J, Müllertz A, Vilmann P, Jørgensen L, Baldursdottir S. Towards the understanding of complex fluids in pharmaceutical sciences. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50056-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Optimization of LY545694 Tosylate Controlled Release Tablets Through Pharmacoscintigraphy. Pharm Res 2012; 29:2912-25. [DOI: 10.1007/s11095-012-0798-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
|
22
|
Biller S, Domey J, Fiedler P, Holzhey R, Richert H, Haueisen J. Dissolution of magnetically marked tablets: investigations in a physical phantom. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2012:2072-2075. [PMID: 23366328 DOI: 10.1109/embc.2012.6346367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Pharmacological research is strongly driven by maximizing the bioavailability of new pharmaceuticals. For orally applied drugs the bioavailability highly depends on the process of dissolution in the gastrointestinal tract and is affected by numerous physiological and environmental factors. Available techniques for in vivo monitoring of the dissolution process are very limited and not applicable for large studies. The technique of magnetic marker monitoring provides new prospects for these investigations. However, it is currently limited due to low fields common magnetic markers produce. Hence, only highly sensitive sensors are applicable. In this paper, we performed dissolution tests of novel markers in a physical phantom with magnetoresistive sensors in an unshielded environment. The markers were continuously localized and the movement through the phantom was tracked. By analyzing the changing magnetic moment of the markers we were able to monitor the progress of dissolution in the phantom. We conclude that our proposed phantom and tracking technique is an important step towards new systems for in vivo monitoring of pharmaceutical dissolution processes.
Collapse
Affiliation(s)
- S Biller
- Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, Ilmenau, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Williams HD, Nott KP, Barrett DA, Ward R, Hardy IJ, Melia CD. Drug release from HPMC matrices in milk and fat‐rich emulsions. J Pharm Sci 2011; 100:4823-35. [DOI: 10.1002/jps.22689] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/18/2011] [Accepted: 06/13/2011] [Indexed: 11/08/2022]
|
24
|
Biller S, Baumgarten D, Haueisen J. A novel marker design for magnetic marker monitoring in the human gastrointestinal tract. IEEE Trans Biomed Eng 2011; 58:3368-75. [PMID: 21968707 DOI: 10.1109/tbme.2011.2166074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Magnetic marker monitoring (MMM) is a technique to determine the motility of the gastrointestinal tract and to observe the dissolution of pharmaceutical compounds. Today's magnetic markers usually consist of magnetized magnetite. Because of their weak magnetic fields, highly sensitive sensor systems are required. For a wider class of applications, stronger markers and more flexible measurement setups are necessary. In this paper, a novel marker design is introduced. This marker comprises one permanent magnet and a compartment of iron powder in a magnetically unstable configuration. During dissolution of the pharmaceuticals, the powder is redistributed around the magnet, thereby altering the externally measured magnetic induction. Based on this design, magnetically marked tablets and capsules were prepared and their magnetic field during dissolution was observed. Magnetic induction values were between 16 and 0.2 μT at distances of 5-30 cm, which is considerably higher compared to the pico-Tesla range of conventional markers. During dissolution, the magnetic induction decreased by between 14% and 27%. These values could be confirmed in detailed finite element method simulations. In conclusion, the present results indicate that our novel marker design is well suited for MMM with more flexible sensor technologies, such as magnetoresistive sensors.
Collapse
Affiliation(s)
- Sebastian Biller
- Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, Ilmenau D-98684, Germany.
| | | | | |
Collapse
|
25
|
A liquid chromatography method for quantifying caffeine dissolution from pharmaceutical formulations into colloidal, fat-rich media. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:1739-45. [DOI: 10.1016/j.jchromb.2010.04.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/20/2010] [Accepted: 04/20/2010] [Indexed: 11/18/2022]
|