1
|
Li K, Inam-u-llah, Shi X, Zhang M, Wu P, Li S, Suleman R, Nisar A, Piao F. Anti-apoptotic Effect of Taurine on Schwann Cells Exposed to High Glucose In Vitro. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:787-799. [DOI: 10.1007/978-981-13-8023-5_68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
2
|
Lu S, Lu R, Song H, Wu J, Liu X, Zhou X, Yang J, Zhang H, Tang C, Guo H, Hu J, Mao G, Lin H, Su Z, Zheng H. Metabolomic study of natrin-induced apoptosis in SMMC-7721 hepatocellular carcinoma cells by ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Int J Biol Macromol 2018; 124:1264-1273. [PMID: 30508545 DOI: 10.1016/j.ijbiomac.2018.11.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/02/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022]
Abstract
Natrin, a new member of the cysteine-rich secretory protein (CRISP) family purified from the snake venom of Naja naja atra, has been demonstrated to have anticancer activity. However, the underlying molecular mechanisms need further elucidation. In this study, MTT was used to evaluate cell viability. Apoptotic cells were analyzed by employing a transmission electron microscope (TEM). Metabolomic study of the metabolic perturbations caused by natrin-induced apoptosis in differentiated SMMC-7721 cells was performed for the first time by using integrative ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS). To investigate the possible mechanism in the mitochondrial pathway of natrin-induced apoptosis, we measured apoptosis-related mRNA changes using real-time fluorescent quantitative PCR (FQ-PCR). Cell proliferation was significantly inhibited after treatment with natrin in a dose-dependent manner. Principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) clearly demonstrated that metabolic profiles were affected by natrin. The results of multivariate statistical analysis showed that a total of 13 metabolites were characterized as potential biomarkers highly implicated in natrin-induced apoptosis, which corresponded to fluctuations of five pathways, including sphingolipid metabolism, fatty acid biosynthesis, fatty acid metabolism, glycerophospholipid metabolism and glycosphingolipid biosynthesis. Furthermore, natrin-induced apoptosis showed an increase in the Bax/Bcl-2 ratio in the mitochondrial pathway compared with controls. This study illustrated that rapid and holistic cell metabolomics combining molecular biological approaches might be a powerful tool for evaluating the underlying mechanisms of natrin-induced apoptosis, which would help to deepen specific insights into the anti-hepatoma mechanisms of natrin and facilitate the clinical application of natrin in the future.
Collapse
Affiliation(s)
- Shiyin Lu
- Pharmaceutical College, Guangxi Medical University, Nanning, China; Department of Pharmacy, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Rigang Lu
- Guangxi Institute For Food and Drug Control, Nanning, China
| | - Hui Song
- Pharmaceutical College, Guangxi Medical University, Nanning, China.
| | - Jinxia Wu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xuwen Liu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xiaoling Zhou
- Department of Gastroenterology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Jianqing Yang
- Department of Pharmacy, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Hongye Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Chaoling Tang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Hongwei Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jian Hu
- Department of Pharmacy, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Guifu Mao
- Department of Pharmacy, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Hanmei Lin
- Gynaecology, The First Affiliated Hospital, Guangxi Traditional Chinese Medicine University, Nanning, China.
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China.
| | - Hua Zheng
- Medical Scientific Research Center, Guangxi Medical University, Nanning, China.
| |
Collapse
|
3
|
Mota NSRS, Kviecinski MR, Zeferino RC, de Oliveira DA, Bretanha LC, Ferreira SRS, Micke GA, Filho DW, Pedrosa RC, Ourique F. In vivo antitumor activity of by-products of Passiflora edulis f. flavicarpa Deg. Rich in medium and long chain fatty acids evaluated through oxidative stress markers, cell cycle arrest and apoptosis induction. Food Chem Toxicol 2018; 118:557-565. [PMID: 29886231 DOI: 10.1016/j.fct.2018.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/02/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022]
Abstract
Antiinflammatory and antitumor activity has been reported in Passiflora edulis (yellow passion fruit) nevertheless the intrinsic mechanisms of action are not fully elucidated. The present study aimeds to perform a comparison between the antitumor activity involving the crude extract (HCE) and the supercritical fluid extract with ethanol as co-solvent (SFEtOH) from P. edulis f. flavicarpa Deg. The in vitro cytotoxicity was evaluated in MCF-7 cells, while the in vivo antitumor activity was assessed in male Balb/c mice inoculated with Ehrlich carcinoma cells. SFEtOH exhibited higher antitumor activity compared to HCE. Wherein, SFEtOH showed an EC50 of 264.6 μg/mL against MCF-7 cells as well as an increased inhibition of tumor growth of 48.5% (p < 0.001) in male Balb/c mice, thereby promoting an increased mice lifespan to approximately 42%. Moreover, SFEtOH caused lipid (p < 0.001) and protein (p < 0.001) oxidation by increasing glutathione redox cycle activity while decreased the thioredoxin reductase activity (p < 0.001). SFEtOH also induced oxidative DNA damage in Ehrlich ascites carcinoma (EAC) cells leading to G2/M cycle arrest and has increased apoptotic cells up to 48.2%. These data suggest that the probable mechanisms of antitumor effect are associated to the lipid, protein and DNA damage, leading to cell cycle arrest and triggering apoptosis via mitochondrial pathway, should be probable due to the presence of medium and long chain fatty acids such as lauric acid.
Collapse
Affiliation(s)
- Nádia S R S Mota
- Laboratory of Experimental Biochemistry (LABIOEX), Department of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Maicon R Kviecinski
- Postgraduate Program of Health Sciences (PPGCS), Universidade do Sul de Santa Catarina (UNISUL), Palhoça, Brazil
| | - Rodrigo C Zeferino
- Laboratory of Experimental Biochemistry (LABIOEX), Department of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Daniela A de Oliveira
- Laboratory of Thermodynamics and Supercritical Technology (LATESC), Department of Chemical Engineering and Food Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Lizandra C Bretanha
- Laboratory of Capillary Electrophoresis, Department of Chemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Sandra R S Ferreira
- Laboratory of Thermodynamics and Supercritical Technology (LATESC), Department of Chemical Engineering and Food Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Gustavo A Micke
- Laboratory of Capillary Electrophoresis, Department of Chemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Danilo Wilhelm Filho
- Department of Ecology and Zoology, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Rozangela C Pedrosa
- Laboratory of Experimental Biochemistry (LABIOEX), Department of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Fabiana Ourique
- Laboratory of Experimental Biochemistry (LABIOEX), Department of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil.
| |
Collapse
|
4
|
Kim MH, Kim H. The Roles of Glutamine in the Intestine and Its Implication in Intestinal Diseases. Int J Mol Sci 2017; 18:ijms18051051. [PMID: 28498331 PMCID: PMC5454963 DOI: 10.3390/ijms18051051] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
Glutamine, the most abundant free amino acid in the human body, is a major substrate utilized by intestinal cells. The roles of glutamine in intestinal physiology and management of multiple intestinal diseases have been reported. In gut physiology, glutamine promotes enterocyte proliferation, regulates tight junction proteins, suppresses pro-inflammatory signaling pathways, and protects cells against apoptosis and cellular stresses during normal and pathologic conditions. As glutamine stores are depleted during severe metabolic stress including trauma, sepsis, and inflammatory bowel diseases, glutamine supplementation has been examined in patients to improve their clinical outcomes. In this review, we discuss the physiological roles of glutamine for intestinal health and its underlying mechanisms. In addition, we discuss the current evidence for the efficacy of glutamine supplementation in intestinal diseases.
Collapse
Affiliation(s)
- Min-Hyun Kim
- Food Science and Human Nutrition Department, Center for Nutritional Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
5
|
Brayden DJ, Maher S, Bahar B, Walsh E. Sodium caprate-induced increases in intestinal permeability and epithelial damage are prevented by misoprostol. Eur J Pharm Biopharm 2015; 94:194-206. [PMID: 26026287 DOI: 10.1016/j.ejpb.2015.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 01/28/2023]
Abstract
Epithelial damage caused by intestinal permeation enhancers is a source of debate concerning safety. The medium chain fatty acid, sodium caprate (C10), causes reversible membrane perturbation at high dose levels required for efficacy in vivo, so the aim was to model it in vitro. Exposure of Caco-2 monolayers to 8.5mM C10 for 60min followed by incubation in fresh buffer led to (i) recovery in epithelial permeability (i.e. transepithelial electrical resistance (TEER) and apparent permeability coefficient (Papp) of [(14)C]-mannitol), (ii) recovery of cell viability parameters (monolayer morphology, plasma membrane potential, mitochondrial membrane potential, and intracellular calcium) and (iii) reduction in mRNA expression associated with inflammation (IL-8). Pre-incubation of monolayers with a mucosal prostaglandin cytoprotectant was attempted in order to further decipher the mechanism of C10. Misoprostol (100nM), inhibited C10-induced changes in monolayer parameters, an effect that was partially attenuated by the EP1 receptor antagonist, SC51322. In rat isolated intestinal tissue mucosae and in situ loop instillations, C10-induced respective increases in the [(14)C]-mannitol Papp and the AUC of FITC-dextran 4000 (FD-4) were similarly inhibited by misoprostol, with accompanying morphological damage spared. These data support a temporary membrane perturbation effect of C10, which is linked to its capacity to mainly increase paracellular flux, but which can be prevented by pre-exposure to misoprostol.
Collapse
Affiliation(s)
- David J Brayden
- School of Veterinary Medicine and Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sam Maher
- School of Veterinary Medicine and Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Bojlul Bahar
- School of Veterinary Medicine and Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Edwin Walsh
- School of Veterinary Medicine and Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
6
|
Brayden DJ, Cryan SA, Dawson KA, O'Brien PJ, Simpson JC. High-content analysis for drug delivery and nanoparticle applications. Drug Discov Today 2015; 20:942-57. [PMID: 25908578 DOI: 10.1016/j.drudis.2015.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/09/2015] [Accepted: 04/13/2015] [Indexed: 12/16/2022]
Abstract
High-content analysis (HCA) provides quantitative multiparametric cellular fluorescence data. From its origins in discovery toxicology, it is now addressing fundamental questions in drug delivery. Nanoparticles (NPs), polymers, and intestinal permeation enhancers are being harnessed in drug delivery systems to modulate plasma membrane properties and the intracellular environment. Identifying comparative mechanistic cytotoxicity on sublethal events is crucial to expedite the development of such systems. NP uptake and intracellular routing pathways are also being dissected using chemical and genetic perturbations, with the potential to assess the intracellular fate of targeted and untargeted particles in vitro. As we discuss here, HCA is set to make a major impact in preclinical delivery research by elucidating the intracellular pathways of NPs and the in vitro mechanistic-based toxicology of formulation constituents.
Collapse
Affiliation(s)
- David J Brayden
- University College Dublin (UCD) School of Veterinary Medicine, Dublin 2, Ireland; UCD Conway Institute, Dublin 2, Ireland.
| | - Sally-Ann Cryan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland
| | - Kenneth A Dawson
- UCD Centre for Bionano Interactions, School of Chemistry and Chemical Biology, Belfield, Dublin 4, Ireland
| | - Peter J O'Brien
- University College Dublin (UCD) School of Veterinary Medicine, Dublin 2, Ireland
| | - Jeremy C Simpson
- UCD School of Biology and Environmental Sciences, Belfield, Dublin 4, Ireland; UCD Conway Institute, Dublin 2, Ireland
| |
Collapse
|
7
|
Goto Y, Masuda A, Aiba T. In vivo application of chitosan to improve bioavailability of cyanocobalamin, a form of vitamin B12, following intraintestinal administration in rats. Int J Pharm 2015; 483:250-5. [PMID: 25681732 DOI: 10.1016/j.ijpharm.2015.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/16/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
Abstract
The effect of chitosan on the intestinal absorption of cyanocobalamin (VB12), a stable form of vitamin B12, was investigated in vivo in rats, with the aim of improving the oral bioavailability of VB12 for anemia treatment in patients with gastrectomy. The bioavailability was evaluated based on the plasma concentration profile of VB12 following intraintestinal administration of the VB12 solution containing chitosan at various concentrations. The bioavailability of VB12 was 0.6±0.2% when the chitosan-free VB12 solution was administered, while it increased to 10.5±3.3% when chitosan was dissolved in the VB12 solution at a concentration of 1%. The bioavailability of VB12 increases with the chitosan concentration, in which chitosan seems to augment the amount of VB12 absorbed without affecting the absorption rate constant of VB12. It was also shown that the bioavailability of VB12 does not increase further when the degree of chitosan deacetylation is increased from 83 to 100% by substitutively employing the fully deacetylated chitosan. These findings suggest that the oral administration of VB12 with readily available chitosan may be a practical approach for anemia treatment in patients with gastrectomy.
Collapse
Affiliation(s)
- Yuko Goto
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Ayumi Masuda
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Tetsuya Aiba
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
8
|
Yang Y, Li W, Sun Y, Han F, Hu CAA, Wu Z. Amino acid deprivation disrupts barrier function and induces protective autophagy in intestinal porcine epithelial cells. Amino Acids 2014; 47:2177-84. [PMID: 25287255 DOI: 10.1007/s00726-014-1844-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 09/16/2014] [Indexed: 12/19/2022]
Abstract
The integrity of intestinal barrier is essential for the absorption of nutrients and health in humans and animals. Dysfunction of the mucosal barrier is associated with increased gut permeability and development of various gastrointestinal diseases. Aside from serving as substrates for protein biosynthesis, amino acids also maintain the health of intestinal mucosal barrier. However, the underlying mechanisms remain unclear. We aimed to determine the effect and mechanism of non-essential amino acid (NEAA) deprivation on intestinal tight junction permeability using porcine intestinal epithelial cells as a model. We found that NEAA deprivation led to an impairment of barrier function as evidenced by increased permeability, decreased trans-epithelial resistance, and decreased expression of tight junction proteins claudin-1 and ZO-1. Importantly, NEAA deprivation induced both apoptosis and autophagy as shown by caspase-3 activation, and poly ADP-ribose polymerase cleavage; and LC3II lipidation and p62 degradation, hallmarks of apoptosis and autophagy, respectively. Importantly, we showed that the autophagy induced by NEAA deprivation counteracts apoptosis. Abrogation of autophagy by 3-methyladenine enhanced NEAA deprivation-induced barrier dysfunction and apoptosis; whereas, activation of autophagy by rapamycin partially rescued NEAA deprivation-induced barrier dysfunction and apoptosis. Taken together, our results demonstrate a critical role of NEAA on the mucosal integrity by regulating cell death and survival signaling pathways.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wei Li
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuli Sun
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Feng Han
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chien-An A Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, 87131-0001, USA
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
9
|
Wang B, Wu G, Zhou Z, Dai Z, Sun Y, Ji Y, Li W, Wang W, Liu C, Han F, Wu Z. Glutamine and intestinal barrier function. Amino Acids 2014; 47:2143-54. [PMID: 24965526 DOI: 10.1007/s00726-014-1773-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/27/2014] [Indexed: 12/27/2022]
Abstract
The intestinal barrier integrity is essential for the absorption of nutrients and health in humans and animals. Dysfunction of the mucosal barrier is associated with increased gut permeability and development of multiple gastrointestinal diseases. Recent studies highlighted a critical role for glutamine, which had been traditionally considered as a nutritionally non-essential amino acid, in activating the mammalian target of rapamycin cell signaling in enterocytes. In addition, glutamine has been reported to enhance intestinal and whole-body growth, to promote enterocyte proliferation and survival, and to regulate intestinal barrier function in injury, infection, weaning stress, and other catabolic conditions. Mechanistically, these effects were mediated by maintaining the intracellular redox status and regulating expression of genes associated with various signaling pathways. Furthermore, glutamine stimulates growth of the small intestinal mucosa in young animals and also enhances ion transport by the gut in neonates and adults. Growing evidence supports the notion that glutamine is a nutritionally essential amino acid for neonates and a conditionally essential amino acid for adults. Thus, as a functional amino acid with multiple key physiological roles, glutamine holds great promise in protecting the gut from atrophy and injury under various stress conditions in mammals and other animals.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.,Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuli Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wei Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chuang Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Feng Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
10
|
Fauser JK, Matthews GM, Cummins AG, Howarth GS. Induction of apoptosis by the medium-chain length fatty acid lauric acid in colon cancer cells due to induction of oxidative stress. Chemotherapy 2013; 59:214-224. [PMID: 24356281 DOI: 10.1159/000356067] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 09/30/2013] [Indexed: 02/09/2025]
Abstract
BACKGROUND Fatty acids are classified as short-chain (SCFA), medium-chain (MCFA) or long-chain and hold promise as adjunctive chemotherapeutic agents for the treatment of colorectal cancer. The antineoplastic potential of MCFA remains underexplored; accordingly, we compared the MCFA lauric acid (C12:0) to the SCFA butyrate (C4:0) in terms of their capacity to induce apoptosis, modify glutathione (GSH) levels, generate reactive oxygen species (ROS), and modify phases of the cell cycle in Caco-2 and IEC-6 intestinal cell lines. METHODS Caco-2 and IEC-6 cells were treated with lauric acid, butyrate, or vehicle controls. Apoptosis, ROS, and cell cycle analysis were determined by flow cytometry. GSH availability was assessed by enzymology. RESULTS Lauric acid induced apoptosis in Caco-2 (p < 0.05) and IEC-6 cells (p < 0.05) compared to butyrate. In Caco-2 cells, lauric acid reduced GSH availability and generated ROS compared to butyrate (p < 0.05). Lauric acid reduced Caco-2 and IEC-6 cells in G0/G1and arrested cells in the S and G2/M phases. Lauric acid induced apoptosis in IEC-6 cells compared to butyrate (p < 0.05). Butyrate protected IEC-6 cells from ROS-induced damage, whereas lauric acid induced high levels of ROS compared to butyrate. CONCLUSION Compared to butyrate, lauric acid displayed preferential antineoplastic properties, including induction of apoptosis in a CRC cell line.
Collapse
Affiliation(s)
- J K Fauser
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Adelaide, S.A., Australia
| | | | | | | |
Collapse
|
11
|
Mathijs K, Brauers KJJ, Jennen DGJ, Lizarraga D, Kleinjans JCS, van Delft JHM. Gene expression profiling in primary mouse hepatocytes discriminates true from false-positive genotoxic compounds. Mutagenesis 2010; 25:561-8. [DOI: 10.1093/mutage/geq040] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
12
|
Scientific Opinion on the safety of sucrose esters of fatty acids prepared from vinyl esters of fatty acids and on the extension of use of sucrose esters of fatty acids in flavourings. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|