1
|
Zhang B, Kuipers F, de Boer JF, Kuivenhoven JA. Modulation of Bile Acid Metabolism to Improve Plasma Lipid and Lipoprotein Profiles. J Clin Med 2021; 11:jcm11010004. [PMID: 35011746 PMCID: PMC8745251 DOI: 10.3390/jcm11010004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
New drugs targeting bile acid metabolism are currently being evaluated in clinical studies for their potential to treat cholestatic liver diseases, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Changes in bile acid metabolism, however, translate into an alteration of plasma cholesterol and triglyceride concentrations, which may also affect cardiovascular outcomes in such patients. This review attempts to gain insight into this matter and improve our understanding of the interactions between bile acid and lipid metabolism. Bile acid sequestrants (BAS), which bind bile acids in the intestine and promote their faecal excretion, have long been used in the clinic to reduce LDL cholesterol and, thereby, atherosclerotic cardiovascular disease (ASCVD) risk. However, BAS modestly but consistently increase plasma triglycerides, which is considered a causal risk factor for ASCVD. Like BAS, inhibitors of the apical sodium-dependent bile acid transporter (ASBTi’s) reduce intestinal bile acid absorption. ASBTi’s show effects that are quite similar to those obtained with BAS, which is anticipated when considering that accelerated faecal loss of bile acids is compensated by an increased hepatic synthesis of bile acids from cholesterol. Oppositely, treatment with farnesoid X receptor agonists, resulting in inhibition of bile acid synthesis, appears to be associated with increased LDL cholesterol. In conclusion, the increasing efforts to employ drugs that intervene in bile acid metabolism and signalling pathways for the treatment of metabolic diseases such as NAFLD warrants reinforcing interactions between the bile acid and lipid and lipoprotein research fields. This review may be considered as the first step in this process.
Collapse
Affiliation(s)
- Boyan Zhang
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (B.Z.); (F.K.)
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (B.Z.); (F.K.)
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (B.Z.); (F.K.)
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
- Correspondence: (J.F.d.B.); (J.A.K.)
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (B.Z.); (F.K.)
- Correspondence: (J.F.d.B.); (J.A.K.)
| |
Collapse
|
2
|
Kumar V, Xin X, Ma J, Tan C, Osna N, Mahato RI. Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis. Adv Drug Deliv Rev 2021; 176:113888. [PMID: 34314787 PMCID: PMC8440458 DOI: 10.1016/j.addr.2021.113888] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/12/2021] [Accepted: 07/18/2021] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) associated non-alcoholic fatty liver disease (NAFLD) is the fourth-leading cause of death. Hyperglycemia induces various complications, including nephropathy, cirrhosis and eventually hepatocellular carcinoma (HCC). There are several etiological factors leading to liver disease development, which involve insulin resistance and oxidative stress. Free fatty acid (FFA) accumulation in the liver exerts oxidative and endoplasmic reticulum (ER) stresses. Hepatocyte injury induces release of inflammatory cytokines from Kupffer cells (KCs), which are responsible for activating hepatic stellate cells (HSCs). In this review, we will discuss various molecular targets for treating chronic liver diseases, including homeostasis of FFA, lipid metabolism, and decrease in hepatocyte apoptosis, role of growth factors, and regulation of epithelial-to-mesenchymal transition (EMT) and HSC activation. This review will also critically assess different strategies to enhance drug delivery to different cell types. Targeting nanocarriers to specific liver cell types have the potential to increase efficacy and suppress off-target effects.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xiaofei Xin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jingyi Ma
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Natalia Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
3
|
Miyazaki T, Shirakami Y, Mizutani T, Maruta A, Ideta T, Kubota M, Sakai H, Ibuka T, Genovese S, Fiorito S, Taddeo VA, Epifano F, Tanaka T, Shimizu M. Novel FXR agonist nelumal A suppresses colitis and inflammation-related colorectal carcinogenesis. Sci Rep 2021; 11:492. [PMID: 33436792 PMCID: PMC7804240 DOI: 10.1038/s41598-020-79916-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
FXR is a member of the nuclear receptor superfamily and bile acids are endogenous ligands of FXR. FXR activation has recently been reported to inhibit intestinal inflammation and tumour development. This study aimed to investigate whether the novel FXR agonist nelumal A, the active compound of the plant Ligularia nelumbifolia, can prevent colitis and colorectal carcinogenesis. In a mouse colitis model, dextran sodium sulfate-induced colonic mucosal ulcer and the inflammation grade in the colon significantly reduced in mice fed diets containing nelumal A. In an azoxymethane/dextran sodium sulfate-induced mouse inflammation-related colorectal carcinogenesis model, the mice showed decreased incidence of colonic mucosal ulcers and adenocarcinomas in nelumal A-treated group. Administration of nelumal A also induced tight junctions, antioxidant enzymes, and FXR target gene expression in the intestine, while it decreased the gene expression of bile acid synthesis in the liver. These findings suggest that nelumal A effectively attenuates colonic inflammation and suppresses colitis-related carcinogenesis, presumably through reduction of bile acid synthesis and oxidative damage. This agent may be potentially useful for treatment of inflammatory bowel diseases as well as their related colorectal cancer chemoprevention.
Collapse
Affiliation(s)
- Tsuneyuki Miyazaki
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Yohei Shirakami
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Taku Mizutani
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Akinori Maruta
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takayasu Ideta
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Masaya Kubota
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroyasu Sakai
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takashi Ibuka
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Salvatore Genovese
- Department of Pharmacy, D'Annunzio University of Chieti-Pescara, 66100, Chieti Scalo, Italy
| | - Serena Fiorito
- Department of Pharmacy, D'Annunzio University of Chieti-Pescara, 66100, Chieti Scalo, Italy
| | - Vito Alessandro Taddeo
- Department of Pharmacy, D'Annunzio University of Chieti-Pescara, 66100, Chieti Scalo, Italy
| | - Francesco Epifano
- Department of Pharmacy, D'Annunzio University of Chieti-Pescara, 66100, Chieti Scalo, Italy
| | - Takuji Tanaka
- Department of Pathological Diagnosis, Gifu Municipal Hospital, Gifu, 500-8513, Japan
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
4
|
Hu L, Ren Q, Deng L, Zhou Z, Cai Z, Wang B, Li Z. Design, synthesis, and biological studies of novel 3-benzamidobenzoic acid derivatives as farnesoid X receptor partial agonist. Eur J Med Chem 2020; 211:113106. [PMID: 33360559 DOI: 10.1016/j.ejmech.2020.113106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
Farnesoid X receptor (FXR), a bile acid-activated nuclear receptor, regulates the metabolism of bile acid and lipids as well as maintains the stability of internal environment. FXR was considered as a therapeutic target of liver disorders, such as drug-induced liver injury, fatty liver and cholestasis. The previous reported FXR partial agonist 6 was a suitable lead compound in terms of its high potent and low molecular size, while the docking study of compound 6 suggested a large unoccupied hydrophobic pocket, which might be provided more possibility of structure-activity relationship (SAR) study. In this study, we have performed comprehensive SAR and molecular modeling studies based on lead compound 6. All of these efforts resulted in the identification of a novel series of FXR partial agonists. In this series, compound 41 revealed the best activity and strong interaction with binding pocket of FXR. Moreover, compound 41 protected mice against acetaminophen-induced hepatotoxicity by the regulation of FXR-related gene expression and improving antioxidant capacity. In summary, these results suggest that compound 41 is a promising FXR partial agonist suitable for further investigation.
Collapse
Affiliation(s)
- Lijun Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Qiang Ren
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Liming Deng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zongyu Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Bin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
5
|
Schmidt J, Schierle S, Gellrich L, Kaiser A, Merk D. Structural optimization and in vitro profiling of N-phenylbenzamide-based farnesoid X receptor antagonists. Bioorg Med Chem 2018; 26:4240-4253. [PMID: 30026040 DOI: 10.1016/j.bmc.2018.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023]
Abstract
Activation of the nuclear farnesoid X receptor (FXR) which acts as cellular bile acid sensor has been validated as therapeutic strategy to counter liver disorders such as non-alcoholic steatohepatitis by the clinical efficacy of obeticholic acid. FXR antagonism, in contrast, is less well studied and potent small molecule FXR antagonists are rare. Here we report the systematic optimization of a novel class of FXR antagonists towards low nanomolar potency. The most optimized compound antagonizes baseline and agonist induced FXR activity in a full length FXR reporter gene assay and represses intrinsic expression of FXR regulated genes in hepatoma cells. With this activity and a favorable toxicity-, stability- and selectivity-profile it appears suitable to further study FXR antagonism in vitro and in vivo.
Collapse
Affiliation(s)
- Jurema Schmidt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Simone Schierle
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Leonie Gellrich
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| |
Collapse
|
6
|
Chiang PC, Sutherlin D, Pang J, Salphati L. Investigation of Dose-Dependent Factors Limiting Oral Bioavailability: Case Study With the PI3K-δ Inhibitor. J Pharm Sci 2017; 105:1802-1809. [PMID: 27238480 DOI: 10.1016/j.xphs.2016.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 11/20/2022]
Abstract
It is understood that a potential issue for drugs with poor aqueous solubility is low oral absorption. If oral exposure issues arise when working with a low solubility drug candidate, the common action is to rely on enabling formulations to solve the issue. However, this approach becomes troublesome in the pre-clinical setting where compound absorption, distribution, metabolism, excretion properties are suboptimal and more factors limiting bioavailability may be at play. A narrow focus on solubility enhancement without a full understanding of compound absorption, distribution, metabolism, excretion properties can produce data that cloak the actual phenomena driving exposure. Compound 1 is a potent and selective PI3Kdelta inhibitor with poor aqueous solubility. In a pharmacokinetic study on dogs, exposure was found to be less than dose-linear. Besides the solubility, further investigations were conducted to identify other factors limiting oral exposure. It was observed that these limiting factors are dose dependent. Results from modeling pharmacokinetic under low-dose conditions suggest that exposure is significantly limited by metabolism and no exposure improvements should be expected from enabled formulations. Furthermore, enabling formulations are expected to exert a beneficial influence at higher doses. An in vivo test was conducted in dogs to verify this phenomenon.
Collapse
Affiliation(s)
- Po-Chang Chiang
- Small Molecule Research, Genentech, 1 DNA Way, South San Francisco, California 94080.
| | - Daniel Sutherlin
- Small Molecule Research, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Jodie Pang
- Small Molecule Research, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Laurent Salphati
- Small Molecule Research, Genentech, 1 DNA Way, South San Francisco, California 94080
| |
Collapse
|
7
|
Flesch D, Cheung SY, Schmidt J, Gabler M, Heitel P, Kramer J, Kaiser A, Hartmann M, Lindner M, Lüddens-Dämgen K, Heering J, Lamers C, Lüddens H, Wurglics M, Proschak E, Schubert-Zsilavecz M, Merk D. Nonacidic Farnesoid X Receptor Modulators. J Med Chem 2017; 60:7199-7205. [PMID: 28749691 DOI: 10.1021/acs.jmedchem.7b00903] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As a cellular bile acid sensor, farnesoid X receptor (FXR) participates in regulation of bile acid, lipid and glucose homeostasis, and liver protection. Clinical results have validated FXR as therapeutic target in hepatic and metabolic diseases. To date, potent FXR agonists share a negatively ionizable function that might compromise their pharmacokinetic distribution and behavior. Here we report the development and characterization of a high-affinity FXR modulator not comprising an acidic residue.
Collapse
Affiliation(s)
- Daniel Flesch
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Sun-Yee Cheung
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Jurema Schmidt
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Matthias Gabler
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Jan Kramer
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Markus Hartmann
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Mara Lindner
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Theodor-Stern-Kai 7, D-60596 Frankfurt am Main, Germany
| | - Kerstin Lüddens-Dämgen
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz , D-55131 Mainz, Germany
| | - Jan Heering
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Theodor-Stern-Kai 7, D-60596 Frankfurt am Main, Germany
| | - Christina Lamers
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Hartmut Lüddens
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz , D-55131 Mainz, Germany
| | - Mario Wurglics
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
8
|
SAR studies on FXR modulators led to the discovery of the first combined FXR antagonistic/TGR5 agonistic compound. Future Med Chem 2016; 8:133-48. [PMID: 26824277 DOI: 10.4155/fmc.15.178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bile acids can serve as signaling molecules by activating the nuclear receptor FXR and the G-protein-coupled receptor TGR5 and both bile acid receptors are prominent experimental drug targets. Results/methodology: In this study we optimized the fatty acid mimetic compound pirinixic acid to a new scaffold with the aim to develop novel FXR modulatory compounds. After a multistep structure-activity optimization process, we discovered FXR agonistic compounds and the first dual FXR antagonistic and TGR5 agonistic compound 79a. CONCLUSION With this novel dual activity profile on both bile acid receptors 79a might be a valuable pharmalogical tool to further study the bile acid signaling network.
Collapse
|
9
|
Merk D, Lamers C, Ahmad K, Carrasco Gomez R, Schneider G, Steinhilber D, Schubert-Zsilavecz M. Extending the structure-activity relationship of anthranilic acid derivatives as farnesoid X receptor modulators: development of a highly potent partial farnesoid X receptor agonist. J Med Chem 2014; 57:8035-55. [PMID: 25255039 DOI: 10.1021/jm500937v] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ligand activated transcription factor nuclear farnesoid X receptor (FXR) is involved as a regulator in many metabolic pathways including bile acid and glucose homeostasis. Therefore, pharmacological activation of FXR seems a valuable therapeutic approach for several conditions including metabolic diseases linked to insulin resistance, liver disorders such as primary biliary cirrhosis or nonalcoholic steatohepatitis, and certain forms of cancer. The available FXR agonists, however, activate the receptor to the full extent which might be disadvantageous over a longer time period. Hence, partial FXR activators are required for long-term treatment of metabolic disorders. We here report the SAR of anthranilic acid derivatives as FXR modulators and development, synthesis, and characterization of compound 51, which is a highly potent partial FXR agonist in a reporter gene assay with an EC50 value of 8 ± 3 nM and on mRNA level in liver cells.
Collapse
Affiliation(s)
- Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt , Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Appleby RN, Walters JRF. The role of bile acids in functional GI disorders. Neurogastroenterol Motil 2014; 26:1057-69. [PMID: 24898156 DOI: 10.1111/nmo.12370] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/28/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bile acids are increasingly implicated in the pathogenesis of functional GI disorders. New mechanisms have recently been described in the irritable bowel syndrome, chronic diarrhea and chronic idiopathic constipation. Identification of bile acid signaling through farnesoid X receptor (FXR), transmembrane G-coupled receptor 5 (TGR5) and fibroblast growth factor 19 (FGF19) has led to the development of new, directly acting therapeutic agents. Despite these advances primary bile acid diarrhea remains under-recognized partly because of the lack of a widely available diagnostic test. PURPOSE In this review we will summarize the effects of bile acids on bowel function throughout the gastrointestinal tract and their roles in the pathogenesis of functional diseases. We will review established diagnostic tests and therapies for functional heartburn, dyspepsia and bile acid diarrhea. There will be a particular emphasis on recent trial data for emerging therapies such as Elobixibat and Obeticholic acid and novel diagnostic tests for bile acid diarrhea such as 7α-Hydroxy-4-cholesten-3-one (C4) and FGF19. Finally we will discuss future directions for research in this rapidly evolving field, such as bacterial bile acid modification and identification of genetic anomalies associated with functional disorders.
Collapse
Affiliation(s)
- Richard N Appleby
- Section of Hepatology and Gastroenterology, Imperial College London, Imperial College Healthcare, Hammersmith Hospital, London, UK
| | | |
Collapse
|
11
|
Anthranilic acid derivatives as novel ligands for farnesoid X receptor (FXR). Bioorg Med Chem 2014; 22:2447-60. [PMID: 24685112 DOI: 10.1016/j.bmc.2014.02.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/24/2014] [Accepted: 02/28/2014] [Indexed: 02/08/2023]
Abstract
Nuclear farnesoid X receptor (FXR) has important physiological roles in various metabolic pathways including bile acid, cholesterol and glucose homeostasis. The clinical use of known synthetic non-steroidal FXR ligands is restricted due to toxicity or poor bioavailability. Here we report the development, synthesis, in vitro activity and structure-activity relationship (SAR) of anthranilic acid derivatives as novel FXR ligands. Starting from a virtual screening hit we optimized the scaffold to a series of potent partial FXR agonists with appealing drug-like properties. The most potent derivative exhibited an EC50 value of 1.5±0.2 μM and 37±2% maximum relative FXR activation. We investigated its SAR regarding polar interactions with the receptor by generating derivatives and computational docking.
Collapse
|
12
|
Devraj R, Williams HD, Warren DB, Porter CJH, Pouton CW. Choice of nonionic surfactant used to formulate type IIIA self-emulsifying drug delivery systems and the physicochemical properties of the drug have a pronounced influence on the degree of drug supersaturation that develops during in vitro digestion. J Pharm Sci 2014; 103:1050-63. [PMID: 24470073 DOI: 10.1002/jps.23856] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 10/16/2013] [Accepted: 12/16/2013] [Indexed: 11/06/2022]
Abstract
The performance of self-emulsifying drug delivery systems (SEDDS) is influenced by their tendency to generate supersaturated systems during dispersion and digestion in the gastrointestinal tract. This study investigated the effect of drug loading on supersaturation during digestion of fenofibrate or danazol SEDDS, each formulated using long-chain lipids and a range of nonionic surfactants. Supersaturation was described by the maximum supersaturation ratio (SR(M) ) produced by in vitro digestion. This parameter was calculated as the ratio of the total concentration of drug present in the digestion vessel versus the drug solubility in the colloidal phases formed by digestion of the SEDDS. SR(M) proved to be a remarkable indicator of performance across a range of lipid-based formulations. SEDDS containing danazol showed little evidence of precipitation on digestion, even at drug loads approaching saturation in the formulation. In contrast, fenofibrate crystallized extensively on digestion of the corresponding series of SEDDS, depending on the drug loading. The difference was explained by the generation of higher SR(M) values by fenofibrate formulations. A threshold SR(M) of 2.5-2.6 was identified in six of the seven SEDDS. This is not a definitive threshold for precipitation, but in general when SR(M) is greater than 3, fenofibrate supersaturation could not be maintained.
Collapse
Affiliation(s)
- Ravi Devraj
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
13
|
Chiang PC, Wong H. Incorporation of physiologically based pharmacokinetic modeling in the evaluation of solubility requirements for the salt selection process: a case study using phenytoin. AAPS J 2013; 15:1109-18. [PMID: 23943382 PMCID: PMC3787220 DOI: 10.1208/s12248-013-9519-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/26/2013] [Indexed: 11/30/2022] Open
Abstract
In the pharmaceutical industry, salt is commonly used to improve the oral bioavailability of poorly soluble compounds. Currently, there is a limited understanding on the solubility requirement for salts that will translate to improvement in oral exposure. Despite the obvious need, there is very little research reported in this area mainly due to the complexity of such a system. To our knowledge, no report has been published to guide this important process and salt solubility requirement still remains unanswered. Physiologically based pharmacokinetic (PBPK) modeling offers a means to dynamically integrate the complex interplay of the processes determining oral absorption. A sensitivity analysis was performed using a PBPK model describing phenytoin to determine a solubility requirement for phenytoin salts needed to achieve optimal oral bioavailability for a given dose. Based on the analysis, it is predicted that phenytoin salts with solubility greater than 0.3 mg/mL would show no further increases in oral bioavailability. A salt screen was performed using a variety of phenytoin salts. The piperazine and sodium salts showed the lowest and highest aqueous solubility and were tested in vivo. Consistent with our analysis, we observed no significant differences in oral bioavailability for these two salts despite an approximate 60 fold difference in solubility. Our study illustrates that higher solubility salts sometimes provide no additional improvements in oral bioavailability and PBPK modeling can be utilized as an important tool to provide guidance to the salt selection and define a salt solubility requirement.
Collapse
Affiliation(s)
- Po-Chang Chiang
- />Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080 USA
| | - Harvey Wong
- />Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, California 94080 USA
| |
Collapse
|
14
|
Lipid-Based Formulations and Drug Supersaturation: Harnessing the Unique Benefits of the Lipid Digestion/Absorption Pathway. Pharm Res 2013; 30:2976-92. [DOI: 10.1007/s11095-013-1126-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/12/2013] [Indexed: 11/26/2022]
|
15
|
Chiang PC, Cui Y, Ran Y, Lubach J, Chou KJ, Bao L, Jia W, La H, Hau J, Sambrone A, Qin A, Deng Y, Wong H. In vitro and in vivo evaluation of amorphous solid dispersions generated by different bench-scale processes, using griseofulvin as a model compound. AAPS JOURNAL 2013; 15:608-17. [PMID: 23456436 DOI: 10.1208/s12248-013-9469-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/21/2013] [Indexed: 01/28/2023]
Abstract
Drug polymer-based amorphous solid dispersions (ASD) are widely used in the pharmaceutical industry to improve bioavailability for poorly water-soluble compounds. Spray-drying is the most common process involved in the manufacturing of ASD material. However, spray-drying involves a high investment of material quantity and time. Lower investment manufacturing processes such as fast evaporation and freeze-drying (lyophilization) have been developed to manufacture ASD at the bench level. The general belief is that the overall performance of ASD material is thermodynamically driven and should be independent of the manufacturing process. However, no formal comparison has been made to assess the in vivo performance of material generated by different processes. This study compares the in vitro and in vivo properties of ASD material generated by fast evaporation, lyophilization, and spray-drying methods using griseofulvin as a model compound and hydroxypropyl methylcellulose acetate succinate as the polymer matrix. Our data suggest that despite minor differences in the formulation release properties and stability of the ASD materials, the overall exposure is comparable between the three manufacturing processes under the conditions examined. These results suggest that fast evaporation and lyophilization may be suitable to generate ASD material for oral evaluation. However, caution should be exercised since the general applicability of the present findings will need to be further evaluated.
Collapse
Affiliation(s)
- Po-Chang Chiang
- Global Research and Development, DMPK, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Achenbach J, Gabler M, Steri R, Schubert-Zsilavecz M, Proschak E. Identification of novel farnesoid X receptor modulators using a combined ligand- and structure-based virtual screening. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00049d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Williams HD, Anby MU, Sassene P, Kleberg K, Bakala-N’Goma JC, Calderone M, Jannin V, Igonin A, Partheil A, Marchaud D, Jule E, Vertommen J, Maio M, Blundell R, Benameur H, Carrière F, Müllertz A, Pouton CW, Porter CJH. Toward the Establishment of Standardized in Vitro Tests for Lipid-Based Formulations. 2. The Effect of Bile Salt Concentration and Drug Loading on the Performance of Type I, II, IIIA, IIIB, and IV Formulations during in Vitro Digestion. Mol Pharm 2012; 9:3286-300. [DOI: 10.1021/mp300331z] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hywel D. Williams
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Parkville, Victoria, 3052 Australia
| | - Mette U. Anby
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Parkville, Victoria, 3052 Australia
| | - Philip Sassene
- Department of Pharmaceutics, Faculty of Health
and Medical Sciences, University of Copenhagen, Universitetsparken
2, DK-2100, Copenhagen, Denmark
| | - Karen Kleberg
- Department of Pharmaceutics, Faculty of Health
and Medical Sciences, University of Copenhagen, Universitetsparken
2, DK-2100, Copenhagen, Denmark
| | - Jean-Claude Bakala-N’Goma
- CNRS, Aix-Marseille Université, Laboratoire d’Enzymologie
Interfaciale et de Physiologie de la Lipolyse, UMR 7282, Marseille,
France
| | | | - Vincent Jannin
- Gattefossé SAS, 36 Chemin de Genas, 69804 Saint-Priest, France
| | | | | | | | - Eduardo Jule
- Capsugel Product Development
Center, Cambridge, Massachusetts, United States
| | | | | | - Ross Blundell
- Sanofi Research
and Development, Montpellier, France
| | | | - Frédéric Carrière
- CNRS, Aix-Marseille Université, Laboratoire d’Enzymologie
Interfaciale et de Physiologie de la Lipolyse, UMR 7282, Marseille,
France
| | - Anette Müllertz
- Department of Pharmaceutics, Faculty of Health
and Medical Sciences, University of Copenhagen, Universitetsparken
2, DK-2100, Copenhagen, Denmark
| | - Colin W. Pouton
- Drug Discovery Biology, Monash Institute of
Pharmaceutical Sciences, Parkville, Victoria, 3052 Australia
| | - Christopher J. H. Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Parkville, Victoria, 3052 Australia
| |
Collapse
|
18
|
Van Speybroeck M, Williams HD, Nguyen TH, Anby MU, Porter CJH, Augustijns P. Incomplete Desorption of Liquid Excipients Reduces the in Vitro and in Vivo Performance of Self-Emulsifying Drug Delivery Systems Solidified by Adsorption onto an Inorganic Mesoporous Carrier. Mol Pharm 2012; 9:2750-60. [DOI: 10.1021/mp300298z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michiel Van Speybroeck
- Laboratory for Pharmacotechnology
and Biopharmacy, University of Leuven, Herestraat 49, Box 921, Campus
Gasthuisberg ON 2, B-3000 Leuven, Belgium
| | - Hywel D. Williams
- Drug Delivery, Disposition and
Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University,
381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Tri-Hung Nguyen
- Drug Delivery, Disposition and
Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University,
381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Mette U. Anby
- Drug Delivery, Disposition and
Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University,
381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Christopher J. H. Porter
- Drug Delivery, Disposition and
Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University,
381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Patrick Augustijns
- Laboratory for Pharmacotechnology
and Biopharmacy, University of Leuven, Herestraat 49, Box 921, Campus
Gasthuisberg ON 2, B-3000 Leuven, Belgium
| |
Collapse
|
19
|
Medicinal chemistry of farnesoid X receptor ligands: from agonists and antagonists to modulators. Future Med Chem 2012; 4:1015-36. [DOI: 10.4155/fmc.12.47] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nuclear receptor farnesoid X receptor (FXR) has emerged as a highly promising target in preclinical development in recent years. A significant amount of research has been conducted and, although none has reached clinical use, many synthetic ligands of FXR have been described. This review outlines the available knowledge regarding the medicinal chemistry and SAR of these FXR ligands, and discusses the molecular interactions of the compounds with the FXR ligand-binding domain by interpreting the existing co-crystal structures.
Collapse
|
20
|
Epifano F, Genovese S, James Squires E, Gray MA. Nelumal A, the active principle from Ligularia nelumbifolia, is a novel farnesoid X receptor agonist. Bioorg Med Chem Lett 2012; 22:3130-5. [PMID: 22472691 DOI: 10.1016/j.bmcl.2012.03.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 01/25/2023]
|