1
|
Heidrich L, Wiener J, Castro-Camus E, Koch M, Ornik J. Automated in-situ monitoring of accelerated crystallization processes of nifedipine using terahertz time-domain spectroscopy. Sci Rep 2024; 14:29928. [PMID: 39622901 PMCID: PMC11611916 DOI: 10.1038/s41598-024-81316-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
We developed and tested an automated measurement platform which can fit multiple samples for their investigation in transmission mode using terahertz time-domain spectroscopy. The temperature inside the platform can be varied to simulate different storage conditions of the samples, in our case, pharmaceuticals. As a proof-of-concept, the setup was successfully tested to monitor the crystallization process of amorphous nifedipine, as a model drug, at 24 °C, 30 °C and 35 °C for over 144 h. To the best of our knowledge, this is the first study to follow the crystallization of nifedipine with quasi-continuous measurements over a time frame of several days. The influence of the storage temperature on the crystallization rate was monitored including the appearance of polymorphic intermediate states of nifedipine throughout the process. The platform developed in combination with terahertz time-domain spectroscopy is a helpful tool for deepening the understanding of the crystallization behavior of amorphous and polymorphic materials and can be, for example, of great importance for the development of novel amorphous pharmaceutical formulations.
Collapse
Affiliation(s)
- Lara Heidrich
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032, Marburg, Germany.
| | - Julian Wiener
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032, Marburg, Germany
| | - Enrique Castro-Camus
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032, Marburg, Germany
- Centro de Investigaciones en Optica A.C, Loma del Bosque 115, Lomas del Campestre, Leon, Guanajuato, 37150, Mexico
| | - Martin Koch
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032, Marburg, Germany.
| | - Jan Ornik
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032, Marburg, Germany
- Leibniz Institute of Photonic Technology, Member of the Research Alliance, Leibniz Health Technologies, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
2
|
Nakanishi A, Satozono H. Terahertz optical properties of wood-plastic composites. APPLIED OPTICS 2020; 59:904-909. [PMID: 32225226 DOI: 10.1364/ao.379758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Terahertz (THz) optical materials containing polymeric materials have been useful for terahertz technologies. We investigated the THz optical properties of wood-plastic composites (WPCs), which are composed of polystyrene and wood powder, and their suitability as THz optical materials. We found that the refractive indexes and absorption coefficients of the WPCs increased with increasing wood powder content. WPCs are inexpensive and have tunable THz optical properties.
Collapse
|
3
|
Calvo NL, Maggio RM, Kaufman TS. Chemometrics-assisted solid-state characterization of pharmaceutically relevant materials. Polymorphic substances. J Pharm Biomed Anal 2017; 147:518-537. [PMID: 28668295 DOI: 10.1016/j.jpba.2017.06.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 11/26/2022]
Abstract
Current regulations command to properly characterize pharmaceutically relevant solid systems. Chemometrics comprise a range of valuable tools, suitable to process large amounts of data and extract valuable information hidden in their structure. This review aims to detail the results of the fruitful association between analytical techniques and chemometrics methods, focusing on those which help to gain insight into the characteristics of drug polymorphism as an important aspect of the solid state of bulk drugs and drug products. Hence, the combination of Raman, terahertz, mid- and near- infrared spectroscopies, as well as instrumental signals resulting from X-ray powder diffraction, 13C solid state nuclear magnetic resonance spectroscopy and thermal methods with quali-and quantitative chemometrics methodologies are examined. The main issues reviewed, concerning pharmaceutical drug polymorphism, include the use of chemometrics-based approaches to perform polymorph classification and assignment of polymorphic identity, as well as the determination of given polymorphs in simple mixtures and complex systems. Aspects such as the solvation/desolvation of solids, phase transformation, crystallinity and the recrystallization from the amorphous state are also discussed. A brief perspective of the field for the next future is provided, based on the developments of the last decade and the current state of the art of analytical instrumentation and chemometrics methodologies.
Collapse
Affiliation(s)
- Natalia L Calvo
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario (S2002LRK), Argentina
| | - Rubén M Maggio
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario (S2002LRK), Argentina
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario (S2002LRK), Argentina.
| |
Collapse
|
4
|
Hitzer P, Bäuerle T, Drieschner T, Ostertag E, Paulsen K, van Lishaut H, Lorenz G, Rebner K. Process analytical techniques for hot-melt extrusion and their application to amorphous solid dispersions. Anal Bioanal Chem 2017; 409:4321-4333. [PMID: 28343348 DOI: 10.1007/s00216-017-0292-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/09/2017] [Accepted: 03/02/2017] [Indexed: 11/28/2022]
Abstract
Newly developed active pharmaceutical ingredients (APIs) are often poorly soluble in water. As a result the bioavailability of the API in the human body is reduced. One approach to overcome this restriction is the formulation of amorphous solid dispersions (ASDs), e.g., by hot-melt extrusion (HME). Thus, the poorly soluble crystalline form of the API is transferred into a more soluble amorphous form. To reach this aim in HME, the APIs are embedded in a polymer matrix. The resulting amorphous solid dispersions may contain small amounts of residual crystallinity and have the tendency to recrystallize. For the controlled release of the API in the final drug product the amount of crystallinity has to be known. This review assesses the available analytical methods that have been recently used for the characterization of ASDs and the quantification of crystalline API content. Well-established techniques like near- and mid-infrared spectroscopy (NIR and MIR, respectively), Raman spectroscopy, and emerging ones like UV/VIS, terahertz, and ultrasonic spectroscopy are considered in detail. Furthermore, their advantages and limitations are discussed with regard to general practical applicability as process analytical technology (PAT) tools in industrial manufacturing. The review focuses on spectroscopic methods which have been proven as most suitable for in-line and on-line process analytics. Further aspects are spectroscopic techniques that have been or could be integrated into an extruder.
Collapse
Affiliation(s)
- Patrick Hitzer
- Process Analysis and Technology (PA&T), Faculty Applied Chemistry, Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Tim Bäuerle
- Process Analysis and Technology (PA&T), Faculty Applied Chemistry, Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Tobias Drieschner
- Process Analysis and Technology (PA&T), Faculty Applied Chemistry, Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Edwin Ostertag
- Process Analysis and Technology (PA&T), Faculty Applied Chemistry, Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Katharina Paulsen
- AbbVie Deutschland GmbH & Co.KG, Knollstr. 50, 67061, Ludwigshafen, Germany
| | - Holger van Lishaut
- AbbVie Deutschland GmbH & Co.KG, Knollstr. 50, 67061, Ludwigshafen, Germany
| | - Günter Lorenz
- Process Analysis and Technology (PA&T), Faculty Applied Chemistry, Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Karsten Rebner
- Process Analysis and Technology (PA&T), Faculty Applied Chemistry, Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany.
| |
Collapse
|
5
|
Dohi M, Momose W, Yamashita K, Hakomori T, Sato S, Noguchi S, Terada K. Application of Terahertz Attenuated Total Reflection Spectroscopy to Detect Changes in the Physical Properties of Lactose during the Lubrication Process Required for Drug Formulation. Chem Pharm Bull (Tokyo) 2017; 65:186-193. [DOI: 10.1248/cpb.c16-00824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masafumi Dohi
- Pharmaceutical Research & Technology Laboratories, Astellas Pharma Inc
- Faculty of Pharmaceutical Science, Toho University
| | - Wataru Momose
- Pharmaceutical Research & Technology Laboratories, Astellas Pharma Inc
| | | | - Tadashi Hakomori
- Pharmaceutical Research & Technology Laboratories, Astellas Pharma Inc
| | | | | | | |
Collapse
|
6
|
Sibik J, Zeitler JA. Direct measurement of molecular mobility and crystallisation of amorphous pharmaceuticals using terahertz spectroscopy. Adv Drug Deliv Rev 2016; 100:147-57. [PMID: 26772139 DOI: 10.1016/j.addr.2015.12.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 11/26/2022]
Abstract
Despite much effort in the area, no comprehensive understanding of the formation and behaviour of amorphous solids has yet been achieved. This severely limits the industrial application of such materials, including drug delivery where, in principle, amorphous solids have demonstrated their great usefulness in increasing the bioavailability of poorly aqueous soluble active pharmaceutical ingredients. Terahertz time-domain spectroscopy is a relatively novel analytical technique that can be used to measure the fast molecular dynamics of molecules with high accuracy in a non-contact and non-destructive fashion. Over the past decade a number of applications for the characterisation of amorphous drug molecules and formulations have been developed and it has been demonstrated how this technique can be used to determine the onset and strength in molecular mobility that underpins the crystallisation of amorphous drugs. In this review we provide an overview of the history, fundamentals and future perspective of pharmaceutical applications related to the terahertz dynamics of amorphous systems.
Collapse
|