1
|
Ren H, Zhang B, Li H, Zhang Q. Quantitative investigation of surfactant monolayer bending tendency at an oil-polar solvent interface using DPD modeling and artificial neural networks. SOFT MATTER 2023; 19:7815-7827. [PMID: 37796103 DOI: 10.1039/d3sm00825h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The bending tendency of a surfactant monolayer at an interface is critical in determining the type of emulsion formed and the proximity of the emulsion system to its equilibrium state. Despite its importance, the influence of interaction and surfactant structure on the bending tendency has not been quantitatively investigated. In this study, we develop and validate an artificial neural network (ANN) model based on the torque densities from dissipative particle dynamics (DPD) simulations to address this gap. With the validated ANN model, the relationship between surfactant monolayer bending tendency and all the interaction parameters, oil size, and surfactant structure (size and tail branching) was derived, from which the significance of each factor was ranked. With this ANN model, both the relationship and factor analysis can be instantly investigated without further DPD modeling. Furthermore, we expand the study to surfactant-oil-polar solvent (SOP) systems by varying the interaction parameters between polar solvents (PP). Our finding indicates that the interaction between polar solvents plays an important role in determining the bending tendency of surfactant monolayers; weaker intermolecular attraction between polar solvents makes surfactants tend to bend toward the oil phase (tend to form oil in polar solvent emulsion). Factor analysis reveals that increasing the repulsion between head-head (HH) or head-oil (HO) makes the model surfactants more polar-solvophilic, while increasing the repulsion between polar solvent-head (PH), tail-tail (TT) or oil-oil (OO) makes the model surfactants more lipophilic. The ANN model effectively reproduces the dependence of surfactant monolayer bending tendency on oil size, consistent with experimental observations, the larger the oil size, the higher the bending tendency toward the oil phase. The most intriguing insight derived from the ANN model here is that the effect of branching in the lipophilic tail will be enhanced by factors that make surfactants behave more lipophilic in a surfactant-oil-polar solvent (SOP) system, for rather polar-solvophilic surfactants, the effect of tail branching is negligible.
Collapse
Affiliation(s)
- Hua Ren
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, 710072 Xi'an, Shaanxi, China.
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, 710072 Xi'an, Shaanxi, China.
| | - Haonan Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, 710072 Xi'an, Shaanxi, China.
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, 710072 Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Salager JL, Marquez R, Rondón M, Bullón J, Graciaa A. Review on Some Confusion Produced by the Bicontinuous Microemulsion Terminology and Its Domains Microcurvature: A Simple Spatiotemporal Model at Optimum Formulation of Surfactant-Oil-Water Systems. ACS OMEGA 2023; 8:9040-9057. [PMID: 36936277 PMCID: PMC10018710 DOI: 10.1021/acsomega.3c00547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/21/2023] [Indexed: 06/01/2023]
Abstract
Fundamental studies have improved understanding of molecular-level properties and behavior in surfactant-oil-water (SOW) systems at equilibrium and under nonequilibrium conditions. However, confusion persists regarding the terms "microemulsion" and "curvature" in these systems. Microemulsion refers to a single-phase system that does not contain distinct oil or water droplets but at least four different structures with globular domains of nanometer size and sometimes arbitrary shape. The significance of "curvature" in such systems is unclear. At high surfactant concentrations (typically 30 wt % or more), a single phase zone has been identified in which complex molecular arrangements may result in light scattering. As surfactant concentration decreases, the single phase is referred to as a bicontinuous microemulsion, known as the middle phase in a Winsor III triphasic system. Its structure has been described as involving simple or multiple surfactant films surrounding more or less elongated excess oil and water phase globules. In cases where the system separates into two or three phases, known as Winsor I or II systems, one of the phases, containing most of the surfactant, is also confusedly referred to as the microemulsion. In this surfactant-rich phase, the only curved objects are micellar size structures that are soluble in the system and have no real interface but rather exchange surfactant molecules with the external liquid phase at an ultrafast pace. The use of the term "curvature" in the context of these complex microemulsion systems is confusing, particularly when applied to merged nanometer-size globular or percolating domains. In this work, we discuss the terms "microemulsion" and "curvature", and the most simple four-dimensional spatiotemporal model is proposed concerning SOW equilibrated systems near the optimum formulation. This model explains the motion of surfactant molecules due to Brownian movement, which is a quick and arbitrary thermal fluctuation, and limited to a short distance. The resulting observation and behavior will be an average in time and in space, leading to a permanent change in the local microcurvature of the aggregate, thus changing the average from micelle-like to inverse micelle-like order over an extremely short time. The term "microcurvature" is used to explain the small variations of globule size and indicates a close-to-zero mean curvature of the surfactant-containing film surface shape.
Collapse
Affiliation(s)
| | - Ronald Marquez
- Laboratorio
FIRP, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Miguel Rondón
- Universidad
Industrial de Santander, Bucaramanga 680002, Colombia
- ICP
Ecopetrol, Piedecuesta 681011, Colombia
| | - Johnny Bullón
- Laboratorio
FIRP, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Alain Graciaa
- Université
de Pau et Pays de l’Adour, UMR 5150 TOTAL-CNRS-UPPA, BP 1155, Pau 64013 Cedex, France
| |
Collapse
|
3
|
Phaodee P, Weston J. Review: Implementing the hydrophilic–lipophilic deviation model when formulating detergents and other surfactant‐related applications. J SURFACTANTS DETERG 2023. [DOI: 10.1002/jsde.12660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
| | - Javen Weston
- College of Engineering and Natural Sciences University of Tulsa Tulsa Oklahoma USA
| |
Collapse
|
4
|
Batista Fernandes BR, Sepehrnoori K, Delshad M. Challenges in modeling microemulsion phase behavior. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Kamy Sepehrnoori
- Hildebrand Department of Petroleum and Geosystems Engineering The University of Texas at Austin Austin Texas USA
| | - Mojdeh Delshad
- Hildebrand Department of Petroleum and Geosystems Engineering The University of Texas at Austin Austin Texas USA
| |
Collapse
|
5
|
Lahasky SH, Barker EM, Caixeta Guimarães J, da Silva Salvato RCJP. Dynamic salinity‐induced phase‐inversion conductivity measurements used to characterize alcohol ethoxylate based surfactant/oil/water systems. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Emily M. Barker
- Research & Development Center Oxiteno‐USA Hattiesburg Mississippi
| | | | | |
Collapse
|
6
|
Ginzburg VV. Mesoscale Modeling of Micellization and Adsorption of Surfactants and Surfactant-Like Polymers in Solution: Challenges and Opportunities. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Valeriy V. Ginzburg
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, Room 2100, East Lansing, Michigan 48824-1226, United States
| |
Collapse
|
7
|
Ren H, Zhang Q, Zhang B, Song Q. Estimating Preferred Alkane Carbon Numbers of Nonionic Surfactants in Normalized Hydrophilic-Lipophilic Deviation Theory from Dissipative Particle Dynamics Modeling. J Phys Chem B 2022; 126:3593-3606. [PMID: 35507670 DOI: 10.1021/acs.jpcb.2c00943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The preferred alkane carbon number (PACN) in the normalized hydrophilic-lipophilic deviation (HLDN) theory is a numerical parameter and a transferable scale to characterize the amphiphilicity of surfactants, which is usually measured experimentally using the fish diagram or phase inversion temperature (PIT) methods, and the experimental measurement can only be applied to existing surfactants. Here, for the first time, we propose a procedure to estimate the PACN of CiEj nonionic surfactants directly from dissipative particle dynamics (DPD) simulation. The procedure leverages the method of moment concept to quantitatively evaluate the bending tendency of nonionic surfactant monolayers by calculating the torque density. Seven nonionic surfactants, CiEj (C6E2, C6E3, C8E3, C8E4, C10E4, C12E4, and C12E5), with known PACNs are modeled. Two surfactants, C10E4 and C6E2, were first selected to train and test the interaction parameters, and the relationship between interaction parameters and torque density was mapped for the C10E4-octane-water system using the artificial neural network (ANN) fitting approach to derive the interaction parameters giving zero torque density, then the interaction parameters were tested in the C6E2-dodecane-water system to get the final tuned interaction parameters for PACN estimation. With this procedure, we reproduce the PACN values and their trend of seven nonionic surfactants with reasonable accuracy, which opens the door for quantitative comparison of surfactant amphiphilicity and surfactant classification in silico using the PACN as a transferrable scale.
Collapse
Affiliation(s)
- Hua Ren
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Qingfei Song
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| |
Collapse
|
8
|
Ortiz MS, Alvarado JG, Zambrano F, Marquez R. Surfactants produced from carbohydrate derivatives: A review of the biobased building blocks used in their synthesis. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | - Ronald Marquez
- TotalEnergies SE Pôle d'Etudes et de Recherche de Lacq Lacq France
- Laboratoire commun TotalEnergies/ESPCI Paris, Physico‐Chimie des Interfaces Complexes CHEMSTARTUP Lacq France
| |
Collapse
|
9
|
The Oscillatory Spinning Drop Technique. An Innovative Method to Measure Dilational Interfacial Rheological Properties of Brine-Crude Oil Systems in the Presence of Asphaltenes. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5030042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The oscillatory spinning drop method has been proven recently to be an accurate technique to measure dilational interfacial rheological properties. It is the only available equipment for measuring dilational moduli in low interfacial tension systems, as it is the case in applications dealing with surfactant-oil-water three-phase behavior like enhanced oil recovery, crude oil dehydration, or extreme microemulsion solubilization. Different systems can be studied, bubble-in-liquid, oil-in-water, microemulsion-in-water, oil-in-microemulsion, and systems with the presence of complex natural surfactants like asphaltene aggregates or particles. The technique allows studying the characteristics and properties of water/oil interfaces, particularly when the oil contains asphaltenes and when surfactants are present. In this work, we present a review of the measurements of crude oil-brine interfaces with the oscillating spinning drop technique. The review is divided into four sections. First, an introduction on the oscillating spinning drop technique, fundamental and applied concepts are presented. The three sections that follow are divided according to the complexity of the systems measured with the oscillating spinning drop, starting with simple surfactant-oil-water systems. Then the complexity increases, presenting interfacial rheology properties of crude oil-brine systems, and finally, more complex surfactant-crude oil-brine systems are reviewed. We have found that using the oscillating spinning drop method to measure interfacial rheology properties can help make precise measurements in a reasonable amount of time. This is of significance when systems with long equilibration times, e.g., asphaltene or high molecular weight surfactant-containing systems are measured, or with systems formulated with a demulsifier which is generally associated with low interfacial tension.
Collapse
|
10
|
Formulation Improvements in the Applications of Surfactant-Oil-Water Systems Using the HLD N Approach with Extended Surfactant Structure. Molecules 2021; 26:molecules26123771. [PMID: 34205697 PMCID: PMC8234877 DOI: 10.3390/molecules26123771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022] Open
Abstract
Soap applications for cleaning and personal care have been used for more than 4000 years, dating back to the pharaonic period, and have widely proliferated with the appearance of synthetic surfactants a century ago. Synthetic surfactants used to make macro-micro-nano-emulsions and foams are used in laundry and detergency, cosmetics and pharmaceuticals, food conditioning, emulsified paints, explosives, enhanced oil recovery, wastewater treatment, etc. The introduction of a multivariable approach such as the normalized hydrophilic–lipophilic deviation (HLD N) and of specific structures, tailored with an intramolecular extension to increase solubilization (the so-called extended surfactants), makes it possible to improve the results and performance in surfactant–oil–water systems and their applications. This article aims to present an up-to-date overview of extended surfactants. We first present an introduction regarding physicochemical formulation and its relationship with performance. The second part deals with the importance of HLD N to make a straightforward classification according to the type of surfactants and how formulation parameters can be used to understand the need for an extension of the molecule reach into the oil and water phases. Then, extended surfactant characteristics and strategies to increase performance are outlined. Finally, two specific applications, i.e., drilling fluids and crude oil dewatering, are described.
Collapse
|