1
|
Devi YG, Pulikkal AK. Amide-Linked Alkylpyridinium Gemini Surfactants for Corrosion Mitigation of Low-Carbon Steel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5071-5082. [PMID: 39988851 DOI: 10.1021/acs.langmuir.4c04197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The anticorrosion properties of three amide-linked alkylpyridinium gemini surfactants (ALAPGS), viz., 3,3'-(propanediamide)bis(1-n-dodecylpyridinium) dibromide (ALDPGS), 3,3'-(propanediamide)bis(1-n-tetradecylpyridinium) dibromide (ALTPGS), and 3,3'-(propanediamide)bis(1-n-octadecylpyridinium) dibromide (ALOPGS), were studied on low-carbon steel in 3.5% NaCl through weight loss, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (PDP) methods. The anticorrosive efficiency of ALAPGS on low-carbon steel was contingent upon the concentration and length of the alkyl tails. In addition, the corrosion inhibition efficiency was found to be the highest when the concentration of the gemini reaches close to the critical micelle concentration (cmc) and followed the order ALOPGS > ALTPGS > ALDPGS. The results obtained from EIS agreed with the findings of PDP and weight loss experiments. The PDP studies indicated that the studied gemini acts as a mixed-type inhibitor. Furthermore, the morphology of low-carbon steel was studied through scanning electron microscopy and atomic force microscopy. Molecular dynamics simulations were conducted to understand the interaction between ALAPGS and low-carbon steel. The results suggested that ALAPGS are effective corrosion inhibitors for low-carbon steel.
Collapse
Affiliation(s)
- Yumnam Gyani Devi
- Department of Chemistry, National Institute of Technology Mizoram, Chaltlang, Aizawl 796012, India
| | - Ajmal Koya Pulikkal
- Department of Chemistry, National Institute of Technology Mizoram, Chaltlang, Aizawl 796012, India
| |
Collapse
|
2
|
Dahal H, Roy S, Dey J, Bose Dasgupta S. Impact of the Hydrocarbon Chain Length of Biodegradable Ester-Bonded Cationic Gemini Surfactants on Self-Assembly, In Vitro Gene Transfection, Cytotoxicity, and Antimicrobial Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2242-2253. [PMID: 38221732 DOI: 10.1021/acs.langmuir.3c03290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Gemini surfactants, due to their unique structural features and enhanced properties compared to conventional surfactants, are becoming more popular in the domain of colloid and interface science, drug delivery, and gene delivery science. This distinct class of surfactants forms a wide range of self-assembled aggregates depending on their chemical structure and environmental conditions. The present work aims to develop Gemini with three distinct chain lengths linked through the ester group and quaternary nitrogen head groups that can bind DNA molecules and ultimately serve as vectors for DNA transfection. Thus, we synthesized three distinct cationic Gemini with 12, 14, and 16 carbons in their tails and studied the effect of the hydrocarbon chain length on their physicochemical properties and biological applications. The self-assembly of these Geminis in aqueous solution was investigated by a number of techniques, including surface tension, electrical conductivity, fluorescence probe, calorimetry, dynamic light scattering, and atomic force microscopy. All three Gemini were extremely surface active and self-assembled above a very low critical micelle concentration. Calorimetric studies suggested the formation of thermodynamically favorable aggregates in an aqueous medium. Chain length dependence was observed in the size as well as the morphology of the aggregates. These Gemini ions were found to bind DNA strongly, as indicated by the high binding constant values. In vitro gene transfection studies using the RAW 264.7 cell line suggested that all three cationic Gemini had transfection efficiencies comparable to that of commercial standard turbofectamine. MTT assay was also performed for concentration selection while using these Gemini as transfection vectors. Overall, it was observed that Gemini had very little cytotoxicity within the investigated concentration range, highlighting the significance of the ester link within the structure. When compared with known antimicrobials such as kanamycin and ampicillin, all three Gemini furnished excellent antimicrobial activity in both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) microorganisms.
Collapse
Affiliation(s)
- Homen Dahal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sadhana Roy
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Joykrishna Dey
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Somdeb Bose Dasgupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
3
|
Vasileva L, Gaynanova G, Valeeva F, Romanova E, Pavlov R, Kuznetsov D, Belyaev G, Zueva I, Lyubina A, Voloshina A, Petrov K, Zakharova L. Synthesis, Properties, and Biomedical Application of Dicationic Gemini Surfactants with Dodecane Spacer and Carbamate Fragments. Int J Mol Sci 2023; 24:12312. [PMID: 37569687 PMCID: PMC10419252 DOI: 10.3390/ijms241512312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
A synthesis procedure and aggregation properties of a new homologous series of dicationic gemini surfactants with a dodecane spacer and two carbamate fragments (N,N'-dialkyl-N,N'-bis(2-(ethylcarbamoyloxy)ethyl)-N,N'-dimethyldodecan-1,6-diammonium dibromide, n-12-n(Et), where n = 10, 12, 14) were comprehensively described. The critical micelle concentrations of gemini surfactants were obtained using tensiometry, conductometry, spectrophotometry, and fluorimetry. The thermodynamic parameters of adsorption and micellization, i.e., maximum surface excess (Гmax), the surface area per surfactant molecule (Amin), degree of counterion binding (β), and Gibbs free energy of micellization (∆Gmic), were calculated. Functional activity of the surfactants, including the solubilizing capacity toward Orange OT and indomethacin, incorporation into the lipid bilayer, minimum inhibitory concentration, and minimum bactericidal and fungicidal concentrations, was determined. Synthesized gemini surfactants were further used for the modification of liposomes dual-loaded with α-tocopherol and donepezil hydrochloride for intranasal treatment of Alzheimer's disease. The obtained liposomes have high stability (more than 5 months), a significant positive charge (approximately + 40 mV), and a high degree of encapsulation efficiency toward rhodamine B, α-tocopherol, and donepezil hydrochloride. Korsmeyer-Peppas, Higuchi, and first-order kinetic models were used to process the in vitro release curves of donepezil hydrochloride. Intranasal administration of liposomes loaded with α-tocopherol and donepezil hydrochloride for 21 days prevented memory impairment and decreased the number of Aβ plaques by 37.6%, 40.5%, and 72.6% in the entorhinal cortex, DG, and CA1 areas of the hippocampus of the brain of transgenic mice with Alzheimer's disease model (APP/PS1) compared with untreated animals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| |
Collapse
|
4
|
Koç Keşir M, Yıldız İS, Bilgen S, Sökmen M. Role of a novel cationic gemini surfactant (CGS) on a one-step sol-gel process and photocatalytic properties of TiO 2 powders. JOURNAL OF WATER AND HEALTH 2022; 20:1629-1643. [PMID: 36448613 DOI: 10.2166/wh.2022.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
TiO2 nanoparticles were prepared using a sol-gel process in combination with a novel cationic gemini surfactant (CGS) with amide functional groups at low temperatures. Titanium (IV) isopropoxide (TIP) and CGS were used as the starting materials and as effective agents, respectively, to orient the nanoparticles during the sol-gel synthesis. To reveal both the structural and morphological properties of the nanopowders prepared in this work, they were characterized using X-ray diffraction (XRD) analysis, scanning electron microscope (SEM), and Brunauer-Emmett-Teller (BET) surface area apparatus. The pore volume and pore size were calculated using the Barrett-Joyner-Halenda (BJH) model on the desorption branch. The experimental results show that the surface area and average crystallite size of the obtained TiO2 nanopowders vary between 160-203 m2/g and 27-49 nm, respectively. It was observed that the N2 adsorption-desorption isotherms for almost all samples of TiO2-X% CGS (X: mass of CGS) show the typical Type I with a hysteresis loop of H4. The photocatalytic activities of the CGS-modified nanocomposites are evaluated not only by the photocatalytic degradation of methyl orange (MO) but also by the reduction of Cr(VI) as model pollutants in the presence of visible light.
Collapse
Affiliation(s)
- Melek Koç Keşir
- Department of Chemistry, Karadeniz Technical University, Trabzon 61080, Turkey E-mail:
| | - İkbal Sarıkaya Yıldız
- Department of Chemistry, Karadeniz Technical University, Trabzon 61080, Turkey E-mail:
| | - Selçuk Bilgen
- Department of Chemistry, Karadeniz Technical University, Trabzon 61080, Turkey E-mail:
| | - Münevver Sökmen
- Department of Bioengineering, Konya Food and Agriculture University, Konya 42080, Turkey
| |
Collapse
|
5
|
Fabrication of Encapsulated Gemini Surfactants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196664. [PMID: 36235201 PMCID: PMC9573393 DOI: 10.3390/molecules27196664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022]
Abstract
(1) Background: Encapsulation of surfactants is an innovative approach that allows not only protection of the active substance, but also its controlled and gradual release. This is primarily used to protect metallic surfaces against corrosion or to create biologically active surfaces. Gemini surfactants are known for their excellent anticorrosion, antimicrobial and surface properties; (2) Methods: In this study, we present an efficient methods of preparation of encapsulated gemini surfactants in form of alginate and gelatin capsules; (3) Results: The analysis of infrared spectra and images of the scanning electron microscope confirm the effectiveness of encapsulation; (4) Conclusions: Gemini surfactants in encapsulated form are promising candidates for corrosion inhibitors and antimicrobials with the possibility of protecting the active substance against environmental factors and the possibility of controlled outflow.
Collapse
|
6
|
Kushnazarova RA, Mirgorodskaya AB, Mikhailov VA, Belousova IA, Zubareva TM, Prokop’eva TM, Voloshina AD, Amerhanova SK, Zakharova LY. Dicationic Imidazolium Surfactants with a Hydroxyl Substituent in the Spacer Fragment. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222040077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Morita T, Yada S, Yoshimura T. Effect of Spacer Structures on the Interfacial Adsorption and Micelle Properties of Quaternary Ammonium Salt-Based Gemini Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:156-163. [PMID: 34965728 DOI: 10.1021/acs.langmuir.1c02297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we synthesized quaternary ammonium salt-based gemini surfactants, 2C12(Spacer), with different spacer structures using ethylenediamine derivatives, and investigated their adsorption and aggregation properties by measuring their electrical conductivity, surface tension, fluorescence, and viscosity in conjunction with dynamic light scattering and small-angle X-ray scattering studies to investigate the effect of spacer structures on the properties of the gemini surfactants. The gemini surfactants with spacers containing nitrogen and oxygen atoms were highly soluble in water, whereas those with rigid spacers containing diethylene and triethylene chains exhibited low water solubility. The adsorption and orientation of the gemini surfactants at the air/water interface were significantly affected by the spacer length. Among the synthesized gemini surfactants, the one with the N,N'-dimethylpiperazine spacer showed the highest surface activity. In contrast, the gemini surfactant with the 1-methyl-4-[2-(N,N-dimethylammonio)ethyl]piperazin-1-ium spacer containing an ethylene chain attached to the amino group in the N,N'-dimethylpiperazine spacer (2C12(2/2-N-2)) adsorbed efficiently. However, due to the increased spacer length, this surfactant was unable to orient efficiently at the air/water interface.
Collapse
Affiliation(s)
- Tsukasa Morita
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Shiho Yada
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Tomokazu Yoshimura
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan
| |
Collapse
|
8
|
Cationic gemini surfactant properties, its potential as a promising bioapplication candidate, and strategies for improving its biocompatibility: A review. Adv Colloid Interface Sci 2022; 299:102581. [PMID: 34891074 DOI: 10.1016/j.cis.2021.102581] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
Gemini surfactants consist of two cationic monomers of a surfactant linked together with a spacer. The specific structure of a cationic gemini surfactant is the reason for both its high surface activity and its ability to decrease the surface tension of water. The high surface activity and unique structure of gemini surfactants result in outstanding properties, including antibacterial and antifungal activity, anticorrosion properties, unique aggregation behaviour, the ability to form various structures reversibly in response to environmental conditions, and interactions with biomacromolecules such as DNA and proteins. These properties can be tailored by selecting the optimal structure of a gemini surfactant in terms of the nature and length of its alkyl substituents, spacer, and head group. Additionally, regarding their properties, comparison with their monomeric counterparts demonstrates that gemini surfactants have higher performance efficacy at lower concentrations. Hence, less material is needed, and the toxicity is lower. However, there are some limitations regarding their biocompatibility that have led researchers to develop amino acid-based and sugar-based gemini surfactants. Owing to their remarkable properties, cationic gemini surfactants are promising candidates for bioapplications such as drug delivery systems, gene carriers, and biomaterial surface modification.
Collapse
|
9
|
Rzycki M, Kraszewski S, Gładysiewicz-Kudrawiec M. Diptool-A Novel Numerical Tool for Membrane Interactions Analysis, Applying to Antimicrobial Detergents and Drug Delivery Aids. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6455. [PMID: 34771982 PMCID: PMC8585202 DOI: 10.3390/ma14216455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022]
Abstract
The widespread problem of resistance development in bacteria has become a critical issue for modern medicine. To limit that phenomenon, many compounds have been extensively studied. Among them were derivatives of available drugs, but also alternative novel detergents such as Gemini surfactants. Over the last decade, they have been massively synthesized and studied to obtain the most effective antimicrobial agents, as well as the most selective aids for nanoparticles drug delivery. Various protocols and distinct bacterial strains used in Minimal Inhibitory Concentration experimental studies prevented performance benchmarking of different surfactant classes over these last years. Motivated by this limitation, we designed a theoretical methodology implemented in custom fast screening software to assess the surfactant activity on model lipid membranes. Experimentally based QSAR (quantitative structure-activity relationship) prediction delivered a set of parameters underlying the Diptool software engine for high-throughput agent-membrane interactions analysis. We validated our software by comparing score energy profiles with Gibbs free energy from the Adaptive Biasing Force approach on octenidine and chlorhexidine, popular antimicrobials. Results from Diptool can reflect the molecule behavior in the lipid membrane and correctly predict free energy of translocation much faster than classic molecular dynamics. This opens a new venue for searching novel classes of detergents with sharp biologic activity.
Collapse
Affiliation(s)
- Mateusz Rzycki
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland;
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland;
| | - Sebastian Kraszewski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland;
| | - Marta Gładysiewicz-Kudrawiec
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland;
| |
Collapse
|