1
|
Oubohssaine M, Rabeh K, Hnini M. Symbiosis vs pathogenesis in plants: Reflections and perspectives. Microb Pathog 2025; 200:107333. [PMID: 39870251 DOI: 10.1016/j.micpath.2025.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Plant-microbe partnerships constitute a complex and intricately woven network of connections that have evolved over countless centuries, involving both cooperation and antagonism. In various contexts, plants and microorganisms engage in mutually beneficial partnerships that enhance crop health and maintain balance in ecosystems. However, these associations also render plants susceptible to a range of pathogens. Understanding the fundamental molecular mechanisms governing these associations is crucial, given the notable susceptibility of plants to external environmental influences. Based on quorum sensing signals, phytohormone, and volatile organic carbon (VOC) production and others molecules, microorganisms influence plant growth, health, and defense responses. This review explores the multifaceted relationships between plants and their associated microorganisms, encompassing mutualism, commensalism, and antagonism. The molecular mechanisms of symbiotic and pathogenic interactions share similarities but lead to different outcomes. While symbiosis benefits both parties, pathogenesis harms the host. Genetic adaptations optimize these interactions, involving coevolution driving process. Environmental factors influence outcomes, emphasizing the need for understanding and manipulation of microbial communities for beneficial results. Research directions include employing multi-omics techniques, functional studies, investigating environmental factors, understanding evolutionary trajectories, and harnessing knowledge to engineer synthetic microbial consortia for sustainable agriculture and disease management.
Collapse
Affiliation(s)
- Malika Oubohssaine
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment. Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco.
| | - Karim Rabeh
- Oasis System Research Unit, Regional Center of Agricultural Research of Errachidia, National Institute of Agricultural research, PO. Box 415, Rabat, 10090, Morocco
| | - Mohamed Hnini
- Research Team in Science and Technology, High School of Technology Laayoune, Ibn Zohr University, Morocco
| |
Collapse
|
2
|
Agbodjato NA, Babalola OO. Promoting sustainable agriculture by exploiting plant growth-promoting rhizobacteria (PGPR) to improve maize and cowpea crops. PeerJ 2024; 12:e16836. [PMID: 38638155 PMCID: PMC11025545 DOI: 10.7717/peerj.16836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/04/2024] [Indexed: 04/20/2024] Open
Abstract
Maize and cowpea are among the staple foods most consumed by most of the African population, and are of significant importance in food security, crop diversification, biodiversity preservation, and livelihoods. In order to satisfy the growing demand for agricultural products, fertilizers and pesticides have been extensively used to increase yields and protect plants against pathogens. However, the excessive use of these chemicals has harmful consequences on the environment and also on public health. These include soil acidification, loss of biodiversity, groundwater pollution, reduced soil fertility, contamination of crops by heavy metals, etc. Therefore, essential to find alternatives to promote sustainable agriculture and ensure the food and well-being of the people. Among these alternatives, agricultural techniques that offer sustainable, environmentally friendly solutions that reduce or eliminate the excessive use of agricultural inputs are increasingly attracting the attention of researchers. One such alternative is the use of beneficial soil microorganisms such as plant growth-promoting rhizobacteria (PGPR). PGPR provides a variety of ecological services and can play an essential role as crop yield enhancers and biological control agents. They can promote root development in plants, increasing their capacity to absorb water and nutrients from the soil, increase stress tolerance, reduce disease and promote root development. Previous research has highlighted the benefits of using PGPRs to increase agricultural productivity. A thorough understanding of the mechanisms of action of PGPRs and their exploitation as biofertilizers would present a promising prospect for increasing agricultural production, particularly in maize and cowpea, and for ensuring sustainable and prosperous agriculture, while contributing to food security and reducing the impact of chemical fertilizers and pesticides on the environment. Looking ahead, PGPR research should continue to deepen our understanding of these microorganisms and their impact on crops, with a view to constantly improving sustainable agricultural practices. On the other hand, farmers and agricultural industry players need to be made aware of the benefits of PGPRs and encouraged to adopt them to promote sustainable agricultural practices.
Collapse
Affiliation(s)
- Nadège Adoukè Agbodjato
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, North West, South Africa
- Laboratoire de Biologie et de Typage Moléculaire en Microbiologie (LBTMM), Département de Biochimie et de Biologie Cellulaire, Université d’Abomey-Calavi, Calavi, Benin
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, North West, South Africa
| |
Collapse
|
3
|
Verma JP, Jaiswal DK, Gaurav AK, Mukherjee A, Krishna R, Prudêncio de Araujo Pereira A. Harnessing bacterial strain from rhizosphere to develop indigenous PGPR consortium for enhancing lobia ( Vigna unguiculata) production. Heliyon 2023; 9:e13804. [PMID: 36895350 PMCID: PMC9988462 DOI: 10.1016/j.heliyon.2023.e13804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The rhizosphere microbes play a key role in plant nutrition and health. However, the interaction of beneficial microbes and Vigna unguiculata (lobia) production remains poorly understood. Thus, we aimed to isolate and characterize the soil microbes from the rhizosphere and develop novel microbial consortia for enhancing lobia production. Fifty bacterial strains were isolated from the rhizosphere soil samples of lobia. Finally, five effective strains (e.g., Pseudomonas sp. IESDJP-V1 and Pseudomonas sp. IESDJP-V2, Serratia marcescens IESDJP-V3, Bacillus cereus IESDJP-V4, Ochrobactrum sp. IESDJP-V5) were identified and molecularly characterized by 16 S rDNA gene amplification. All selected strains showed positive plant growth promoting (PGP) properties in broth culture. Based on morphological, biochemical, and plant growth promoting activities, five effective isolated strains and two collected strains (Azospirillum brasilense MTCC-4037 and Paenibacillus polymyxa BHUPSB17) were selected. The pot trials were conducted with seed inoculations of lobia (Vigna unguiculata) var. Kashi Kanchan with thirty treatments and three replications. The treatment combination T3 (Pseudomonas sp. IESDJP-V2), T14 (Pseudomonas sp. IESDJP-V2 + A. brasilense), T26 (Pseudomonas sp. IESDJP-V1+ B. cereus IESDJP-V4 + P. polymyxa) and T27 (IESDJP-V1+ IESDJP-V5+ A. brasilense) were recorded for enhancing plant growth attributes, yield, nutritional content like protein, total sugar, flavonoid and soil properties as compared to control and others. The effective treatments T3 (Pseudomonas sp.), T14 (Pseudomonas sp. IESDJP-V2 + A. brasilense), T26 (Pseudomonas sp. IESDJP-V1+ B. cereus IESDJP-V4 + P. polymyxa) and T27 (IESDJP-V1+ IESDJP-V5+ A. brasilense) recorded as potential PGPR consortium for lobia production. The treatment of single (Pseudomonas sp.), duel (IESDJP-V2 + A. brasilense) and triple combination (IESDJP-V1+ IESDJP-V4 + P. polymyxa) and (IESDJP-V1+ IESDJP-V5+ A. brasilense) can be further used for developing effective indigenous consortium for lobia production under sustainable farming practices. These PGPR bio-inoculant will be cost-effective, environment-friendly and socially acceptable.
Collapse
Affiliation(s)
- Jay Prakash Verma
- Plant Microbes Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu, University, Varanasi, 221055, Uttar Pradesh, India
- Soil Microbiology Laboratory, Soil Science Department, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Durgesh Kumar Jaiswal
- Plant Microbes Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu, University, Varanasi, 221055, Uttar Pradesh, India
| | - Anand Kumar Gaurav
- Plant Microbes Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu, University, Varanasi, 221055, Uttar Pradesh, India
| | - Arpan Mukherjee
- Plant Microbes Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu, University, Varanasi, 221055, Uttar Pradesh, India
| | - Ram Krishna
- Plant Microbes Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu, University, Varanasi, 221055, Uttar Pradesh, India
| | | |
Collapse
|
4
|
Xavier GR, Jesus EDC, Dias A, Coelho MRR, Molina YC, Rumjanek NG. Contribution of Biofertilizers to Pulse Crops: From Single-Strain Inoculants to New Technologies Based on Microbiomes Strategies. PLANTS (BASEL, SWITZERLAND) 2023; 12:954. [PMID: 36840302 PMCID: PMC9962295 DOI: 10.3390/plants12040954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Pulses provide distinct health benefits due to their low fat content and high protein and fiber contents. Their grain production reaches approximately 93,210 × 103 tons per year. Pulses benefit from the symbiosis with atmospheric N2-fixing bacteria, which increases productivity and reduces the need for N fertilizers, thus contributing to mitigation of environmental impact mitigation. Additionally, the root region harbors a rich microbial community with multiple traits related to plant growth promotion, such as nutrient increase and tolerance enhancement to abiotic or biotic stresses. We reviewed the eight most common pulses accounting for almost 90% of world production: common beans, chickpeas, peas, cowpeas, mung beans, lentils, broad beans, and pigeon peas. We focused on updated information considering both single-rhizobial inoculation and co-inoculation with plant growth-promoting rhizobacteria. We found approximately 80 microbial taxa with PGPR traits, mainly Bacillus sp., B. subtilis, Pseudomonas sp., P. fluorescens, and arbuscular mycorrhizal fungi, and that contributed to improve plant growth and yield under different conditions. In addition, new data on root, nodule, rhizosphere, and seed microbiomes point to strategies that can be used to design new generations of biofertilizers, highlighting the importance of microorganisms for productive pulse systems.
Collapse
Affiliation(s)
| | | | - Anelise Dias
- Departamento de Fitotecnia, Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, UFRRJ, Rodovia BR-465, Km 7, Seropédica 23890-000, RJ, Brazil
| | | | - Yulimar Castro Molina
- Programa de Pós-graduação em Microbiologia Agrícola, Universidade Federal de Lavras, UFLA, Trevo Rotatório Professor Edmir Sá Santos, Lavras 37203-202, MG, Brazil
| | | |
Collapse
|
5
|
Zhang K, Khan Z, Yu Q, Qu Z, Liu J, Luo T, Zhu K, Bi J, Hu L, Luo L. Biochar Coating Is a Sustainable and Economical Approach to Promote Seed Coating Technology, Seed Germination, Plant Performance, and Soil Health. PLANTS (BASEL, SWITZERLAND) 2022; 11:2864. [PMID: 36365318 PMCID: PMC9657824 DOI: 10.3390/plants11212864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Seed germination and stand establishment are the first steps of crop growth and development. However, low seed vigor, improper seedbed preparation, unfavorable climate, and the occurrence of pests and diseases reduces the germination rate and seedling quality, resulting in insufficient crop populations and undesirable plant growth. Seed coating is an effective method that is being developed and applied in modern agriculture. It has many functions, such as improving seed vigor, promoting seedling growth, and reducing the occurrence of pests and diseases. Yet, during seed coating procedures, several factors, such as difficulty in biodegradation of coating materials and hindrance in the application of chemical ingredients to seeds, force us to explore reliable and efficient coating formulations. Biochar, as a novel material, may be expected to enhance seed germination and seedling establishment, simultaneously ensuring agricultural sustainability, environment, and food safety. Recently, biochar-based seed coating has gained much interest due to biochar possessing high porosity and water holding capacity, as well as wealthy nutrients, and has been proven to be a beneficial agent in seed coating formulations. This review presents an extensive overview on the history, methods, and coating agents of seed coating. Additionally, biochar, as a promising seed coating agent, is also synthesized on its physico-chemical properties. Combining seed coating with biochar, we discussed in detail the agricultural applications of biochar-based seed coating, such as the promotion of seed germination and stand establishment, the improvement of plant growth and nutrition, suitable carriers for microbial inoculants, and increase in herbicide selectivity. Therefore, this paper could be a good source of information on the current advance and future perspectives of biochar-based seed coating for modern agriculture.
Collapse
Affiliation(s)
- Kangkang Zhang
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shanghai Agrobiological Gene Center, No. 2901 Beidi Road, Shanghai 201106, China
| | - Zaid Khan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qing Yu
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shanghai Agrobiological Gene Center, No. 2901 Beidi Road, Shanghai 201106, China
| | - Zhaojie Qu
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiahuan Liu
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Luo
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kunmiao Zhu
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430072, China
| | - Junguo Bi
- Shanghai Agrobiological Gene Center, No. 2901 Beidi Road, Shanghai 201106, China
| | - Liyong Hu
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, No. 2901 Beidi Road, Shanghai 201106, China
| |
Collapse
|
6
|
Seed-Encapsulation of Desiccation-Tolerant Microorganisms for the Protection of Maize from Drought: Phenotyping Effects of a New Dry Bioformulation. PLANTS 2022; 11:plants11081024. [PMID: 35448752 PMCID: PMC9024790 DOI: 10.3390/plants11081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022]
Abstract
Droughts and high temperatures deeply affect crop production. The use of desiccation-tolerant (or xerotolerant) microorganisms able to protect plants from droughts represents a promising alternative. These xerotolerant microorganisms have previously been used to modulate plant responses and improve their tolerance to drought. In addition, these microorganisms could be stored and used in dry formats, which would improve their viability and resilience at a much lower cost than current market alternatives. In the present study we analyze the possibility of using strains of xerotolerant Actinobacteria in encapsulated format on seeds. Under this formulation, we carried out greenhouse with farming soil with maize plants. Under greenhouse conditions, the plants showed greater resistance to drought, as well as increased growth and production yield, but not as well in field trials. This alternative could represent a useful tool to improve water efficiency in crops for drought-affected areas or affected by water scarcity.
Collapse
|
7
|
Omomowo OI, Babalola OO. Constraints and Prospects of Improving Cowpea Productivity to Ensure Food, Nutritional Security and Environmental Sustainability. FRONTIERS IN PLANT SCIENCE 2021; 12:751731. [PMID: 34745184 PMCID: PMC8570086 DOI: 10.3389/fpls.2021.751731] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/30/2021] [Indexed: 05/23/2023]
Abstract
Providing safe and secure food for an increasing number of people globally is challenging. Coping with such a human population by merely applying the conventional agricultural production system has not proved to be agro-ecologically friendly; nor is it sustainable. Cowpea (Vigna unguiculata (L) Walp) is a multi-purpose legume. It consists of high-quality protein for human consumption, and it is rich in protein for livestock fodder. It enriches the soil in that it recycles nutrients through the fixation of nitrogen in association with nodulating bacteria. However, the productivity of this multi-functional, indigenous legume that is of great value to African smallholder farmers and the rural populace, and also to urban consumers and entrepreneurs, is limited. Because cowpea is of strategic importance in Africa, there is a need to improve on its productivity. Such endeavors in Africa are wrought with challenges that include drought, salinity, the excessive demand among farmers for synthetic chemicals, the repercussions of climate change, declining soil nutrients, microbial infestations, pest issues, and so forth. Nevertheless, giant strides have already been made and there have already been improvements in adopting sustainable and smart biotechnological approaches that are favorably influencing the production costs of cowpea and its availability. As such, the prospects for a leap in cowpea productivity in Africa and in the enhancement of its genetic gain are good. Potential and viable means for overcoming some of the above-mentioned production constraints would be to focus on the key cowpea producer nations in Africa and to encourage them to embrace biotechnological techniques in an integrated approach to enhance for sustainable productivity. This review highlights the spectrum of constraints that limit the cowpea yield, but looks ahead of the constraints and seeks a way forward to improve cowpea productivity in Africa. More importantly, this review investigates applications and insights concerning mechanisms of action for implementing eco-friendly biotechnological techniques, such as the deployment of bio inoculants, applying climate-smart agricultural (CSA) practices, agricultural conservation techniques, and multi-omics smart technology in the spheres of genomics, transcriptomics, proteomics, and metabolomics, for improving cowpea yields and productivity to achieve sustainable agro-ecosystems, and ensuring their stability.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
8
|
Souza-Alonso P, Rocha M, Rocha I, Ma Y, Freitas H, Oliveira RS. Encapsulation of Pseudomonas libanensis in alginate beads to sustain bacterial viability and inoculation of Vigna unguiculata under drought stress. 3 Biotech 2021; 11:293. [PMID: 34136330 PMCID: PMC8144263 DOI: 10.1007/s13205-021-02818-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Conventional agricultural practices based on the application of synthetic fertilizers are increasingly considered as unsustainable. Under a forecasted scenario of drought for the next decades, there is a global demand for innovative and sustainable approaches to ameliorate plant performance. Here, encapsulating beneficial microbes (BMs) to promote plant growth is gaining attention. This study evaluates bacterial encapsulation using polymeric beads of alginate, testing the survival of Pseudomonas libanensis TR1 stored up to 90 days. Produced beads were subjected to different treatments (fresh, air-dried and pulverized), which resulted in a variable size range (1200-860 µm). After storage, bacterial viability was maintained, and air-dried beads displayed a higher number of colony-forming units (2 × 107). Then, a glasshouse experiment investigated the drought resistance (plant growth, biomass, and photosynthetic responses) of Vigna unguiculata plants inoculated with these alginate beads. After 10 days of complete water restriction, turgidity and relative water content of V. unguiculata were still high under drought stress (> 80%). Leaf and root growth and biomass did not evidence significant changes after water restriction even after P. libanensis inoculation. Plant photosynthetic parameters (stomatal conductance, net photosynthetic rate, leaf CO2 concentration, or F v'/F m') were slightly affected due to inoculation but the level of stress-induced minimal plant responses. In our experiment, water restriction might have been insufficient to downregulate photosynthetic efficiency and reduce plant growth, limiting our understanding of the role of P. libanensis inoculation in alleviating drought stress in V. unguiculata, but highlighting the important relationship between the stress level and agricultural benefits of using encapsulated BMs.
Collapse
Affiliation(s)
- Pablo Souza-Alonso
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Department of Soil Science and Agricultural Chemistry, Escuela Politécnica Superior, University of Santiago de Compostela (USC), 27002 Lugo, Spain
| | - Miguel Rocha
- Department of Environmental Health, School of Health, Research Centre for Health and the Environment, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Inês Rocha
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ying Ma
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Helena Freitas
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Rui S. Oliveira
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
9
|
Alaux PL, Mison C, Senés-Guerrero C, Moreau V, Manssens G, Foucart G, Cranenbrouck S, Declerck S. Diversity and species composition of arbuscular mycorrhizal fungi across maize fields in the southern part of Belgium. MYCORRHIZA 2021; 31:265-272. [PMID: 33211191 DOI: 10.1007/s00572-020-01007-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are key actors among soil microbial inhabitants, forming beneficial associations with most horticultural plants and crops (e.g., maize). For maize, the world most cultivated cereal, data on AMF species diversity in fields is sparse and even totally nonexistent in the southern part of Belgium where maize represents 8% of the cultivated area. In the present study, 14 maize fields in South Belgium under conventional, conversion, or organic management were analyzed for AMF diversity and species composition using 454 pyrosequencing. A large part (54%) of the 49 AMF species observed were unknown or have not been described in the literature. AMF diversity highly varied among fields, with the number of species ranging between 1 and 37 according to the field. A statistically significant effect of management was measured on AMF diversity, with the highest Hill index values (diversity and richness) under the organic management system compared with conventional management or conversion. Our results suggest a positive effects of organic management on AMF diversity in maize. They also highlight the rather high diversity or richness of AMF and the large portion of sequences not yet ascribed to species, thereby emphasizing a need to intensify AMF identification in cropping systems.
Collapse
Affiliation(s)
- Pierre-Louis Alaux
- Earth and Life Institute, Applied Microbiology, Mycology, Université Catholique de Louvain, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Coralie Mison
- Earth and Life Institute, Applied Microbiology, Mycology, Université Catholique de Louvain, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Carolina Senés-Guerrero
- Escuela de Ingeniería Y Ciencias, Tecnológico de Monterrey, General Ramón Corona 2514, 45138, Zapopan, Jalisco, Mexico
| | - Virginie Moreau
- Earth and Life Institute, Applied Microbiology, Mycology, Université Catholique de Louvain, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Gilles Manssens
- Centre Indépendant de Promotion Fourragère (CIPF), Croix du Sud, 2 L7.05.11, Louvain-la-Neuve, Belgium
| | - Guy Foucart
- Centre Indépendant de Promotion Fourragère (CIPF), Croix du Sud, 2 L7.05.11, Louvain-la-Neuve, Belgium
| | - Sylvie Cranenbrouck
- Earth and Life Institute, Applied Microbiology, Mycology, Mycothèque de L'Université Catholique de Louvain (BCCM/MUCL), Université Catholique de Louvain, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Earth and Life Institute, Applied Microbiology, Mycology, Université Catholique de Louvain, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
10
|
Duru Kamaci U, Peksel A. Fabrication of PVA-chitosan-based nanofibers for phytase immobilization to enhance enzymatic activity. Int J Biol Macromol 2020; 164:3315-3322. [DOI: 10.1016/j.ijbiomac.2020.08.226] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/18/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022]
|