1
|
Ni F, Li Z, Huang J. Worldwide productivity and research trend on fruit quality: a bibliometric study. FRONTIERS IN PLANT SCIENCE 2024; 14:1294989. [PMID: 38264033 PMCID: PMC10803653 DOI: 10.3389/fpls.2023.1294989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024]
Abstract
Introduction As one of the important sources of food for human beings, fruits have been extensively studied. To better guide basic and applied research, it is urgent to conduct a systematic analysis of these studies based on extensive literature collection. Methods Based on the Web of Science Core Collection database, this study uses R language and CiteSpace to conduct bibliometric analysis and data mining on the literatures related to fruit quality from January 2013 to June 2023. Results The results indicated that among various fruits, tomatoes have been most frequently studied with special interests in photosynthesis, fruit development, and molecular breeding. The research direction primarily focused on fruit resistance and storage characteristics. Among the indicators related to fruit quality, antioxidant activity has the highest co-occurrence with other indicators of fruit quality, especially with nutrients such as anthocyanins, phenolic substances, sugars, and fruit firmness. Discussion Currently, adaptation to stress and antioxidant activity are recognized as prominent research focal points in this field. Fruit morphology, particularly fruit size, irrigation methods, application of molecular technology, and infection prevention, represent potential areas of interests in future research on fruit quality.
Collapse
Affiliation(s)
- Fei Ni
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Ziwei Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jianzi Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Guo K, Zhao J, Fang S, Zhang Q, Nie L, Zhao W. The effects of different rootstocks on aroma components, activities and genes expression of aroma-related enzymes in oriental melon fruit. PeerJ 2024; 12:e16704. [PMID: 38192601 PMCID: PMC10773451 DOI: 10.7717/peerj.16704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Grafting is widely applied in the cultivation of melon. In this study, 'Qinmi No.1' (Cucumis melo L.(QG)) and 'Ribenxuesong' (Cucurbita maxima Duch. (RG)) were used as rootstocks for 'Qingxin Yangjiaocui' (Cucumis melo L.). The results showed that grafting with muskmelon rootstocks had no significant effect on fruit aroma, but grafting with pumpkin rootstocks significantly reduced the odor intensity and odor preference scores of melon fruits. Compared with the fruits from self-grafted plants (SG), four new aromatic volatiles with a sweet smell were detected, the alcohol dehydrogenase (ADH) activity was significantly decreased at 30 DAP, but unaffected at 42 DAP in QG fruits. There was no difference for alcohol acetyltransferase (AAT) activity between QG and SG fruits. The expression level of CmADH2 was significantly higher at 30 DAP and 42 DAP, but CmAAT2 was significantly lower at 42 DAP in QG fruits compared with SG fruits. In RG fruits, the main aroma compounds including butanoic acid ethyl ester, 2-methyl-2-butene-1-al, and 2-methylheptan-1-al were absent, while the volatile compounds with unpleasant odor characteristics including trans, cis-2,6-nonadien-1-ol, (E,E)-2,4-heptadienal, octanoic acid, and styrene were detected. Compared with SG fruits, 1-nonanol and 1-heptanol with green odor characteristics were significantly increased, but eucalyptol and farnesene with fruity aroma characteristics were significantly decreased in RG fruits. The ADH activity of RG fruits was significantly lower than that of SG fruits at 30 DAP and the AAT activity was significantly lower than that of SG fruits at 42 DAP. In addition, the expression levels of CmADH and CmAAT homologs in RG fruits were significantly lower than those in SG or QG fruits. These results show that grafting with pumpkin rootstocks affected the main aroma components, reduced ADH and AAT activities, and down-regulated the expression levels of CmADHs and CmAATs in the melon fruits. This study reveals the mechanism of different rootstocks on melon fruit aroma quality, and lays a theoretical foundation for the selection of rootstocks in melon production. Future studies using overexpression or CRISPR/CAS system to obtain stable transgenic lines of genes encoding key aromatic volatiles, would be promising to effectively improve the flavor quality of melon.
Collapse
Affiliation(s)
- Kedong Guo
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, BaoDing, Hebei, China
| | - Jiateng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, BaoDing, Hebei, China
| | - Siyu Fang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, BaoDing, Hebei, China
| | - Qian Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, BaoDing, Hebei, China
| | - Lanchun Nie
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, BaoDing, Hebei, China
- Collaborative Innovation Center of Vegetative Industry of Hebei Province, BaoDing, Hebei, China
| | - Wensheng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, BaoDing, Hebei, China
- Collaborative Innovation Center of Vegetative Industry of Hebei Province, BaoDing, Hebei, China
| |
Collapse
|
3
|
Zhang J, Zhang H, Wang P, Chen J, Cao Y. Gene Expression, Hormone Signaling, and Nutrient Uptake in the Root Regermination of Grafted Watermelon Plants with Different Pumpkin Rootstocks. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:1051-1066. [PMID: 0 DOI: 10.1007/s00344-022-10613-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/19/2022] [Indexed: 05/20/2023]
|
4
|
Devi P, DeVetter L, Kraft M, Shrestha S, Miles C. Micrographic View of Graft Union Formation Between Watermelon Scion and Squash Rootstock. FRONTIERS IN PLANT SCIENCE 2022; 13:878289. [PMID: 35498692 PMCID: PMC9051512 DOI: 10.3389/fpls.2022.878289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Grafting has become a common practice for watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai] production in many parts of the world, due to its efficacy against biotic and abiotic stressors. However, grafting success for watermelon is challenging in part due to the complex anatomy of the cucurbit vascular system. The survival of grafted transplants depends on compatibility between the scion and rootstock, which in turn depends on anatomical, physiological, and genetic variables. A better understanding of cucurbit anatomy and graft union formation would inform grafting approaches and transplant management. An anatomical study was conducted by scanning electron microscopy (SEM) at 11 and 25 days after grafting (DAG) with seedless watermelon cultivar 'Secretariat' grafted onto compatible rootstock cultivars 'Pelop' (Lagenaria siceraria) and 'Tetsukabuto' (Cucurbita maxima × Cucurbita moschata) in comparison to non-grafted watermelon and rootstock seedlings. At 11 DAG, the parenchymatic cells of the central pith of grafted plants were dead and a necrotic layer was observed, representing the beginning of callus formation. New xylem strands were formed in the vascular system, connecting the rootstock with the scion. At 25 DAG, fully developed vascular bundles at the graft interface were observed with both scion-rootstock combinations. Although more studies are necessary to characterize the sequence of physiological events after grafting in Cucurbit species, this is one of the first studies to describe the complex anatomical changes that occur during watermelon graft healing.
Collapse
Affiliation(s)
- Pinki Devi
- Department of Horticulture, Northwestern Washington Research and Extension Center, Washington State University, Mount Vernon, WA, United States
| | - Lisa DeVetter
- Department of Horticulture, Northwestern Washington Research and Extension Center, Washington State University, Mount Vernon, WA, United States
| | - Michael Kraft
- Scientific Technical Services, Western Washington University, Bellingham, WA, United States
| | - Srijana Shrestha
- Department of Horticulture, Northwestern Washington Research and Extension Center, Washington State University, Mount Vernon, WA, United States
| | - Carol Miles
- Department of Horticulture, Northwestern Washington Research and Extension Center, Washington State University, Mount Vernon, WA, United States
| |
Collapse
|
5
|
Martínez C, Valenzuela JL, Jamilena M. Genetic and Pre- and Postharvest Factors Influencing the Content of Antioxidants in Cucurbit Crops. Antioxidants (Basel) 2021; 10:894. [PMID: 34199481 PMCID: PMC8228042 DOI: 10.3390/antiox10060894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 11/16/2022] Open
Abstract
Cucurbitaceae is one of the most economically important plant families, and includes some worldwide cultivated species like cucumber, melons, and squashes, and some regionally cultivated and feral species that contribute to the human diet. For centuries, cucurbits have been appreciated because of their nutritional value and, in traditional medicine, because of their ability to alleviate certain ailments. Several studies have demonstrated the remarkable contents of valuable compounds in cucurbits, including antioxidants such as polyphenols, flavonoids, and carotenoids, but also tannins and terpenoids, which are abundant. This antioxidant power is beneficial for human health, but also in facing plant diseases and abiotic stresses. This review brings together data on the antioxidant properties of cucurbit species, addressing the genetic and pre- and postharvest factors that regulate the antioxidant content in different plant organs. Environmental conditions, management, storage, and pre- and postharvest treatments influencing the biosynthesis and activity of antioxidants, together with the biodiversity of this family, are determinant in improving the antioxidant potential of this group of species. Plant breeding, as well as the development of innovative biotechnological approaches, is also leading to new possibilities for exploiting cucurbits as functional products.
Collapse
Affiliation(s)
| | | | - Manuel Jamilena
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3) and CIAIMBITAL Reseach Center, University of Almería, 04120 Almería, Spain; (C.M.); (J.L.V.)
| |
Collapse
|
6
|
Guo S, Sun H, Tian J, Zhang G, Gong G, Ren Y, Zhang J, Li M, Zhang H, Li H, Xu Y. Grafting Delays Watermel on Fruit Ripening by Altering Gene Expression of ABA Centric Phytohormone Signaling. FRONTIERS IN PLANT SCIENCE 2021; 12:624319. [PMID: 33719297 PMCID: PMC7947309 DOI: 10.3389/fpls.2021.624319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Grafting cultivation is implemented worldwide mainly to resist abiotic and biotic stresses and is an effective method to improve watermelon production. However, grafting may affect fruit development and quality. In our experiment, pumpkin-grafted (PG) watermelon fruits developed slower and the ripening period was extended compared to self-grafted (SG) fruits. We found that the concentrations of abscisic acid (ABA) among endogenous phytohormones were dramatically reduced by pumpkin grafting. In order to understand these changes at the gene expression level, we performed a comprehensive analysis of the fruit flesh transcriptomes between PG and SG during fruit development and ripening. A total of 1,675 and 4,102 differentially expressed genes (DEGs) were identified between PG and SG. Further functional enrichment analysis revealed that these DEGs were associated with carbohydrate biosynthesis, phytohormone signaling transmission, and cell wall metabolism categories. ABA centric phytohormone signaling and fruit quality-related genes including ABA receptor, PP2C proteins, AP2-EREBP transcription factors, sucrose transporter, and carotenoid isomerase were co-expressed with fruit ripening. These results provide the valuable resource for understanding the mechanism of pumpkin grafting effect on watermelon fruit ripening and quality development.
Collapse
|
7
|
Abstract
Watermelon (Citrullus lanatus) grafting has emerged as a promising biological management approach aimed at increasing tolerance to abiotic stressors, such as unfavorable environmental conditions. These conditions include environments that are too cold, wet, or dry, have soil nutrient deficiency or toxicity and soil or irrigation water salinity. Studies to date indicate that fruit yield and quality may be positively or negatively affected depending on rootstock-scion combination and growing environment. Growers need information regarding the general effect of rootstocks, as well as specific scion-rootstock interactions on fruit maturity and quality so they can select combinations best suited for their environment. This review summarizes the literature on watermelon grafting with a focus on abiotic stress tolerance and fruit maturity and quality with specific reference to hollow heart and hard seed formation, flesh firmness, total soluble solids, and lycopene content.
Collapse
|