1
|
Gupta P, Sahoo PC, Sandipam S, Gupta RP, Kumar M. Fermentation of biodiesel-derived crude glycerol to 1,3-propanediol with bio-wastes as support matrices: Polynomial prediction model. Enzyme Microb Technol 2023; 170:110292. [PMID: 37536048 DOI: 10.1016/j.enzmictec.2023.110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Biodiesel production from used cooking oil is sustainable alternative, for bio-energy production. The process generates residual crude glycerol (RCG) as the major energy-rich waste which can be used to produce various bio-based chemicals like 1,3-propanediol (1,3-PDO) through biotechnological interventions. This RCG contains several impurities like methanol, soap, organic materials, salts non-transesterified fatty acids and metals in varied concentrations. These impurities significantly affect yield and productivity of the bio-process due to their marked microbial toxicity. In this work, previously isolated Clostridium butyricum L4 was immobilized on various abundantly available cheap bio-wastes (like rice straw, activated carbon and corn cob) to explore advantages offered and improve tolerance to various feed impurities. Amongst these, shredded rice straw was found most suitable candidate for immobilization and results in maximum improvement in 1,3-PDO production (18.4%) with highest porosity (89.28%), lowest bulk density (194.48Kg/m3), and highest cellular biofilm density (CFU/g-8.4 ×1010) amongst the three matrices. For practical purposes, recyclability was evaluated and it was concluded that even after reusing for five successive cycles the production retained to ∼82.4%. Subsequently, polynomial model was developed using 30 runs central composite factorial design experiments having coefficient of regression (R²) as 0.9520, in order to predict yields under different immobilization conditions for 1,3-PDO production. Plackett-Burman was employed (Accuracy= 99.17%) to screen significant toxic impurities. Based on statistical analysis six impurities were found to be significantly influential on PDO production in adverse manner. With negative coefficient of estimate (COE) varying in decreasing order: Linoleic acid >Oleic acid >Stearic acid >NaCl>K2SO4 >KCl. The study illustrates practical application for repurposing waste glycerol generated from biodiesel plants, thus developing improved agnostic process along with yield production models.
Collapse
Affiliation(s)
- Pragya Gupta
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - P C Sahoo
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Srikanth Sandipam
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Ravi Prakash Gupta
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Manoj Kumar
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, Haryana, India.
| |
Collapse
|
2
|
Wang Z, Chen H, Qin Y, Lan T. Effect of Fenton oxidized lignin support on immobilized β-glucosidase activity. J Biotechnol 2023; 368:31-41. [PMID: 37028559 DOI: 10.1016/j.jbiotec.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
In this study, the Fenton oxidized lignin was prepared to investigate the effect of Fenton oxidation modification on the activity of lignin immobilized β-glucosidase (β-GL). The results demonstrated that Fenton oxidation could significantly improve the activity and stability of immobilized β-GL. This is because the Fenton oxidation increased the electrostatic, hydrogen bonding, and hydrophobic forces between lignin and β-GL, resulting in increased lignin adsorption onto β-GL. The Fenton oxidation also changed the chemical structure of lignin, altering the lignin-β-GL binding site and reducing the negative effect of lignin on the β-GL catalytic domain. This research will improve understanding of the effect of Fenton lignin oxidation on immobilized β-GL activity and expand the use of lignin in enzyme immobilization.
Collapse
Affiliation(s)
- Zekang Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Rd., Chenggong District, Kunming, 650500, China
| | - Haiyan Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Rd., Chenggong District, Kunming, 650500, China
| | - Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Rd., Chenggong District, Kunming, 650500, China
| | - Tianqing Lan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Rd., Chenggong District, Kunming, 650500, China; National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Rd., Tianxin District, Changsha, 410004, China.
| |
Collapse
|
3
|
Ejaz U, Rashid R, Ahmed S, Narejo KK, Qasim A, Sohail M, Ali ST, Althakafy JT, Alanazi AK, Abo-Dief HM, Moin SF. Synthesis of methylcellulose-polyvinyl alcohol composite, biopolymer film and thermostable enzymes from sugarcane bagasse. Int J Biol Macromol 2023; 235:123903. [PMID: 36870634 DOI: 10.1016/j.ijbiomac.2023.123903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Agro-industrial wastes and by-products are the natural and abundant resources of biomaterials to obtain various value-added items such as biopolymer films, bio-composites and enzymes. This study presents a way to fractionate and to convert an agro-industrial residue, sugarcane bagasse (SB), into useful materials with potential applications. Initially cellulose was extracted from SB which was then converted into methylcellulose. The synthesized methylcellulose was characterized by scanning electron microscopy and FTIR. Biopolymer film was prepared by using methylcellulose, polyvinyl alcohol (PVA), glutaraldehyde, starch and glycerol. The biopolymer was characterized to exhibit 16.30 MPa tensile strength, 0.05 g/m2 h of water vapor transmission rate, 366 % of water absorption to its original weight after 115 min of immersion, 59.08 % water solubility, 99.05 % moisture retention capability and 6.01 % of moisture absorption after 144 h. Furthermore, in vitro studies on absorption and dissolution of model drug by biopolymer showed 2.04 and 104.59 % of swelling ratio and equilibrium water content, respectively. Biocompatibility of the biopolymer was checked by using gelatin media and it was observed that swelling ratio was higher in initial 20 min of contact. The extracted hemicellulose and pectin from SB were fermented by a thermophilic bacterial strain, Neobacillus sedimentimangrovi UE25 that yielded 12.52 and 6.4 IU mL-1 of xylanase and pectinase, respectively. These industrially important enzymes further augmented the utility of SB in this study. Therefore, this study emphasizes the possibility for industrial application of SB to form various products.
Collapse
Affiliation(s)
- Uroosa Ejaz
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi 75600, Pakistan
| | - Rozina Rashid
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan; Department of Microbiology, University of Balochistan, Quetta, Pakistan
| | - Shehmir Ahmed
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi 75600, Pakistan
| | - Kiran Khan Narejo
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi 75600, Pakistan
| | - Ayesha Qasim
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi 75600, Pakistan
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan.
| | - Syed Tariq Ali
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Jalal T Althakafy
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Abdullah K Alanazi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hala M Abo-Dief
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Syed Faraz Moin
- Dr Zafar H Zaidi Center for Proteomic (formerly National Center for Proteomics), University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
4
|
Abbas M, Ejaz U, Shafique M, Naz SA, Sohail M. Biological pretreatment of sugarcane bagasse for the production of fungal laccase and bacterial cellulase. J Basic Microbiol 2023. [PMID: 36856084 DOI: 10.1002/jobm.202200684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 03/02/2023]
Abstract
Sugarcane bagasse (SB) is a promising source of appreciable quantities of fermentable sugars. However, the presence of lignin hinders utilization of these carbohydrates and hence pretreatment to remove lignin is necessarily carried out. Here, a biological pretreatment method was synchronized with the production of a thermostable cellulase using SB as a raw material. Initially, bagasse was fermented by a laccase producing fungus, Trametes pubescens MB 89 under solid state fermentation (SSF) and a titer of 1758 IU mL-1 of laccase was obtained. Investigations of nine factors affecting laccase production through Plackett Burman design improved the titers to 6539 IU mL-1 . Five factors (incubation period, concentration of CuSO4 , temperature, moisture content, and particle size) were found significant which were optimized through Central Composite design leading to an improvement in the titers by ~5 folds (8841 IU mL-1 ). Biologically pretreated SB was fermented by a thermophilic bacterium, Neobacillus sedimentimangrovi UE25, that yielded 8.64 IU mL-1 of cellulase. Delignification and cellulose utilization were affirmed by structural analysis through FTIR and SEM. The synchronized process yielded higher titers of laccase and cellulase under SSF of SB with the minimum use of corrosive chemicals.
Collapse
Affiliation(s)
- Mustansir Abbas
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Uroosa Ejaz
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi, Pakistan
| | - Maryam Shafique
- Department of Microbiology, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Sehar A Naz
- Department of Microbiology, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| |
Collapse
|
5
|
Hanif A, Ejaz U, Hasan KA, Karim M, Suleman F, Siddiq M, Moin SF, Abideen Z, Sohail M. Two-way strategy for enhanced pectinase production: Random mutagenesis and utilization of a halophytic biomass. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Characterization of a novel end product tolerant and thermostable cellulase from Neobacillus sedimentimangrovi UE25. Enzyme Microb Technol 2023; 162:110133. [DOI: 10.1016/j.enzmictec.2022.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
|
7
|
Ejaz U, Wasim AA, Khan MN, Alzahrani OM, Mahmoud SF, El-Bahy ZM, Sohail M. Use of Ionic Liquid Pretreated and Fermented Sugarcane Bagasse as an Adsorbent for Congo Red Removal. Polymers (Basel) 2021; 13:polym13223943. [PMID: 34833242 PMCID: PMC8622147 DOI: 10.3390/polym13223943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
A large amount of industrial wastewater containing pollutants including toxic dyes needs to be processed prior to its discharge into the environment. Biological materials such as sugarcane bagasse (SB) have been reported for their role as adsorbents to remove the dyes from water. In this study, the residue SB after fermentation was utilized for the dye removal. A combined pretreatment of NaOH and methyltrioctylammonium chloride was given to SB for lignin removal, and the pretreated SB was utilized for cellulase production from Bacillus aestuarii UE25. The strain produced 118 IU mL-1 of endoglucanse and 70 IU mL-1 of β-glucosidase. Scanning electron microscopy and FTIR spectra showed lignin and cellulose removal in fermented SB. This residue was utilized for the adsorption of an azo dye, congo red (CR). The thermodynamic, isotherm and kinetics studies for the adsorption of CR revealed distinct adsorption features of SB. Untreated SB followed Langmuir isotherm, whereas pretreated SB and fermented SB obeyed the Freundlich isotherm model. The pseudo-second-order model fitted well for the studied adsorbents. The results of thermodynamic studies revealed spontaneous adsorption with negative standard free energy values. Untreated SB showed a 90.36% removal tendency at 303.15 K temperature, whereas the adsorbents comprised of pretreated and fermented SB removed about 98.35% and 97.70%, respectively. The study provided a strategy to utilize SB for cellulase production and its use as an adsorbent for toxic dyes removal.
Collapse
Affiliation(s)
- Uroosa Ejaz
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi 75600, Pakistan
| | - Agha Arslan Wasim
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan; (A.A.W.); (M.N.K.)
| | | | - Othman M. Alzahrani
- Department of Biology College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Samy F. Mahmoud
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Zeinhom M. El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt;
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
- Correspondence:
| |
Collapse
|
8
|
Ansari I, Ejaz U, Abideen Z, Gulzar S, Syed MN, Liu J, Li W, Fu P, Sohail M. Wild Halophytic Phragmites karka Biomass Saccharification by Bacterial Enzyme Cocktail. Front Microbiol 2021; 12:714940. [PMID: 34616380 PMCID: PMC8488365 DOI: 10.3389/fmicb.2021.714940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Biofuel derived from halophytic biomass is getting attention owing to the concerns of energy versus food crisis. The disadvantages associated with edible bioenergy resources necessitate the need to explore new feedstocks for sustainable biofuel production. In this study, biomass from locally available abundant halophytes (Panicum antidotale, Phragmites karka, Halopyrum mucronatum, and Desmostachya bipinnata) was screened for saccharification by an enzyme cocktail composed of cellulase, xylanase, and pectinase from Brevibacillus borstelensis UE10 and UE27, Bacillus aestuarii UE25, Aneurinibacillus thermoaerophilus UE1, and Bacillus vallismortis MH 1. Two types of pretreatment, i.e., with dilute acid and freeze-thaw, were independently applied to the halophytic biomass. Saccharification of acid-pretreated P. karka biomass yielded maximum reducing sugars (9 mg g-1) as compared to other plants. Thus, the factors (temperature, pH, substrate concentration, and enzyme units) affecting its saccharification were optimized using central composite design. This statistical model predicted 49.8 mg g-1 of reducing sugars that was comparable to the experimental value (40 mg g-1). Scanning electron microscopy and Fourier-transform infrared spectroscopy showed significant structural changes after pretreatment and saccharification. Therefore, halophytes growing in saline, arid, and semi-arid regions can be promising alternative sources for bioenergy production.
Collapse
Affiliation(s)
- Immad Ansari
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Uroosa Ejaz
- Department of Microbiology, University of Karachi, Karachi, Pakistan.,Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Karachi, Pakistan
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Salman Gulzar
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | | | - Jing Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Wang Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Weihai UIC Biotechnology, Inc., Weihai, China
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi, Pakistan.,Weihai UIC Biotechnology, Inc., Weihai, China
| |
Collapse
|
9
|
Zafar H, Rehman I, Ejaz U, Ansari A, Sohail M. Production of multienzyme by Bacillus aestuarii UE25 using ionic liquid pretreated sugarcane bagasse. J Basic Microbiol 2021; 61:1016-1028. [PMID: 34463967 DOI: 10.1002/jobm.202100323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/12/2021] [Accepted: 08/21/2021] [Indexed: 11/05/2022]
Abstract
The utilization of sugarcane bagasse (SB) in fermentation requires pretreatment processes to render fermentable components available to microorganisms. Pretreatment by using ionic liquids (ILs) is considered promising but the high cost is an impediment in its adoption, therefore, a mixture of IL pretreated and untreated SB was utilized to obtain bacterial multienzyme under solid-state fermentation (SSF). Bacillus aestuarii UE25, a thermophilic strain was utilized for that purpose. Fermentation conditions were optimized by adopting a central composite design. The model showed a good correlation between the predicted and the experimental values for amylase, xylanase, endoglucanase, and β-glucosidase. Volumetric and specific productivity of xylanase (4580 IU ml-1 h-1 , 244.25 IU mg-1 substrate, and 50 IU mg-1 protein) were higher than the other enzymes. Changes in lignin content and reduced cellulose crystallinity due to IL pretreatment, followed by fermentation, were visualized by scanning electron microscopy, Fourier transform infrared spectroscopy, and Nuclear magnetic resonance. The strategy adopted by utilizing a mixture of IL pretreated and untreated SB under SSF proved promising to obtain high titers of different enzymes simultaneously. Since the bacterial strain used is thermophilic, therefore, the multienzyme can find its application in commercial processes which are carried out at high temperatures.
Collapse
Affiliation(s)
- Hani Zafar
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Iqra Rehman
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Uroosa Ejaz
- Department of Microbiology, University of Karachi, Karachi, Pakistan.,Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi, Pakistan
| | - Asma Ansari
- The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| |
Collapse
|
10
|
Rashid R, Ejaz U, Ali FI, Hashmi IA, Bari A, Liu J, Wang L, Fu P, Sohail M. Combined pretreatment of sugarcane bagasse using alkali and ionic liquid to increase hemicellulose content and xylanase production. BMC Biotechnol 2020; 20:64. [PMID: 33298027 PMCID: PMC7724814 DOI: 10.1186/s12896-020-00657-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/11/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Lignin in sugarcane bagasse (SB) hinders its utilization by microorganism, therefore, pretreatment methods are employed to make fermentable components accessible to the microbes. Multivariate analysis of different chemical pretreatment methods can aid to select the most appropriate strategy to valorize a particular biomass. RESULTS Amongst methods tested, the pretreatment by using sodium hydroxide in combination with methyltrioctylammonium chloride, an ionic liquid, (NaOH+IL) was the most significant for xylanase production by Bacillus aestuarii UE25. Investigation of optimal levels of five significant variables by adopting Box-Behnken design (BBD) predicted 20 IU mL- 1 of xylanase and experimentally, a titer of 17.77 IU mL- 1 was obtained which indicated the validity of the model. The production kinetics showed that volumetric productivity of xylanase was much higher after 24 h (833.33 IU L- 1 h- 1) than after 48 h (567.08 IU L- 1 h- 1). The extracted xylan from SB induced more xylanase in the fermentation medium than pretreated SB or commercially purified xylan. Nuclear Magnetic Resonance, Fourier transform infrared spectroscopy and scanning electron microscopy of SB indicated removal of lignin and changes in the structure of SB after NaOH+IL pretreatment and fermentation. CONCLUSION Combined pretreatment of SB with alkali and methyltrioctylammonium chloride appeared better than other chemical methods for bacterial xylanase production and for the extraction of xylan form SB.
Collapse
Affiliation(s)
- Rozina Rashid
- Department of Microbiology, University of Karachi, 75270, Karachi, Pakistan.,Department of Microbiology, University of Balochistan, Quetta, Pakistan
| | - Uroosa Ejaz
- Department of Microbiology, University of Karachi, 75270, Karachi, Pakistan
| | - Firdous Imran Ali
- Department of Chemistry, University of Karachi, 75270, Karachi, Pakistan
| | - Imran Ali Hashmi
- Department of Chemistry, University of Karachi, 75270, Karachi, Pakistan
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jing Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Li Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, 75270, Karachi, Pakistan.
| |
Collapse
|
11
|
Ejaz U, Hanif H, Sohail M. Two layered strategy for cost effective production of pectinase: immobilization of yeast and utilization of crude substrate. Heliyon 2020; 6:e05456. [PMID: 33225094 PMCID: PMC7662841 DOI: 10.1016/j.heliyon.2020.e05456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 11/04/2020] [Indexed: 10/26/2022] Open
Abstract
The wide scale application of pectinase is generally hindered by high cost of the enzyme production. In this work, a two dimensional strategy was adopted to reduce cost of pectinase production by Geotrichum candidum AA15. The strain was immobilized in alginate beads. The optimum concentration for bead formation was found to be 3.5% of sodium alginate (NA) with 4% calcium chloride (CaCl2). Such immobilized cells retained the ability to produce 0.115 IU mL-1 of pectinase for up to 6th production cycle in citrus pectin containing medium while free cells produced only 0.046 IU mL-1 of pectinase. For the cultivation of immobilized cells on orange peels (OP), a combination of 4.5% NA and 4% CaCl2 was found effective to prepare beads. Geotrichum candidum AA15 produced 0.220 IU mL-1 pectinase by fermenting OP as a substrate for up to 3rd production cycle. The results revealed that the process of immobilization can be used as a promising strategy in combination with the use of naturally available waste biomass.
Collapse
Affiliation(s)
- Uroosa Ejaz
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Hurmat Hanif
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|