1
|
Liu L, Chen H, Wang Y, Cheng W, He J, Xiao F, Li S. Characterization of quercetin-ovalbumin complexes stabilizing emulsions: A perspective on the complex binding mechanism. Int J Biol Macromol 2025; 307:141970. [PMID: 40081697 DOI: 10.1016/j.ijbiomac.2025.141970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Ovalbumin (OVA) is widely used in the food industry for its extremely rich nutritional value and special functional properties. Quercetin (Q) is a polyphenol with antioxidant and antibacterial properties. However, due to poor water solubility, the bioavailability of Q is greatly reduced. This study constructed a molecular model of the interaction between Q and OVA and prepared a stable emulsions. The molecular docking and molecular dynamics results showed that Q and OVA were combined through hydrogen bonding and hydrophobic interactions, and Q changed the conformation of OVA. The results of surface hydrophobicity and emulsification experiments showed that the properties of the protein were improved significantly after the interaction. Confocal laser scanning microscope showed that the emulsions type was oil-in-water system. The results of particle size and optical microscope revealed that the addition of Q-OVA complex improved the droplet size. The Low-field nuclear magnetic resonance and rheological properties showed that the addition of Q-OVA composite nanoparticles improved the stability of emulsions. The best stability of the emulsions was achieved with a 3 % addition of Q-OVA. In addition, the antibacterial experiment showed that the Q-OVA Pickering emulsions exhibited strong antibacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Compared with the Q-OVA complex, the diameter of the inhibition zone of the Q-OVA Pickering emulsions against E. coli and S. aureus increased by 0.11 and 0.17 cm, and the antibacterial rate increased by 2.22 % and 2.52 %, respectively. When Q-OVA Pickering emulsions was applied to fresh pork, the pH and TVC values of the pork were significantly reduced during storage (P < 0.05). This indicated that the Q-OVA Pickering emulsions had a good effect on pork preservation. These findings are important for the application of Q-OVA-based stabilised Pickering emulsions as green and safe natural preservative in the food industry.
Collapse
Affiliation(s)
- Lili Liu
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, China.
| | - Hui Chen
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yunguang Wang
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, China
| | - Weiwei Cheng
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, China
| | - Jialiang He
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, China
| | - Feng Xiao
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, China
| | - Sisi Li
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
2
|
Wu T, Sun J, Bai W. Effects of black soybean peel anthocyanins on the structural and functional properties of wheat gluten. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3219-3228. [PMID: 39707799 DOI: 10.1002/jsfa.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Wheat gluten (WG) is a crucial cereal protein commonly utilized in the food, biological and pharmaceutical industries. However, WG is poorly soluble in water, resulting in poor functional properties, which restrict its application in the food industry. As a result, there is an urgent need for improving the properties of WG. RESULTS This study was conducted to examine the functional properties of WG after binding with black soybean peel anthocyanin extract (BAE). Results showed that BAE enhanced the solubility, water-holding and antioxidant capacity, foaming properties and emulsifying activity of WG, while decreasing the emulsion stability. The degree of hydrolysis of WG and retention rate of BAE became higher in the digested WG-BAE complex than in the control groups. Additionally, an analysis was conducted on the mechanism of interaction between cyanidin-3-O-glucoside (C3G) and WG/gliadin (Gli)/glutenin (Glu). The secondary structure of WG/Gli/Glu was altered after adding C3G. C3G had high affinity for WG/Gli/Glu since their binding constants were greater than 104 L mol-1. The primary binding forces between C3G and WG/Gli were hydrophobic interactions, whereas the main interaction forces between C3G and Glu were hydrogen bonding and van der Waals forces. Moreover, C3G increased the thermal stability and changed the network structure of WG/Gli/Glu. CONCLUSION This study revealed that BAE effectively enhanced a range of functional properties of WG. The interaction between WG and BAE also improved the bioavailability and nutritional value of them. Furthermore, the interaction mode between BAE and WG was investigated. These findings lay a foundation for utilizing gluten-anthocyanins in the food sector. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tongyun Wu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Wei F, Ren X, Huang Y, Hua N, Wu Y, Yang F. Hydrodynamic cavitation induced fabrication of soy protein isolate-polyphenol complexes: Structural and functional properties. Curr Res Food Sci 2025; 10:100969. [PMID: 39867916 PMCID: PMC11762184 DOI: 10.1016/j.crfs.2024.100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/21/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025] Open
Abstract
The combination of polyphenols and protein can improve the functional characteristics of protein. How to effectively promote the binding of polyphenols to protein is still a difficult topic. In this study, hydrodynamic cavitation (HC) was used to induce the fabrication of complexes between soy protein isolate (SPI) and different polyphenols (tannic acid (TA), chlorogenic acid (CGA), ferulic acid (FA), caffeic acid (CA), and gallic acid (GA)). The effect of HC on the interaction between polyphenols and SPI was investigated, and the structural and functional properties of the formed complexes were characterized. The results showed that HC treatment led to SPI structure stretching, which increased the binding level of polyphenols, especially that of TA (increased from 35.08 ± 0.73% to 66.42 ± 1.35%). The increase in ultraviolet-visible absorption intensity and quenching of fluorescence intensity confirmed that HC enhanced the interaction between polyphenols and protein. HC treatment reduced the contents of free sulfhydryl and amino groups in SPI-polyphenol complexes and altered their Fourier transform infrared spectroscopy, indicating that HC treatment promoted the formation of C-N and C-S bonds between SPI and polyphenols. Circular dichroism spectroscopy indicated that HC treatment altered the secondary structure of SPI-polyphenol complexes, inducing an increase in α-helix and random coil contents and a decrease in β-sheet content. Regarding functional properties, HC treatment improved the emulsification and antioxidant activity of SPI-polyphenol complexes. Therefore, HC is an effective technique for promoting the binding of polyphenols to protein.
Collapse
Affiliation(s)
- Fengyan Wei
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China
| | - Xianʹe Ren
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China
- Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou, 545006, China
| | - Yongchun Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China
- Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou, 545006, China
| | - Ning Hua
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China
| | - Yuting Wu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China
| | - Feng Yang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China
- Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou, 545006, China
| |
Collapse
|
4
|
Can Karaca A, Tan C, Assadpour E, Jafari SM. Recent advances in the plant protein-polyphenol interactions for the stabilization of emulsions. Adv Colloid Interface Sci 2025; 335:103339. [PMID: 39571482 DOI: 10.1016/j.cis.2024.103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Proteins from plant sources including legumes, cereals and oilseeds are gaining attention due to their suitability for sustainable production, functionality, and positive consumer perception. On the other hand, polyphenols (PPs) are receiving considerable attention as natural ingredients in the human diet due to their potent antioxidant and anti-inflammatory properties. Recent studies indicate that the emulsifying properties of plant proteins (PLPs) can be improved after modification through covalent and/or non-covalent interactions with PPs due to the changes in the conformation and/or the surface chemistry of the proteins. Complexes formed between PLPs-PPs can serve as innovative ingredients for developing novel food products with modified textural properties. Also, Pickering emulsions, multiple emulsions, multilayer emulsions, nanoemulsions, and high internal phase emulsions can be stabilized by such systems to deliver bioactive compounds. This paper reviews the most recent research on the PLP-PP interactions and their role in the stabilization of various emulsion-based systems. A special emphasis is given to modifying the structure and functionality of PLPs and PPs. The challenges and opportunities of applying PLP-PP interactions in emulsion-based systems are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
5
|
Zhang S, Sun Y, Xie Q, Jiang Y, Cheng J. Effect of different salts on the foaming properties of model protein systems for infant formula. J Dairy Sci 2024; 107:2668-2680. [PMID: 37863295 DOI: 10.3168/jds.2023-24080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023]
Abstract
This multiscale study aimed to evaluate the effects of different salts (NaCl, KCl, MgCl2, and CaCl2) on the foaming capacity (FC) and foam stability (FS) of model protein systems (MPS) for infant formula via changes in surface and structural properties. Our results showed that the FC and FS of MPS were increased with the addition of NaCl, KCl, and MgCl2, whereas CaCl2 significantly decreased FC (79.5 ± 10.6%) and increased FS (93.2 ± 2.2%). The surface hydrophobicity was increased and the net charge and surface tension were reduced after the addition of salts. Structural analysis revealed the reduction of intensity of intrinsic fluorescence spectroscopy and UV absorption, and the conversion of α-helix into β-strand, which was attributed to protein agglomeration. Additionally, MgCl2 and CaCl2 exhibited larger size and lower net charge compared with NaCl and KCl, indicating a greater ability to bind to charged amino acids and form larger aggregates. Correlation analysis indicated that FC was positively related to adsorbed protein and β-turn and negatively correlated with particle size. In addition, FS showed a positive correlation with β-strand, apparent viscosity, and zeta potential. However, it exhibited a negative correlation with β-turn, α-helix, and sulfhydryl content. These results provide a theoretical reference for further understanding of the effect of salts on the foaming properties of MPS.
Collapse
Affiliation(s)
- Siyu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qinggang Xie
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Feihe Dairy Company, Heilongjiang 164899, China
| | - Yunqing Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
6
|
Günal-Köroğlu D, Lorenzo JM, Capanoglu E. Plant-Based Protein-Phenolic Interactions: Effect on different matrices and in vitro gastrointestinal digestion. Food Res Int 2023; 173:113269. [PMID: 37803589 DOI: 10.1016/j.foodres.2023.113269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
This review summarizes the literature on the interaction between plant-based proteins and phenolics. The structure of the phenolic compound, the plant source of proteins, matrix properties (pH, temperature), and interaction mechanism (covalent and non-covalent) change the secondary structure, ζ-potential, surface hydrophobicity, and thermal stability of proteins as well as their functional properties including solubility, foaming, and emulsifying properties. Studies indicated that the foaming and emulsifying properties may be affected either positively or negatively according to the type and concentration of the phenolic compound. Protein digestibility, on the other hand, differs depending on (1) the phenolic concentration, (2) whether the food matrix is solid or liquid, and (3) the state of the food-whether it is heat-treated or prepared as a mixture without heat treatment in the presence of phenolics. This review comprehensively covers the effects of protein-phenolic interactions on the structure and properties of proteins, including functional properties and digestibility both in model systems and real food matrix.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey.
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia 4, Parque Tecnológico de Galicia, 32900 Ourense, Spain.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey.
| |
Collapse
|
7
|
Carpentieri S, Ferrari G, Donsì F. All-natural wheat gliadin-gum arabic nanocarriers for encapsulation and delivery of grape by-products phenolics obtained through different extraction procedures. Food Chem 2023; 424:136385. [PMID: 37247597 DOI: 10.1016/j.foodchem.2023.136385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/21/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023]
Abstract
Grape pomace (GP), the major winery by-product, is still rich in phenolic compounds, scarcely applied in food systems due to physicochemical instability issues. This work aimed at fabricating gliadin (G)-based nanoparticles through antisolvent precipitation, for delivery of GP extracts, investigating different extraction strategies with ethanol/water solution (70:30 v/v). Interestingly, the fabricated nanoparticles were characterized by a nanometric size range with hydraulic diameter values around 100 nm and ζ-potential of 18-22 mV. The addition of gum arabic (GA), at the optimized G/GA ratio 1:1, improved particle stability and encapsulation efficiency of GP polyphenols. The two-step extraction of GP in the G-rich solvent retrieved from G extraction, as evidenced by total phenolics (1.24 times higher than the two separately obtained extracts G/GP10:10), HPLC-PDA analysis, encapsulation efficiency (62.9% in terms of epicatechin), and simulated digestion (95.6% release of epicatechin), represented the most promising approach to obtain G nanoparticles for efficient delivery of GP extracts.
Collapse
Affiliation(s)
- Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; ProdAl Scarl c/o University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
8
|
Liu M, Shan S, Gao X, Shi Y, Lu W. The effect of sweet tea polysaccharide on the physicochemical and structural properties of whey protein isolate gels. Int J Biol Macromol 2023; 240:124344. [PMID: 37028627 DOI: 10.1016/j.ijbiomac.2023.124344] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
In this study, we investigated the effect of sweet tea polysaccharide (STP) on the physicochemical and structural properties of heat-induced whey protein isolate (WPI) gels, and explored the potential mechanism. The results indicated that STP promoted the unfolding and cross-linking of WPI to form a stable three-dimensional network structure, and significantly improved the strength, water-holding capacity and viscoelasticity of WPI gels. However, the addition of STP was limited to 2 %, too much STP would loosen the gel network and affect the gel properties. The results of FTIR and fluorescence spectroscopy suggested that STP affected the secondary and tertiary structures of WPI, promoted the movement of aromatic amino acids to the protein surface and the conversion of α-helix to β-sheet. In addition, STP reduced the surface hydrophobicity of the gel, increased the free sulfhydryl content, and enhanced the hydrogen bonding, disulfide bonding, and hydrophobic interactions between protein molecules. These findings can provide a reference for the application of STP as a gel modifier in the food industry.
Collapse
Affiliation(s)
- Mengyao Liu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Shan Shan
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Xin Gao
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Yudong Shi
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China; Inner Mongolia Mengniu Dairy Co., Ltd., Inner Mongolia, China
| | - Weihong Lu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
9
|
Krekora M, Markiewicz KH, Wilczewska AZ, Nawrocka A. Raman and thermal (TGA and DSC) studies of gluten proteins supplemented with flavonoids and their glycosides. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
10
|
He WJ, Chen N, Yu ZL, Sun Q, He Q, Zeng WC. Gliadin interacted with tea polyphenols: potential application and action mechanism. Int J Food Sci Nutr 2022; 73:786-799. [PMID: 35603582 DOI: 10.1080/09637486.2022.2078283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effect of tea polyphenols (TPs) on noodles quality was investigated, and the interaction mechanism between catechins and gliadins was explored. With TPs addition, noodles showed the significant changes in physicochemical and sensory properties. The water absorption, tensile strength and elasticity increased by 1.35%, 4.98%, 28.51% with 0.5% of TPs, and then decreased with the increasing of TPs. According to the determinations of surface hydrophobicity, spatial structure, thermal properties, amidogen and sulfhydryl content, the structure and properties of gliadin were affected by catechins. Esterified catechins tended to disrupt gliadin structures and non-esterified catechins polymerised gliadin molecules. Furthermore, molecular docking results indicated that catechins interacted with gliadin mainly by hydrogen bonds and hydrophobic action. The reactivity of catechins with gliadin was in the sequence as: epigallocatechin gallate > epicatechin gallate > epigallocatechin > epicatechin, which was based on the account of gallate and B-ring hydroxyl number discrepancy. All results suggested that catechins affected greatly on gliadin, and TPs were potentially used to improve the quality of flour products.
Collapse
Affiliation(s)
- Wen-Jing He
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, PR China
| | - Nan Chen
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, PR China
| | - Zhi-Long Yu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, QC, Canada
| | - Qun Sun
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, PR China
| | - Qiang He
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, PR China
| | - Wei-Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, PR China.,The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, PR China
| |
Collapse
|
11
|
Zhao J, Huang L, Li R, Zhang Z, Chen J, Tang H. Insights from multi-spectroscopic analysis and molecular modeling to understand the structure-affinity relationship and the interaction mechanism of flavonoids with gliadin. Food Funct 2022; 13:5061-5074. [PMID: 35404372 DOI: 10.1039/d1fo03816h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gliadin, as a main component of wheat storage protein, is used as a drug encapsulation and delivery system owing to its specific characteristics. Flavonoids are regarded as active natural products with a variety of pharmacological effects. In this study, an integrated method including UV-vis, fluorescence, and FT-IR spectroscopy and molecular modelling was applied to explore the structure-affinity relationship and the interaction nature between a library of flavonoids and gliadin. The characteristic UV-vis spectral changes of gliadin mediated by flavonoids with absorption bands at 218 and 278 nm demonstrated the existence of an interaction depending on generating the ground-state complexes. Fluorescence quenching results showed that the intrinsic fluorescence of gliadin could be effectively quenched by flavonoids coupled with the formation of flavonoid-gliadin complexes through the static quenching mechanism. The structure-affinity relationship revealed the critical structural elements associated with the binding affinity on gliadin and underlined the favorable substituents at the specific positions of flavonoid skeletons leading to a stronger binding potency. From the analysis of synchronous fluorescence spectra, flavonoids could cause the conformation change of gliadin and impact the microenvironment around TYR and TRP residues. Moreover, the ANS fluorescent probe assay suggested that these flavonoids also influenced the surface hydrophobicity of glaidin based on the further exposure or blocking of hydrophobic domains. Molecular modelling was subsequently performed and illustrated the proposed binding conformation of flavonoids on gliadin. Combined with the FT-IR spectra, these results further confirmed the important role of hydrophobic interactions and hydrogen bonds in their binding process.
Collapse
Affiliation(s)
- Jie Zhao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Lin Huang
- Blood Purification Center, Affiliated Yijishan Hospital of Wannan Medical College, Wuhu 241001, P. R. China
| | - Renjie Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jin Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Hongjin Tang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| |
Collapse
|
12
|
Effect of a polyphenol molecular size on the gluten proteins – polyphenols interactions studied with FT-Raman spectroscopy. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09740-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Synergistic strongly coupled super-deamidation of wheat gluten by glucose-organic acid natural deep eutectic solvent and the efficaciousness of structure and functionality. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Cao SL, Zheng WY, Chen ZP, Zhang FL, Jiang WH, Qiu YQ, Gu M, Chen ZS, Zheng TY, Zhang HK, Wang SY, Liao L. Highly Efficient Deamidation of Wheat Gluten by Glucose-Citric Acid-Based Natural Deep Eutectic Solvent: A Potential Effective Reaction Media. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3452-3465. [PMID: 33724017 DOI: 10.1021/acs.jafc.0c07275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An efficient technique using citric acid and glucose based natural deep eutectic solvent (G-C-NADES) was developed to obtain ultrahigh deamidated wheat gluten (UDWG) (deamidation degree (DD) > 90%). FTIR and 1H NMR indicated intensive hydrogen bonds (HBs) in G-C-NADES supermolecules. Quantum chemical calculations and molecular dynamic simulations demonstrated that 10 wt % diluted G-C-NADES still had a myriad of HBs. Physicochemical results showed UDWG had DD up to 92.45% after G-C-NADES deamidation, that is, 22% higher than citric-acid-DWG with a weak degree of hydrolysis (1.75%). Conformational characterization demonstrated the obvious conversion from α-helix to β-sheet via FTIR, the least amount of disulfide bonds by Raman spectra, and more exposure of tryptophan residues by fluorescence measurement for UDWG. It is proven that enhanced accessible conformation of WG reached with HBs of G-C-NADESs could contribute to the improvement on nucleophilic attack of deamidation, declaring that G-C-NADES might be a potential solvent for obtaining an ultrahigh deamidation for WG to successfully guarantee the safety of wheat gluten based cereal food regarding to lowering its allergy.
Collapse
Affiliation(s)
- Shi-Lin Cao
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, The People's Republic of China
| | - Wen-Yu Zheng
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, The People's Republic of China
| | - Zhan-Peng Chen
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, The People's Republic of China
| | - Feng-Li Zhang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, The People's Republic of China
| | - Wen-Hao Jiang
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, The People's Republic of China
| | - Yu-Qiong Qiu
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, The People's Republic of China
| | - Ming Gu
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, The People's Republic of China
| | - Zi-Shi Chen
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, The People's Republic of China
| | - Tian-Yi Zheng
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, The People's Republic of China
| | - Hong-Kun Zhang
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, The People's Republic of China
| | - Shao-Yun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, The People's Republic of China
| | - Lan Liao
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, The People's Republic of China
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, The People's Republic of China
| |
Collapse
|