1
|
Ahmad M, Mahmood Y, Ghaffar A, Hussain R, Anjum S, Fouad D, Ataya FS, Khan A. Pymetrozine induced remarkable hemato-biochemical modifications and genotoxicity in vital organs of bighead carp ( Aristichthys nobilis). Toxicol Mech Methods 2025:1-10. [PMID: 39757888 DOI: 10.1080/15376516.2024.2440738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/12/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025]
Abstract
Pymetrozine (a pyridine azomethine pesticide) is one of the most commonly and frequently used insecticides. Scanty information is available about the deleterious effects of Pymetrozine on fish especially bighead carp. Hence, the current study investigated chronic toxicological effects of pymetrozine in bighead carp. A total of 80 fish were reared and divided into four groups(A-D) each containing 20 fish. Pymetrozine was given to experimental fish of groups B, C, and D mixed in water at doses of 5, 10, and 15 mg/L respectively for 30 days. Group A remained as control group. On days 10, 20, and 30 of the experiment, blood and other visceral tissues were collected for analysis of genotoxic effects, erythrocytic morphological and nuclear changes, antioxidant enzymes, and oxidative stress profile. The results revealed significantly higher values of various nuclear abnormalities (erythrocyte with micronuclei, red blood cells with condensed and lobed nuclei) and morphological changes (pear shaped erythrocyte, spindle shaped erythrocytes and spherocyte) in erythrocytes of bighead carp. The investigations on status of antioxidant enzymes and oxidative stress indicated higher values of oxidative stress biomarkers and lower values of antioxidant enzymes in visceral organs (brain, liver, gills, and kidneys) of treated fish. The findings on genotoxic potential of pymetrozine revealed a considerably increased frequency of DNA damage in isolated cells of multiple tissues (brain, liver, gills, and kidneys) of experimental fish at higher doses. In conclusion, it may be suggested that pymetrozine induces toxic effects via disruption of physiological mechanisms of multiple visceral organs of bighead carp.
Collapse
Affiliation(s)
- Munir Ahmad
- Department of Zoology, Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yasir Mahmood
- Department of Zoology, Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdul Ghaffar
- Department of Zoology, Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shazia Anjum
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Government Sadiq College Women University, Bahawalpur, Pakistan
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahrar Khan
- Shandong Vocational Animal Sciences and Veterinary College, Weifang, China
| |
Collapse
|
2
|
Chen Y, Ye H, Fang N, Luo Y, Wang X, Li Y, He H, Cheng Y, Zhang C. Residue Analysis and Dietary Risk Assessment of Pymetrozine in Potato ( Solanum tuberosum L.) and Chrysanthemum morifolium (Ramat). PLANTS (BASEL, SWITZERLAND) 2023; 12:3905. [PMID: 38005801 PMCID: PMC10675590 DOI: 10.3390/plants12223905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Pymetrozine is used on potato (S. tuberosum) and Chrysanthemum morifolium (C. morifolium) to obtain greater yield and quality. However, pesticide use carries the potential for residues to remain and be detected on harvested crops. Therefore, the aim of this study was to estimate pesticide residues in S. tuberosum and C. morifolium products that are commercially available for human consumption and to assess the associated dietary risks. For this study, a total of 340 samples (200 S. tuberosum samples and 140 C. morifolium samples) were collected randomly from supermarkets and farmer's markets. Residues of pymetrozine in S. tuberosum and C. morifolium were detected by using an established and validated QuECHERS-HPLC-MS / MS method, while a dietary risk assessment of pymetrozine in S. tuberosum and C. morifolium was performed using these data. The detection rates of pymetrozine in S. tuberosum and C. morifolium samples were 92.31% and 98.17%, respectively, with residues not more than 0.036 and 0.024 mg/kg, respectively. Based on these results, the dietary risk assessment indicated that the intake of pymetrozine residues in S. tuberosum and C. morifolium does not pose a health risk. This work improved our understanding of the potential exposure risk of pymetrozine in S. tuberosum and C. morifolium.
Collapse
Affiliation(s)
- Yuting Chen
- School of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300380, China
- Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (N.F.); (Y.L.); (X.W.); (Y.L.); (H.H.)
| | - Hui Ye
- School of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300380, China
| | - Nan Fang
- Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (N.F.); (Y.L.); (X.W.); (Y.L.); (H.H.)
| | - Yuqin Luo
- Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (N.F.); (Y.L.); (X.W.); (Y.L.); (H.H.)
| | - Xiangyun Wang
- Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (N.F.); (Y.L.); (X.W.); (Y.L.); (H.H.)
| | - Yanjie Li
- Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (N.F.); (Y.L.); (X.W.); (Y.L.); (H.H.)
| | - Hongmei He
- Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (N.F.); (Y.L.); (X.W.); (Y.L.); (H.H.)
| | - Youpu Cheng
- School of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300380, China
| | - Changpeng Zhang
- Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (N.F.); (Y.L.); (X.W.); (Y.L.); (H.H.)
| |
Collapse
|
3
|
Miao S, Wei Y, Pan Y, Wang Y, Wei X. Detection methods, migration patterns, and health effects of pesticide residues in tea. Compr Rev Food Sci Food Saf 2023; 22:2945-2976. [PMID: 37166996 DOI: 10.1111/1541-4337.13167] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
Due to its rich health benefits and unique cultural charm, tea drinking is increasingly popular with the public in modern society. The safety of tea is the top priority that affects the development of tea industry and the health of consumers. During the process of tea growth, pesticides are used to prevent the invasion of pests and diseases with maintaining high quality and stable yield. Because hot water brewing is the traditional way of tea consumption, water is the main carrier for pesticide residues in tea into human body accompanied by potential risks. In this review, pesticides used in tea gardens are divided into two categories according to their solubility, among which water-soluble pesticides pose a greater risk. We summarized the methods of the sample pretreatment and detection of pesticide residues and expounded the migration patterns and influencing factors of tea throughout the process of growth, processing, storage, and consumption. Moreover, the toxicity and safety of pesticide residues and diseases caused by human intake were analyzed. The risk assessment and traceability of pesticide residues in tea were carried out, and potential eco-friendly improvement strategies were proposed. The review is expected to provide a valuable reference for reducing risks of pesticide residues in tea and ensuring the safety of tea consumption.
Collapse
Affiliation(s)
- Siwei Miao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yi Pan
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, P. R. China
| | - Xinlin Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
4
|
Wang Z, Luo F, Guo M, Yu J, Zhou L, Zhang X, Sun H, Yang M, Lou Z, Chen Z, Wang X. The metabolism and dissipation behavior of tolfenpyrad in tea: A comprehensive risk assessment from field to cup. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162876. [PMID: 36933718 DOI: 10.1016/j.scitotenv.2023.162876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 05/06/2023]
Abstract
The metabolites of pesticides usually require rational risk assessment. In the present study, the metabolites of tolfenpyrad (TFP) in tea plants were identified using UPLC-QToF/MS analysis, and the transfer of TFP and its metabolites from tea bushes to consumption was studied for a comprehensive risk assessment. Four metabolites, PT-CA, PT-OH, OH-T-CA, and CA-T-CA, were identified, and PT-CA and PT-OH were detected along with dissipation of the parent TFP under field conditions. During processing, 3.11-50.00 % of TFP was further eliminated. Both PT-CA and PT-OH presented a downward trend (7.97-57.89 %) during green tea processing but an upward trend (34.48-124.17 %) during black tea manufacturing. The leaching rate (LR) of PT-CA (63.04-101.03 %) from dry tea to infusion was much higher than that of TFP (3.06-6.14 %). As PT-OH was no longer detected in tea infusions after 1 d of TFP application, TFP and PT-CA were taken into account in the comprehensive risk assessment. The risk quotient (RQ) assessment indicated a negligible health risk, but PT-CA posed a greater potential risk than TFP to tea consumers. Therefore, this study provides guidance for rational TFP application and suggests the sum of TFP and PT-CA residues as the maximum residual limit (MRL) in tea.
Collapse
Affiliation(s)
- Zihan Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Fengjian Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Mingming Guo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiawei Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Hezhi Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Mei Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zhengyun Lou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xinru Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China.
| |
Collapse
|
5
|
Yin X, Li H, Wu S, Lu Y, Yang Y, Qin L, Li L, Xiao J, Liang J, Si Y, Le T, Peng D. A sensitive and specific enzyme-linked immunosorbent assay for the detection of pymetrozine in vegetable, cereal, and meat. Food Chem 2023; 418:135949. [PMID: 36989652 DOI: 10.1016/j.foodchem.2023.135949] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/25/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Pymetrozine is a neonicotinoid insecticide with high efficacy against aphids and planthoppers, and has been used worldwide. To monitor its residue in food, a highly specific and sensitive monoclonal antibody (McAb) was prepared, and an indirect competitive enzyme-linked immunosorbent assay (icELISA) was developed to detect pymetrozine, with a 50% inhibition value (IC50) of 7.70 μg/L. The McAb showed little affinity for acetamiprid, hexazinone, metamitron, nitenpyram, metribuzin, and imidacloprid. The limits of detection (LOD) calculated from the analysis of broccoli, cabbage, wheat, maize, rice, chicken, fish, and crayfish samples were from 1.56 to 2.72 μg/kg and the average recoveries were from 81.25 to 103.19%. icELISA was confirmed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). These results demonstrated that the optimised icELISA is a convenient and effective analytical tool for monitoring pymetrozine residues in food.
Collapse
|
6
|
Residue behavior and risk assessment of afidopyropen and its metabolite M440I007 in tea. Food Chem 2022; 404:134413. [DOI: 10.1016/j.foodchem.2022.134413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/12/2022] [Accepted: 09/24/2022] [Indexed: 11/21/2022]
|
7
|
Tudi M, Wang L, Ruan HD, Tong S, Atabila A, Sadler R, Yu QJ, Connell D, Phung DT. Environmental monitoring and potential health risk assessment from Pymetrozine exposure among communities in typical rice-growing areas of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59547-59560. [PMID: 35391644 DOI: 10.1007/s11356-022-19927-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Pymetrozine is one of the most commonly used insecticides in China. This study was conducted to analyse Pymetrozine's potential exposures through various environmental routes beyond the treatment areas. The aim was to estimate the potential health risk for communities due to non-dietary exposures to Pymetrozine in soil and paddy water. Data on registration of pesticides in China, government reports, questionnaires, interviews and literature reviews as well as toxicological health investigations were evaluated to determine the hazard and dose-response characteristics of Pymetrozine. These were based on the US EPA exposure and human health risk assessment methods and exposure data from soil and paddy water samples collected between 10 and 20 m around the resident's location. The exposure doses from dermal contact through soil and paddy water were estimated. The potential cancer risk from the following exposure routes was evaluated: ingestion through soil; dermal contact exposure through soil; dermal contact exposure through paddy water. The potential total cancer risk for residents was estimated to be less than 1 × 10-6. These were relatively low and within the acceptable risk levels. The potential hazard quotient (HQ) from acute and lifetime exposure by dermal contact through paddy water and soil and acute and lifetime exposure by soil ingestion for residents was less than 1, indicating an acceptable risk level. This study suggested that there were negligible cancer risk and non-cancer risks based on ingestion and dermal contact routes of exposure to residents.
Collapse
Affiliation(s)
- Muyesaier Tudi
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing, 100101, China
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Li Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing, 100101, China.
- Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200, MD, Maastricht, the Netherlands.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huada Daniel Ruan
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
- Beijing Normal University-Hong Kong Baptist University United International College, 2000 Jintong Road, Tangjiawan, Zhuhai, Guangdong Province, China
| | - Shuangmei Tong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Albert Atabila
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia.
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P. O. Box LG13, Legon, Accra, Ghana.
| | - Ross Sadler
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Qiming Jimmy Yu
- School of Engineering and Built Environment, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia
| | - Des Connell
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Dung Tri Phung
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| |
Collapse
|
8
|
Xu XY, Zhao CN, Li BY, Tang GY, Shang A, Gan RY, Feng YB, Li HB. Effects and mechanisms of tea on obesity. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34704503 DOI: 10.1080/10408398.2021.1992748] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity has become a global health concern. It increases the risk of several diseases, such as type 2 diabetes mellitus, nonalcoholic fatty liver disease, and certain cancers, which threatens human health and increases social economic burden. As one of the most consumed beverages, tea contains various phytochemicals with potent bioactive properties and health-promoting effects, such as antioxidant, immune-regulation, cardiovascular protection and anticancer. Tea and its components are also considered as potential candidates for anti-obesity. Epidemiological studies indicate that regular consumption of tea is beneficial for reducing body fat. In addition, the experimental studies demonstrate that the potential anti-obesity mechanisms of tea are mainly involved in increasing energy expenditure and lipid catabolism, decreasing nutrient digestion and absorption as well as lipid synthesis, and regulating adipocytes, neuroendocrine system and gut microbiota. Moreover, most of clinical studies illustrate that the intake of green tea could reduce body weight and alleviate the obesity. In this review, we focus on the effect of tea and its components on obesity from epidemiological, experimental, and clinical studies, and discuss their potential mechanisms.
Collapse
Affiliation(s)
- Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, China Hong Kong
| | - Cai-Ning Zhao
- Li Ka Shing Faculty of Medicine, Department of Clinical Oncology, The University of Hong Kong, China Hong Kong
| | - Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Guo-Yi Tang
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, China Hong Kong
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, China Hong Kong
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Yi-Bin Feng
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, China Hong Kong
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|