1
|
Quinn E, Ben-Simchon E, Gorelick J, Oka Y, Frenkel O, Sionov E, Kostyukovsky M, Dudai N, Shimshoni J, Zilkah S, Cohen M, Rapaport A, Shelef O. Examination of genetic lines of Myrtus communis as potential sources of organic agricultural pest control agents. Heliyon 2024; 10:e35658. [PMID: 39170561 PMCID: PMC11336825 DOI: 10.1016/j.heliyon.2024.e35658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Myrtus communis is a Mediterranean shrub cultivated in Israel for traditional, ceremonial use only, with more than 98 % of the crop biomass, equivalent to 26-27 tons per ha per annum, considered agricultural waste. Therefore, potentially profitable use for this excess is being highly sought. As Myrtus is also known for its unique terpene and terpenoid content, this work evaluated the impact of essential oil (EO) extracted from several M. communis cultivars on storage insects, nematodes, fungi, and pathogens. In addition, the allelopathic effect of M. communis litter on the germination success of wheat seeds was evaluated. The EO extracts demonstrated an insecticidal effect on several storage insects in fumigation experiment and a potentially inhibiting effect on wheat development in allelopathy experiments. No significant impact of M. communis EOs on the examined fungi, pathogens, and nematodes was recorded. Additional uses of the M. communis biomass suggest supplying additional income to the farmer through the circular agriculture approach. In addition, the use of this local crop can contribute to sustainable intensification by increasing farming efficiency, providing nature-based substitutes for chemical pesticides, and possibly, improving the future design of agriculture through the integration of Myrtus in monoculture crops.
Collapse
Affiliation(s)
- Elazar Quinn
- Department of Food Science, Agricultural Research Organization – Volcani Institute, Rishon Le Tzion, Israel
| | - Eyal Ben-Simchon
- The R.H. Smith Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization – Volcani Institute, Rishon Le Tzion, Israel
| | | | - Yuji Oka
- Nematology Unit, Gilat Research Center, Agricultural Research Organization – Volcani Institute, Negev, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization – Volcani Institute, Rishon Le Tzion, Israel
| | - Edward Sionov
- Department of Food Science, Agricultural Research Organization – Volcani Institute, Rishon Le Tzion, Israel
| | - Moshe Kostyukovsky
- Department of Food Science, Agricultural Research Organization – Volcani Institute, Rishon Le Tzion, Israel
| | - Nativ Dudai
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization – Volcani Institute, Ramat-Yishay, Israel
| | - Jakob Shimshoni
- Department of Food Science, Agricultural Research Organization – Volcani Institute, Rishon Le Tzion, Israel
| | - Shmuel Zilkah
- Institute of Plant Sciences, Agricultural Research Organization – Volcani Institute, Rishon Le Tzion, Israel
| | - Menashe Cohen
- Avnei Eitan Experiment Station, Golan Heights, Israel
| | - Aviv Rapaport
- Department of Food Science, Agricultural Research Organization – Volcani Institute, Rishon Le Tzion, Israel
| | - Oren Shelef
- Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization – Volcani Institute, Rishon Le Tzion, Israel
| |
Collapse
|
2
|
Gorjian H, Khaligh NG. Myrtle: a versatile medicinal plant. NUTRIRE : REVISTA DE SOCIEDADE BRASILEIRA DE ALIMENTACAO E NUTRICAO = JOURNAL OF THE BRAZILIAN SOCIETY OF FOOD AND NUTRITION 2023; 48:10. [PMID: 38625264 PMCID: PMC9933039 DOI: 10.1186/s41110-023-00194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
Myrtus, commonly called myrtle, is a genus of flowering plants in the Myrtaceae family. This study aimed to review myrtle's pharmaceutical, food, and other uses. The pharmacological effects of myrtle for antioxidant, antibacterial, and anti-inflammatory activities, reduction of COVID-19 symptoms, anti-diabetic in the animal model, hepatoprotective in the rat model, antihypertensive, control of intestinal helminthiasis in mice model, inhibition of glucosyltransferase activity, protective effect on oxidative metabolism in the hypothyroidism model, and reducing the damage caused by skin burns are reviewed. In addition, the food uses of this plant such as improving the oxidative and microbial stability of products containing salmon, antimicrobial activity in meat and dairy products, flavoring in sea salt, microbial improvement of fresh fruits during post-harvest storage, animal nutrition, and bio-oil production are summarized. Supplementary Information The online version contains supplementary material available at 10.1186/s41110-023-00194-y.
Collapse
Affiliation(s)
- Hayedeh Gorjian
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Nader Ghaffari Khaligh
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
- Nanotechnology and Catalysis Research Center, Institute for Advanced Studies, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Guo TR, Zeng Q, Yang G, Ye SS, Chen ZY, Xie SY, Wang H, Mo YW. Isolation, identification, biological characteristics, and antifungal efficacy of sodium bicarbonate combined with natamycin on Aspergillus niger from Shengzhou nane ( Prunus salicina var. taoxingli) fruit. Front Microbiol 2023; 13:1075033. [PMID: 36713153 PMCID: PMC9879613 DOI: 10.3389/fmicb.2022.1075033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
The fungi causing fruit rot were isolated from symptomatic Shengzhou nane (Prunus salicina var. taoxingli) fruit and were identified as Aspergillus niger by biological characteristics and molecular analysis of the internal transcribed spacer region (rDNA-ITS) and translation elongation factor-1α (TEF-1α) sequences. Optimal growth conditions for A. niger were 30°C, pH 5.0-6.0, and fructose and peptone as carbon and nitrogen sources. The effects of sodium bicarbonate (SBC), natamycin (NT), and combined treatments on A. niger inhibition were investigated. Treatment with 4.0 g/L sodium bicarbonate (SBC) + 5.0 mg/L natamycin (NT) inhibited mycelial growth and spore germination as completely as 12.0 mg/L SBC or 25.0 mg/L NT. SBC and NT treatments disrupted the structural integrity of cell and mitochondria membranes and decreased enzyme activities involved in the tricarboxylic acid (TCA) cycle, mitochondrial membrane potential (MMP), ATP production in mitochondria, and ergosterol content in the plasma membrane, thus leading to the inhibition of A. niger growth. Moreover, experimental results in vivo showed that the rot lesion diameter and decay rate of Shengzhou nane fruit treated with SBC and NT were significantly reduced compared with the control. The results suggest that the combination treatment of SBC and NT could be an alternative to synthetic fungicides for controlling postharvest Shengzhou nane decay caused by A. niger.
Collapse
|
4
|
Fadda A, Montoro P, D’Urso G, Ravasio N, Zaccheria F, Sanna D. Sustainable Extraction Methods Affect Metabolomics and Oxidative Stability of Myrtle Seed Oils Obtained from Myrtle Liqueur By-Products: An Electron Paramagnetic Resonance and Mass Spectrometry Approach. Antioxidants (Basel) 2023; 12:antiox12010154. [PMID: 36671016 PMCID: PMC9854790 DOI: 10.3390/antiox12010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Myrtle liqueur production generates high amounts of by-products that can be employed for the extraction of bioactive compounds. Bio-based, non-toxic and biodegradable solvents (ethyl acetate and 2-methyltetrahydrofuran), and a mechanical extraction were applied to myrtle seeds, by-products of the liqueur production, to extract oils rich in phenolic compounds. The oils obtained were characterized for yield, peroxide value (PV), lipid composition, and total phenolic concentration (TPC). The phenolic profile of the oils, determined by LC-MS, the antioxidant activity, and the oxidative stability were also analyzed. A validated UHPLC-ESI-QTRAP-MS/MS analytical method in multiple reaction monitoring (MRM) mode was applied to quantify myricetin and its main derivatives in myrtle oils. The results pointed out clear differences among extraction methods on myricetin concentration. The oxidative stability of myrtle oils was studied with electron paramagnetic resonance (EPR) spectroscopy highlighting the effect of the extraction method on the oxidation status of the oils and the role of phenolic compounds in the evolution of radical species over time. A principal component analysis applied to LC-MS data highlighted strong differences among phenolic profiles of the oils and highlighted the role of myricetin in the oxidative stability of myrtle oils. Myrtle oil, obtained from the by-products of myrtle liqueur processing industry, extracted with sustainable and green methods might have potential application in food or cosmetic industries.
Collapse
Affiliation(s)
- Angela Fadda
- Institute of the Sciences of Food Productions, National Research Council, Traversa La Crucca, 3, 07100 Sassari, Italy
- Correspondence: ; Tel.: +39-079-284-1714
| | - Paola Montoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Gilda D’Urso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Nicoletta Ravasio
- Institute of Chemical Sciences and Technologies “G. Natta”, National Research Council, Via Golgi 19, 20133 Milano, Italy
| | - Federica Zaccheria
- Institute of Chemical Sciences and Technologies “G. Natta”, National Research Council, Via Golgi 19, 20133 Milano, Italy
| | - Daniele Sanna
- Institute of Biomolecular Chemistry, National Research Council, Traversa La Crucca, 3, 07100 Sassari, Italy
| |
Collapse
|
5
|
Myrtle-Functionalized Nanofibers Modulate Vaginal Cell Population Behavior While Counteracting Microbial Proliferation. PLANTS 2022; 11:plants11121577. [PMID: 35736728 PMCID: PMC9227804 DOI: 10.3390/plants11121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Vaginal infections affect millions of women annually worldwide. Therapeutic options are limited, moreover drug-resistance increases the need to find novel antimicrobials for health promotion. Recently phytochemicals were re-discovered for medical treatment. Myrtle (Myrtus communis L.) plant extracts showed in vitro antioxidant, antiseptic and anti-inflammatory properties thanks to their bioactive compounds. The aim of the present study was to create novel nanodevices to deliver three natural extracts from leaves, seeds and fruit of myrtle, in vaginal milieu. We explored their effect on human cells (HeLa, Human Foreskin Fibroblast-1 line, and stem cells isolated from skin), resident microflora (Lactobacillus acidophilus) and on several vaginal pathogens (Trichomonas vaginalis, Escherichia coli, Staphylococcus aureus, Candida albicans, Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei). Polycaprolactone-Gelatin nanofibers encapsulated with leaves extract and soaked with seed extracts exhibited a different capability in regard to counteracting microbial proliferation. Moreover, these nanodevices do not affect human cells and resident microflora viability. Results reveal that some of the tested nanofibers are interesting candidates for future vaginal infection treatments.
Collapse
|
6
|
Chen C, Cai N, Wan C, Huang Q, Chen J. Cell wall modification and lignin biosynthesis involved in disease resistance against Diaporthe citri in harvested pummelo fruit elicited by carvacrol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3140-3149. [PMID: 34791654 DOI: 10.1002/jsfa.11657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Phomopsis stem-end rot caused by Diaporthe citri, causes significant commercial postharvest losses of pummelo fruit during storage. Carvacrol (CVR) is a known generally recognized as safe and has the ability to prolong the preservation of harvested fruits. In the present study, the inhibitory effects of CVR treatment at the appropriate concentration on Phomopsis stem-end rot development of harvested pummelo fruit inoculated with D. citri were evaluated by the amounts of cell wall components, the activities and gene expressions of related enzymes involved in cell wall modification and lignin biosynthesis. RESULTS Results indicated that CVR completely inhibited D. citri growth in vitro at 200 mg L-1 and significantly controlled Phomopsis stem-end rot development in harvested pummelo. The CVR treatment delayed peel softening and browning, and retarded electrolyte leakage, superoxide radical (O2 •- ) production, and malondialdehyde content. The CVR-treated fruit maintained higher amounts of cell wall material, protopectin, hemicelluloses, and cellulose, but exhibited lower water-soluble pectin amount. Moreover, in D. citri-inoculated fruit, CVR treatment suppressed the activities and gene expressions of cell wall disassembling-enzymes, including pectin methylesterase, polygalacturonase, cellulase, and β-galactosidase, while the development of cell wall degradation was reduced. Meanwhile, the CVR treatment enhanced the lignin biosynthesis by increasing the activities and up-regulating the gene expressions of phenylalanine ammonialyase, cinnamic alcohol dehydrogenase, and peroxidase accompanied with elevated level of lignin in pummelo fruit. CONCLUSION The disease resistance to D. citri in pummelo fruit elicited by CVR treatment is related to delaying cell wall degradation and enhancing lignin biosynthesis. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuying Chen
- Provincial Key Laboratory for Preservation Technology and Non-Destructive Testing of Postharvest Fruits & Vegetables in Jiangxi, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, P. R. China
| | - Nan Cai
- Provincial Key Laboratory for Preservation Technology and Non-Destructive Testing of Postharvest Fruits & Vegetables in Jiangxi, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, P. R. China
| | - Chunpeng Wan
- Provincial Key Laboratory for Preservation Technology and Non-Destructive Testing of Postharvest Fruits & Vegetables in Jiangxi, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, P. R. China
| | - Qiang Huang
- Provincial Key Laboratory for Preservation Technology and Non-Destructive Testing of Postharvest Fruits & Vegetables in Jiangxi, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, P. R. China
| | - Jinyin Chen
- Provincial Key Laboratory for Preservation Technology and Non-Destructive Testing of Postharvest Fruits & Vegetables in Jiangxi, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, P. R. China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, Jiangxi Province, 337055, P. R. China
| |
Collapse
|
7
|
Chen C, Cai N, Wan C, Kai W, Chen J. Carvacrol delays Phomopsis stem-end rot development in pummelo fruit in relation to maintaining energy status and antioxidant system. Food Chem 2022; 372:131239. [PMID: 34627096 DOI: 10.1016/j.foodchem.2021.131239] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/10/2021] [Accepted: 09/25/2021] [Indexed: 02/07/2023]
Abstract
Pummelo fruit rapidly depreciate in commodity value due to postharvest fungal decay and fruit quality deterioration. Here, we used carvacrol (CVR) to control Phomopsis stem-end rot (SER) caused by Diaporthe citri in pummelo fruit stored at 25 °C. Antifungal activity of CVR inhibited D. citri growth and Phomopsis SER development. Harvested pummelo fruit treated with CVR delayed firmness loss and lowered electrolyte leakage, and retarded hydrogen peroxide (H2O2) and malondialdehyde (MDA) accumulation. Unlike the control fruit, the CVR-treated fruit maintained higher levels of adenosine triphosphate and energy charge, and increased ATPase, succinate dehydrogenase (SDH), malate dehydrogenase (MDH), and cytochrome C oxidase (CCO) activities, along with up-regulated expression levels of the respective genes. CVR improved the antioxidant capacity, as evidenced by higher non-enzymatic antioxidants amounts, higher activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX) and glutathione reductase (GR), and up-regulated expression levels of ROS-scavenging-related genes. Collectively, CVR treatment maintained the energy status and antioxidant capacity in D. citri-infected pummelo fruit, which revealed antifungal mechanisms critical for controlling postharvest fungal diseases.
Collapse
Affiliation(s)
- Chuying Chen
- Provincial Key Laboratory for Preservation Technology and Non-destructive Testing of Postharvest Fruits & Vegetables in Jiangxi, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Nan Cai
- Provincial Key Laboratory for Preservation Technology and Non-destructive Testing of Postharvest Fruits & Vegetables in Jiangxi, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Chunpeng Wan
- Provincial Key Laboratory for Preservation Technology and Non-destructive Testing of Postharvest Fruits & Vegetables in Jiangxi, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Wenbin Kai
- Provincial Key Laboratory for Preservation Technology and Non-destructive Testing of Postharvest Fruits & Vegetables in Jiangxi, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jinyin Chen
- Provincial Key Laboratory for Preservation Technology and Non-destructive Testing of Postharvest Fruits & Vegetables in Jiangxi, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 330075, PR China
| |
Collapse
|